तिरछा प्रक्षेपण: Difference between revisions

From Vigyanwiki
mNo edit summary
mNo edit summary
Line 7: Line 7:
वस्तुएं परिप्रेक्ष्य में नहीं हैं और इसलिए किसी वस्तु के किसी भी दृश्य के अनुरूप नहीं हैं जिसे अभ्यास में प्राप्त किया जा सकता है, लेकिन तकनीक कुछ सीमा तक आश्वस्त और उपयोगी होती है।
वस्तुएं परिप्रेक्ष्य में नहीं हैं और इसलिए किसी वस्तु के किसी भी दृश्य के अनुरूप नहीं हैं जिसे अभ्यास में प्राप्त किया जा सकता है, लेकिन तकनीक कुछ सीमा तक आश्वस्त और उपयोगी होती है।


तिर्यक प्रक्षेप समान्यतः तकनीकी रेखाचित्र में प्रयोग किया जाता है। 18वीं शताब्दी में '''''किलेबन्दी''''' को चित्रित करने के लिए प्रक्षेप का उपयोग फ्रांसीसी सैन्य कलाकारों द्वारा किया गया था।
तिर्यक प्रक्षेप समान्यतः तकनीकी रेखाचित्र में प्रयोग किया जाता है। 18वीं शताब्दी में सुदृढ़ीकरण को चित्रित करने के लिए प्रक्षेप का उपयोग फ्रांसीसी सैन्य कलाकारों द्वारा किया गया था।


पहली या दूसरी शताब्दी से लेकर 18वीं शताब्दी तक चीनी कलाकारों द्वारा तिर्यक प्रक्षेप का उपयोग लगभग सार्वभौमिक रूप से किया गया था, विशेष रूप से घरों जैसे सीधीरेखीय वस्तुओं को चित्रित करने के लिए।<ref name=Cucker299>{{cite book |last1=Cucker |first1=Felipe |author1-link=Felipe Cucker|title=Manifold Mirrors: The Crossing Paths of the Arts and Mathematics |date=2013 |publisher=Cambridge University Press |isbn=978-0-521-72876-8 |pages=269–278}}</ref>
पहली या दूसरी शताब्दी से लेकर 18वीं शताब्दी तक चीनी कलाकारों द्वारा तिर्यक प्रक्षेप का उपयोग लगभग सार्वभौमिक रूप से किया गया था, विशेष रूप से घरों जैसे सीधीरेखीय वस्तुओं को चित्रित करने के लिए।<ref name=Cucker299>{{cite book |last1=Cucker |first1=Felipe |author1-link=Felipe Cucker|title=Manifold Mirrors: The Crossing Paths of the Arts and Mathematics |date=2013 |publisher=Cambridge University Press |isbn=978-0-521-72876-8 |pages=269–278}}</ref>
Line 32: Line 32:
परिणामी विकृतियाँ [[तकनीक]] को औपचारिक, कार्यशील रेखाचित्रों के लिए अनुपयुक्त बनाती हैं। फिर भी, प्रक्षेप के स्तर के समानांतर छवि के एक स्तर को संरेखित करके विकृतियों को आंशिक रूप से दूर किया जाता है। ऐसा करने से चुने हुए स्तर की सही आकार की छवि बनती है। तिरछे प्रक्षेप की यह विशिष्ट श्रेणी, जिससे दिशाओं के साथ लंबाई  <math>x</math> और <math>y</math> बनी रहती हैं, लेकिन दिशा के साथ लंबाई <math>z</math> एक परिवर्तन गुणांक का उपयोग करके कोण पर खींचा जाता है, औद्योगिक आरेखण के लिए बहुत अधिक उपयोग किया जाता है।
परिणामी विकृतियाँ [[तकनीक]] को औपचारिक, कार्यशील रेखाचित्रों के लिए अनुपयुक्त बनाती हैं। फिर भी, प्रक्षेप के स्तर के समानांतर छवि के एक स्तर को संरेखित करके विकृतियों को आंशिक रूप से दूर किया जाता है। ऐसा करने से चुने हुए स्तर की सही आकार की छवि बनती है। तिरछे प्रक्षेप की यह विशिष्ट श्रेणी, जिससे दिशाओं के साथ लंबाई  <math>x</math> और <math>y</math> बनी रहती हैं, लेकिन दिशा के साथ लंबाई <math>z</math> एक परिवर्तन गुणांक का उपयोग करके कोण पर खींचा जाता है, औद्योगिक आरेखण के लिए बहुत अधिक उपयोग किया जाता है।
* कैवलियर प्रक्षेप ऐसे प्रक्षेप का नाम है, जहां <math>z</math> अक्ष के साथ लंबाई साथ बगैर माप ही रहता है।<ref name="pp">[http://www.mtsu.edu/~csjudy/planeview3D/tutorial-parallel.html Parallel Projections] {{webarchive|url=https://web.archive.org/web/20070423160654/http://www.mtsu.edu/~csjudy/planeview3D/tutorial-parallel.html |date=23 April 2007 }} from ''PlaneView3D Online''</ref>
* कैवलियर प्रक्षेप ऐसे प्रक्षेप का नाम है, जहां <math>z</math> अक्ष के साथ लंबाई साथ बगैर माप ही रहता है।<ref name="pp">[http://www.mtsu.edu/~csjudy/planeview3D/tutorial-parallel.html Parallel Projections] {{webarchive|url=https://web.archive.org/web/20070423160654/http://www.mtsu.edu/~csjudy/planeview3D/tutorial-parallel.html |date=23 April 2007 }} from ''PlaneView3D Online''</ref>
* कैबिनेट प्रक्षेप, उपस्कर चित्रों में लोकप्रिय, ऐसी तकनीक का एक उदाहरण है, जहां पश्चगामी धुरी को आधे आकार में बढ़ाया जाता है<ref name="pp" />(कभी-कभी दो-तिहाई मूल के विपरीत)।<ref>{{citation|title=Basic Engineering|series=Butterworth-Heinemann GNVQ Engineering Series|first=William|last=Bolton|publisher=BH Newnes|year=1995|isbn=9780750625845|page=140}}.</ref>
* मंजूषा प्रक्षेप, उपस्कर चित्रों में लोकप्रिय, ऐसी तकनीक का एक उदाहरण है, जहां पश्चगामी धुरी को आधे आकार में बढ़ाया जाता है<ref name="pp" />(कभी-कभी दो-तिहाई मूल के विपरीत)।<ref>{{citation|title=Basic Engineering|series=Butterworth-Heinemann GNVQ Engineering Series|first=William|last=Bolton|publisher=BH Newnes|year=1995|isbn=9780750625845|page=140}}.</ref>




Line 42: Line 42:
इसे बनाना बहुत आसान है, विशेषतः पेन और पेपर के साथ। यह इस प्रकार प्रायः प्रयोग किया जाता है जब एक आकृति को हाथ से बनाया जाना चाहिए, उदाहरण ब्लैक बोर्ड पर (पाठ, मौखिक परीक्षा)।
इसे बनाना बहुत आसान है, विशेषतः पेन और पेपर के साथ। यह इस प्रकार प्रायः प्रयोग किया जाता है जब एक आकृति को हाथ से बनाया जाना चाहिए, उदाहरण ब्लैक बोर्ड पर (पाठ, मौखिक परीक्षा)।


प्रतिनिधित्व शुरू में सैन्य किलेबंदी के लिए उपयोग किया गया था। फ्रेंच में, अश्वारोही सेना (शाब्दिक रूप से सवार, घुड़सवार, [[ घुड़सवार सेना | अश्वारोही सेना]] देखें) दीवारों के पीछे एक कृत्रिम पहाड़ी है जो दीवारों के ऊपर दुश्मन को देखने की अनुमति देता है।<ref>[http://trucsmaths.free.fr/etymologie.htm#C Etymologie des maths, letter C] (French)</ref> अश्वारोही परिप्रेक्ष्य इस उच्च बिंदु से चीजों को देखने का प्रकार था। कुछ लोग नाम को इस तथ्य से भी समझाते हैं कि यह एक ऐसा प्रकार था जिससे एक सवार अपने घोड़े की पीठ से जमीन पर एक छोटी सी वस्तु को देख सकता था।<ref>[http://mapage.noos.fr/r.ferreol/langage/notations/notations.htm DES QUESTIONS D'ORIGINES] (French)</ref>
प्रतिनिधित्व शुरू में सैन्य सुदृढ़ीकरण के लिए उपयोग किया गया था। फ्रेंच में, अश्वारोही सेना (शाब्दिक रूप से सवार, घुड़सवार, [[ घुड़सवार सेना | अश्वारोही सेना]] देखें) दीवारों के पीछे एक कृत्रिम पहाड़ी है जो दीवारों के ऊपर दुश्मन को देखने की अनुमति देता है।<ref>[http://trucsmaths.free.fr/etymologie.htm#C Etymologie des maths, letter C] (French)</ref> अश्वारोही परिप्रेक्ष्य इस उच्च बिंदु से चीजों को देखने का प्रकार था। कुछ लोग नाम को इस तथ्य से भी समझाते हैं कि यह एक ऐसा प्रकार था जिससे एक सवार अपने घोड़े की पीठ से जमीन पर एक छोटी सी वस्तु को देख सकता था।<ref>[http://mapage.noos.fr/r.ferreol/langage/notations/notations.htm DES QUESTIONS D'ORIGINES] (French)</ref>






== कैबिनेट प्रक्षेप ==
== मंजूषा प्रक्षेप ==
''कैबिनेट प्रक्षेप'' शब्द उपस्कर उद्योग द्वारा चित्रण में इसके उपयोग से उपजा है।<ref>{{citation|title=Design Drawing|first1=Francis D. K.|last1=Ching|first2=Steven P.|last2=Juroszek|edition=2nd|publisher=John Wiley & Sons|year=2011|isbn=9781118007372|page=205|url=https://books.google.com/books?id=T7TJYHdhgw8C&pg=PA205}}.</ref> अश्वारोही परिप्रेक्ष्य की तरह, प्रक्षेपित वस्तु का एक चेहरा देखने वाले स्तर के समानांतर होता है, और तीसरी धुरी को कोण पर जाने के रूप में प्रक्षेपित किया जाता है (समान्यतः {{mono|atan(2)}} या लगभग ~63.4°). अश्वारोही प्रक्षेप के विपरीत, जहां तीसरी धुरी अपनी लंबाई रखती है, कैबिनेट प्रक्षेप के साथ पश्चगामी रेखाओं की लंबाई आधे में कट जाती है।
''मंजूषा प्रक्षेप'' शब्द उपस्कर उद्योग द्वारा चित्रण में इसके उपयोग से उपजा है।<ref>{{citation|title=Design Drawing|first1=Francis D. K.|last1=Ching|first2=Steven P.|last2=Juroszek|edition=2nd|publisher=John Wiley & Sons|year=2011|isbn=9781118007372|page=205|url=https://books.google.com/books?id=T7TJYHdhgw8C&pg=PA205}}.</ref> अश्वारोही परिप्रेक्ष्य की तरह, प्रक्षेपित वस्तु का एक चेहरा देखने वाले स्तर के समानांतर होता है, और तीसरी धुरी को कोण पर जाने के रूप में प्रक्षेपित किया जाता है (समान्यतः {{mono|atan(2)}} या लगभग ~63.4°). अश्वारोही प्रक्षेप के विपरीत, जहां तीसरी धुरी अपनी लंबाई रखती है, मंजूषा प्रक्षेप के साथ पश्चगामी रेखाओं की लंबाई आधे में कट जाती है।


=== गणितीय सूत्र ===
=== गणितीय सूत्र ===
Line 76: Line 76:




डिग्री के कोण और 2/3 के अनुपात के साथ '''कैबिनेट प्रक्षेप''' में खींची गई [[पोटिंग बेंच]]।
डिग्री के कोण और 2/3 के अनुपात के साथ '''मंजूषा प्रक्षेप''' में खींची गई [[पोटिंग बेंच]]।






'''अश्वारोही परिप्रेक्ष्य''' में किलेबंदी के टुकड़े (''साइक्लोपीडिया, या कला और विज्ञान का एक सार्वभौमिक शब्दकोश'' खंड 1, 1728)।
'''अश्वारोही परिप्रेक्ष्य''' में सुदृढ़ीकरण के टुकड़े (''साइक्लोपीडिया, या कला और विज्ञान का एक सार्वभौमिक शब्दकोश'' खंड 1, 1728)।




Line 92: Line 92:




'''कैबिनेट परिप्रेक्ष्य''' में खींचा गया पत्थर का चाप।
'''मंजूषा परिप्रेक्ष्य''' में खींचा गया पत्थर का चाप।





Revision as of 14:06, 23 April 2023

Classification of तिरछा प्रक्षेपण and some 3D projections

तिर्यक प्रक्षेप त्रि-आयामी (3D) वस्तुओं की द्वि-आयामी (2D) छवियों के उत्पादन के लिए उपयोग किए जाने वाले आलेखीय प्रक्षेप का एक सरल प्रकार की तकनीकी रेखाचित्र है।

वस्तुएं परिप्रेक्ष्य में नहीं हैं और इसलिए किसी वस्तु के किसी भी दृश्य के अनुरूप नहीं हैं जिसे अभ्यास में प्राप्त किया जा सकता है, लेकिन तकनीक कुछ सीमा तक आश्वस्त और उपयोगी होती है।

तिर्यक प्रक्षेप समान्यतः तकनीकी रेखाचित्र में प्रयोग किया जाता है। 18वीं शताब्दी में सुदृढ़ीकरण को चित्रित करने के लिए प्रक्षेप का उपयोग फ्रांसीसी सैन्य कलाकारों द्वारा किया गया था।

पहली या दूसरी शताब्दी से लेकर 18वीं शताब्दी तक चीनी कलाकारों द्वारा तिर्यक प्रक्षेप का उपयोग लगभग सार्वभौमिक रूप से किया गया था, विशेष रूप से घरों जैसे सीधीरेखीय वस्तुओं को चित्रित करने के लिए।[1]

कंप्यूटर सहाय अभिकल्प (CAD), अभिकलित्र खेल, कंप्यूटर जनित एनिमेशन और फिल्मों में उपयोग किए जाने वाले विशेष प्रभावों सहित कंप्यूटर आलेखिकी में विभिन्न आलेखी प्रक्षेप तकनीकों का उपयोग किया जा सकता है।

संक्षिप्त विवरण

कई प्रकार के आलेखीय प्रक्षेप की तुलना। एक सचित्र छवि के भीतर एक या अधिक 90° कोणों की उपस्थिति समान्यतः एक अच्छा संकेत है कि परिप्रेक्ष्य तिरछा है।
विभिन्न आलेखीय अनुमान और वे कैसे निर्मित होते हैं
एक घन का तिर्यक प्रक्षेप, जिसके किनारे से आधे को छोटा किया गया है
प्रक्षेप स्तर (लाल) पर एक ईकाई घन (सियान) के तिरछे प्रक्षेप (बाएं) और लंबकोणिक प्रक्षेप (दाएं) की तुलना का शीर्ष दृश्य। अग्रसंक्षेपण कारक (इस उदाहरण में 1/2) प्रक्षेप तल (भूरे रंग का) और प्रक्षेप रेखाओं (बिंदीदार) के बीच कोण के स्पर्शरेखा (इस उदाहरण में 63.43°) के व्युत्क्रमानुपाती होता है।
उसी का सामने का दृश्य।

तिर्यक प्रक्षेप एक प्रकार का समानांतर प्रक्षेप है:

  • यह समानांतर किरणों (प्रक्षेपक) को काटकर एक छवि प्रस्तुत करता है
  • चित्रकारी सतह (प्रक्षेप प्लेन) के साथ त्रि-आयामी स्रोत वस्तु से।

तिर्यक प्रक्षेप और लंबकोणीय प्रक्षेप दोनों में, स्रोत वस्तु की समानांतर रेखाएँ प्रक्षेप छवि में समानांतर रेखाएँ उत्पन्न करती हैं। तिर्यक प्रक्षेप में प्रक्षेपक अनुमानित छवि बनाने के लिए प्रक्षेप तल को एक तिरछे कोण पर काटते हैं, जैसा कि लंबकोणीय प्रक्षेप में उपयोग होने वाले लंबवत कोण के विपरीत होता है।

गणितीय रूप से, स्तर पर बिंदु का समानांतर प्रक्षेप देता है। स्थिरांक और विशिष्ट रूप से एक समानांतर प्रक्षेप निर्दिष्ट करते है। जब , प्रक्षेप को "लंबकोणिक" या "आयतीय" कहा जाता है। अन्यथा, यह "तिर्यक" है। स्थिरांक और आवश्यक रूप से 1 से कम नहीं हैं, और इसके परिणामस्वरूप एक तिर्यक प्रक्षेप पर मापी गई लंबाई अंतरिक्ष में होने की तुलना में या तो बड़ी या छोट हो सकती है। एक सामान्य तिर्यक प्रक्षेप में, अंतरिक्ष के क्षेत्रों को आरेखण स्तर पर दीर्घवृत्त के रूप में प्रक्षेपित किया जाता है, न कि वृत्त के रूप में जैसा कि वे एक आयतीय प्रक्षेप से प्रकट होते हैं।

तिर्यक चित्रकारी भी सबसे अपरिष्कृत 3D चित्रण विधि है लेकिन इसमें महारत प्राप्त करना सबसे आसान है। तिर्यक दृश्य का उपयोग करने का एक प्रकार यह है कि आप जिस वस्तु को दो आयामों में देख रहे हैं, उसके किनारे को खींचे, यानी सपाट करे, और फिर दूसरी भुजाओं को 45 ° के कोण पर खींचे, लेकिन भुजाओं को पूर्ण आकार में खींचने के विपरीत केवल आधी गहराई के साथ खींचा गया 'बलपूर्ण गहराई' - वस्तु में यथार्थवाद का एक तत्व जोड़ना। यहां तक ​​​​कि इस 'बलपूर्ण गहराई' के साथ, तिर्यक चित्र आंखों के लिए बहुत असंबद्ध लगते हैं। इस कारण से पेशेवर अभिकल्पों या अभियन्ताओं द्वारा कदाचित ही कभी तिर्यक का उपयोग किया जाता है।

तिर्यक सचित्र

एक तिर्यक सचित्र चित्र में, अक्ष के बीच प्रदर्शित कोण, साथ ही साथ अग्रसंक्षेपण कारक (पैमाना) मनमाने होते हैं। अधिक सटीक रूप से, एक ही बिंदु से उत्पन्न होने वाले तीन समतलीय खंडों के किसी भी सेट को घन के तीन पक्षों के कुछ तिरछे परिप्रेक्ष्य के रूप में माना जा सकता है। इस परिणाम को जर्मन गणितज्ञ पोहलके द्वारा पोहलके प्रमेय के रूप में जाना जाता है, जिन्होंने इसे 19वीं शताब्दी की शुरुआत में प्रकाशित किया था।[2]

परिणामी विकृतियाँ तकनीक को औपचारिक, कार्यशील रेखाचित्रों के लिए अनुपयुक्त बनाती हैं। फिर भी, प्रक्षेप के स्तर के समानांतर छवि के एक स्तर को संरेखित करके विकृतियों को आंशिक रूप से दूर किया जाता है। ऐसा करने से चुने हुए स्तर की सही आकार की छवि बनती है। तिरछे प्रक्षेप की यह विशिष्ट श्रेणी, जिससे दिशाओं के साथ लंबाई और बनी रहती हैं, लेकिन दिशा के साथ लंबाई एक परिवर्तन गुणांक का उपयोग करके कोण पर खींचा जाता है, औद्योगिक आरेखण के लिए बहुत अधिक उपयोग किया जाता है।

  • कैवलियर प्रक्षेप ऐसे प्रक्षेप का नाम है, जहां अक्ष के साथ लंबाई साथ बगैर माप ही रहता है।[3]
  • मंजूषा प्रक्षेप, उपस्कर चित्रों में लोकप्रिय, ऐसी तकनीक का एक उदाहरण है, जहां पश्चगामी धुरी को आधे आकार में बढ़ाया जाता है[3](कभी-कभी दो-तिहाई मूल के विपरीत)।[4]


अश्वारोही प्रक्षेप

अश्वारोही प्रक्षेप (कभी-कभी कैवेलियर परिप्रेक्ष्य या उच्च दृश्य बिंदु) में वस्तु का एक बिंदु तीन निर्देशांक, x, y और z द्वारा दर्शाया जाता है। रेखाचित्र पर, यह केवल दो निर्देशांकों, x″ और y″ द्वारा दर्शाया गया है। समतल रेखाचित्र पर, आकृति पर दो अक्ष, x और z लंबवत हैं और इन अक्षों पर लंबाई 1:1 मानदंड के साथ खींची गई है; यह इस प्रकार द्विसमाक्ष प्रक्षेप के समान है, हालांकि यह अक्षमितिक प्रक्षेप नहीं है, तीसरी धुरी के रूप में, यहां y, विकर्ण में खींचा गया है, जो x″ अक्ष के साथ एक मनमाना कोण बनाता है, समान्यतः 30 या 45 डिग्री। तीसरे अक्ष की लंबाई को मापा नहीं गया है।[5][6]

इसे बनाना बहुत आसान है, विशेषतः पेन और पेपर के साथ। यह इस प्रकार प्रायः प्रयोग किया जाता है जब एक आकृति को हाथ से बनाया जाना चाहिए, उदाहरण ब्लैक बोर्ड पर (पाठ, मौखिक परीक्षा)।

प्रतिनिधित्व शुरू में सैन्य सुदृढ़ीकरण के लिए उपयोग किया गया था। फ्रेंच में, अश्वारोही सेना (शाब्दिक रूप से सवार, घुड़सवार, अश्वारोही सेना देखें) दीवारों के पीछे एक कृत्रिम पहाड़ी है जो दीवारों के ऊपर दुश्मन को देखने की अनुमति देता है।[7] अश्वारोही परिप्रेक्ष्य इस उच्च बिंदु से चीजों को देखने का प्रकार था। कुछ लोग नाम को इस तथ्य से भी समझाते हैं कि यह एक ऐसा प्रकार था जिससे एक सवार अपने घोड़े की पीठ से जमीन पर एक छोटी सी वस्तु को देख सकता था।[8]


मंजूषा प्रक्षेप

मंजूषा प्रक्षेप शब्द उपस्कर उद्योग द्वारा चित्रण में इसके उपयोग से उपजा है।[9] अश्वारोही परिप्रेक्ष्य की तरह, प्रक्षेपित वस्तु का एक चेहरा देखने वाले स्तर के समानांतर होता है, और तीसरी धुरी को कोण पर जाने के रूप में प्रक्षेपित किया जाता है (समान्यतः atan(2) या लगभग ~63.4°). अश्वारोही प्रक्षेप के विपरीत, जहां तीसरी धुरी अपनी लंबाई रखती है, मंजूषा प्रक्षेप के साथ पश्चगामी रेखाओं की लंबाई आधे में कट जाती है।

गणितीय सूत्र

एक सूत्र के रूप में, यदि दर्शक के तरफ सिरा करने वाला तल xy है, और पीछे हटने वाला अक्ष z है, तो एक बिंदु P को इस प्रकार प्रक्षेपित किया जाता है:

जहाँ उल्लिखित कोण है।

और परिवर्तन मैट्रिक्स है:

वैकल्पिक रूप से कोई भी शुरुआती सिरे से प्रक्षेपित अग्रणी भुजा से एक तिहाई हटा सकता है, इस प्रकार यह समान परिणाम देगा।

सैन्य प्रक्षेप

सैन्य प्रक्षेप में, x और z-अक्ष और y और z-अक्ष के कोण 45° पर हैं, जिसका अर्थ है कि x-अक्ष और y-अक्ष के बीच का कोण 90° है। अर्थात् xy-तल तिरछा नहीं है। हालांकि, यह 45 डिग्री से अधिक घुमाया जाता है।[10]


उदाहरण

तकनीकी आरेखण और चित्रों के अतिरिक्त, वीडियो खेल (विशेष रूप से 3D गेम के आगमन से पहले वाले) भी प्रायः तिरछे प्रक्षेप के एक रूप का उपयोग करते हैं। उदाहरणों में सिमसिटी (1989 वीडियो खेल), अल्टिमा VII, अल्टिमा ऑनलाइन , अर्थबाउंड , पेपरबॉय (वीडियो खेल) और हाल ही में टिबिया (वीडियो खेल) समिलित हैं।


बाईं ओर के आंकड़े लंबकोणीय प्रक्षेप हैं। दाईं ओर की आकृति 30° के कोण और 12 के अनुपात के साथ एक तिर्यक प्रक्षेप है।


डिग्री के कोण और 2/3 के अनुपात के साथ मंजूषा प्रक्षेप में खींची गई पोटिंग बेंच


अश्वारोही परिप्रेक्ष्य में सुदृढ़ीकरण के टुकड़े (साइक्लोपीडिया, या कला और विज्ञान का एक सार्वभौमिक शब्दकोश खंड 1, 1728)।


एक बिंदु को अश्वारोही परिप्रेक्ष्य पर रखने के लिए निर्देशांक का उपयोग कैसे किया जाता है।


सैन्य परिप्रेक्ष्य में खींचा गया पत्थर का चाप।


मंजूषा परिप्रेक्ष्य में खींचा गया पत्थर का चाप।


मुख्य महल, Gyeongbokgung के पूर्व में स्थित दो शाही महलों, चांगदेओकगंग और चांगग्योंगंग को दर्शाती प्रतिनिधि कोरियाई चित्रकला।

एक यमन का प्रवेश और गज। जू यांग द्वारा सूज़ौ के बारे में विवरण, कियानलॉन्ग सम्राट द्वारा आदेश दिया गया। 18 वीं सदी


पोर्ट-रॉयल-डेस-चैंप्स की 18वीं शताब्दी की योजना सैन्य प्रक्षेप में तैयार की गई


वीडियो खेल सिमसिटी में सैन्य प्रक्षेप की एक भिन्नता का उपयोग किया जाता है

असामान्य अधोजत्रुक धमनी को अलग करने के लिए एक तिरछे प्रक्षेप में दिखाया गया एक 3 डी प्रतिपादन चुंबकीय अनुनाद वाहिका चित्रण

यह भी देखें

संदर्भ

  1. Cucker, Felipe (2013). Manifold Mirrors: The Crossing Paths of the Arts and Mathematics. Cambridge University Press. pp. 269–278. ISBN 978-0-521-72876-8.
  2. Weisstein, Eric W. "Pohlke's Theorem". From MathWorld—A Wolfram Web Resource.
  3. 3.0 3.1 Parallel Projections Archived 23 April 2007 at the Wayback Machine from PlaneView3D Online
  4. Bolton, William (1995), Basic Engineering, Butterworth-Heinemann GNVQ Engineering Series, BH Newnes, p. 140, ISBN 9780750625845.
  5. "मरम्मत और रखरखाव नियमावली - एकीकृत प्रकाशन". Archived from the original on 22 August 2010. Retrieved 22 August 2010. from "मरम्मत और रखरखाव नियमावली - एकीकृत प्रकाशन". Archived from the original on 22 August 2010. Retrieved 22 August 2010.
  6. Ingrid Carlbom, Joseph Paciorek, Planar Geometric Projections and Viewing Transformations, ACM Computing Surveys, v.10 n.4, pp. 465–502, Dec. 1978
  7. Etymologie des maths, letter C (French)
  8. DES QUESTIONS D'ORIGINES (French)
  9. Ching, Francis D. K.; Juroszek, Steven P. (2011), Design Drawing (2nd ed.), John Wiley & Sons, p. 205, ISBN 9781118007372.
  10. "कंप्यूटर पर परिप्रेक्ष्य आरेखण की ज्यामिति". Retrieved 24 April 2015.


अग्रिम पठन


बाहरी संबंध