मैनिंग सूत्र: Difference between revisions

From Vigyanwiki
(Created page with "मैनिंग फॉर्मूला या मैनिंग का समीकरण एक अनुभवजन्य संबंध है जो एक न...")
 
No edit summary
Line 1: Line 1:
मैनिंग फॉर्मूला या मैनिंग का समीकरण एक [[अनुभवजन्य संबंध]] है जो एक नाली में बहने वाले तरल के औसत वेग का अनुमान लगाता है जो तरल को पूरी तरह से बंद नहीं करता है, अर्थात, [[खुला चैनल प्रवाह]]। हालाँकि, इस समीकरण का उपयोग [[आंशिक रूप से पूर्ण नाली में प्रवाह]] के मामले में प्रवाह चर की गणना के लिए भी किया जाता है, क्योंकि उनके पास खुले चैनल प्रवाह की तरह एक मुक्त सतह भी होती है। तथाकथित खुले चैनलों में सभी प्रवाह [[गुरुत्वाकर्षण]] द्वारा संचालित होते हैं।
मैनिंग सूत्र या मैनिंग का समीकरण एक [[अनुभवजन्य संबंध]] है जो एक नाली में बहने वाले तरल के औसत वेग का अनुमान लगाता है जो तरल को पूर्ण रूप से बंद नहीं करता है, अर्थात, [[खुला चैनल प्रवाह]]। यद्यपि, इस समीकरण का उपयोग [[आंशिक रूप से पूर्ण नाली में प्रवाह]] की स्थिति में प्रवाह चर की गणना के लिए भी किया जाता है, क्योंकि उनके निकट खुले चैनल प्रवाह के जैसे एक मुक्त सतह भी होती है। तथाकथित खुले चैनलों में सभी प्रवाह [[गुरुत्वाकर्षण]] द्वारा संचालित होते हैं।


यह पहली बार फ्रांसीसी इंजीनियर द्वारा प्रस्तुत किया गया था {{ill|Philippe Gaspard Gauckler|fr}1867 में,<ref>{{citation|last=Gauckler|first =Ph. |year=1867|title= Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux|publisher= Comptes Rendues de l'Académie des Sciences|location= Paris, France|volume= Tome 64| pages= 818–822}}</ref> और बाद में 1890 में आयरिश इंजीनियर [[रॉबर्ट मैनिंग (इंजीनियर)]] द्वारा फिर से विकसित किया गया।<ref>{{cite journal|last=Manning |first=R.|author-link=Robert Manning (engineer)|year=1891|title= खुले चैनलों और पाइपों में पानी के बहाव पर|journal= Transactions of the Institution of Civil Engineers of Ireland|volume= 20|pages= 161–207}}</ref>
यह पहली बार 1867 में फ्रांसीसी अभियंता फिलिप गैस्पर्ड गॉकलर [fr] द्वारा प्रस्तुत किया गया था,<ref>{{citation|last=Gauckler|first =Ph. |year=1867|title= Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux|publisher= Comptes Rendues de l'Académie des Sciences|location= Paris, France|volume= Tome 64| pages= 818–822}}</ref> और बाद में 1890 में आयरिश अभियंता [[रॉबर्ट मैनिंग (इंजीनियर)|रॉबर्ट मैनिंग (अभियंता)]] द्वारा फिर से विकसित किया गया था।<ref>{{cite journal|last=Manning |first=R.|author-link=Robert Manning (engineer)|year=1891|title= खुले चैनलों और पाइपों में पानी के बहाव पर|journal= Transactions of the Institution of Civil Engineers of Ireland|volume= 20|pages= 161–207}}</ref> इस प्रकार, सूत्र को यूरोप में गॉकलर-मैनिंग सूत्र या गॉकलर-मैनिंग-स्ट्रिकलर सूत्र ({{ill|Albert Strickler|fr|Albert Strickler (ingénieur)}}) के रूप में भी जाना जाता है।
इस प्रकार, सूत्र को यूरोप में गॉकलर-मैनिंग सूत्र या गॉकलर-मैनिंग-स्ट्रिकलर सूत्र के रूप में भी जाना जाता है। {{ill|Albert Strickler|fr|Albert Strickler (ingénieur)}}).


गौकलर-मैनिंग फॉर्मूला का उपयोग खुले चैनल में बहने वाले पानी के औसत वेग का अनुमान लगाने के लिए किया जाता है, जहां अधिक सटीकता के साथ प्रवाह को मापने के लिए एक [[बांध]] या [[फ्लूम]] का निर्माण करना व्यावहारिक नहीं है। एक खुले चैनल में बहने वाले पानी की मुक्त सतह प्रोफ़ाइल को चित्रित करने के लिए मैनिंग के समीकरण का उपयोग आमतौर पर एक संख्यात्मक चरण विधि के भाग के रूप में किया जाता है, जैसे कि [[मानक चरण विधि]]।<ref>[[Ven Te Chow|Chow]] (1959) pp. 262-267</ref>
गौकलर-मैनिंग सूत्र का उपयोग खुले चैनल में बहने वाले पानी के औसत वेग का अनुमान लगाने के लिए किया जाता है, जहां अधिक सटीकता के साथ प्रवाह को मापने के लिए एक [[बांध]] या [[फ्लूम]] का निर्माण करना व्यावहारिक नहीं है। एक खुले चैनल में बहने वाले पानी की मुक्त सतह प्रोफ़ाइल को चित्रित करने के लिए मैनिंग के समीकरण का उपयोग आमतौर पर एक संख्यात्मक चरण विधि के भाग के रूप में किया जाता है, जैसे कि [[मानक चरण विधि]]।<ref>[[Ven Te Chow|Chow]] (1959) pp. 262-267</ref>




Line 13: Line 12:
कहाँ:
कहाँ:
* {{mvar|V}} अनुप्रस्थ-अनुभागीय औसत वेग है ([[लंबाई]]/[[समय]]; फीट/सेकंड, मी/से);
* {{mvar|V}} अनुप्रस्थ-अनुभागीय औसत वेग है ([[लंबाई]]/[[समय]]; फीट/सेकंड, मी/से);
* {{mvar|n}} गौकलर-मैनिंग गुणांक है। की इकाइयाँ {{mvar|n}} हालांकि, अक्सर छोड़े जाते हैं {{mvar|n}} आयामहीन नहीं है, इसकी इकाइयाँ हैं: (T/[L<sup>1/3</sup>]; एस/[फीट<sup>1/3</sup>]; एस / [एम<sup>1/3</sup>])।
* {{mvar|n}} गौकलर-मैनिंग गुणांक है। की इकाइयाँ {{mvar|n}} यद्यपि, अक्सर छोड़े जाते हैं {{mvar|n}} आयामहीन नहीं है, इसकी इकाइयाँ हैं: (T/[L<sup>1/3</sup>]; एस/[फीट<sup>1/3</sup>]; एस / [एम<sup>1/3</sup>])।
* {{mvar|R<sub>h</sub>}} हाइड्रोलिक त्रिज्या है (L; ft, m);
* {{mvar|R<sub>h</sub>}} हाइड्रोलिक त्रिज्या है (L; ft, m);
* {{mvar|S}} धारा ढलान या [[हाइड्रोलिक ढाल]] है, रैखिक [[हाइड्रोलिक सिर का नुकसान]] लॉस (एल/एल); जब पानी की गहराई स्थिर होती है तो यह [[ चैनल बिस्तर ]] स्लोप के समान होता है। ({{math|''S'' {{=}} {{sfrac|''h''<sub>''f''</sub>|''L''}}}}).
* {{mvar|S}} धारा ढलान या [[हाइड्रोलिक ढाल]] है, रैखिक [[हाइड्रोलिक सिर का नुकसान]] लॉस (एल/एल); जब पानी की गहराई स्थिर होती है तो यह [[ चैनल बिस्तर ]] स्लोप के समान होता है। ({{math|''S'' {{=}} {{sfrac|''h''<sub>''f''</sub>|''L''}}}})
* {{mvar|k}} SI [[और]] अंग्रेजी इकाइयों के बीच रूपांतरण कारक है। इसे तब तक छोड़ा जा सकता है, जब तक आप इकाइयों को नोट करना और सही करना सुनिश्चित करते हैं {{mvar|n}} अवधि। यदि तुम जाओ {{mvar|n}} पारंपरिक एसआई इकाइयों में, {{mvar|k}} अंग्रेजी में बदलने के लिए सिर्फ आयामी विश्लेषण है। {{math|''k'' {{=}} 1}} एसआई इकाइयों के लिए, और {{math|''k'' {{=}} 1.49}} अंग्रेजी इकाइयों के लिए। (नोट: (1 मीटर)<sup>1/3</sup>/s = (3.2808399 फ़ीट)<sup>1/3</sup>/s = 1.4859 फ़ीट<sup>1/3</sup>/से)
* {{mvar|k}} SI [[और]] अंग्रेजी इकाइयों के बीच रूपांतरण कारक है। इसे तब तक छोड़ा जा सकता है, जब तक आप इकाइयों को नोट करना और सही करना सुनिश्चित करते हैं {{mvar|n}} अवधि। यदि तुम जाओ {{mvar|n}} पारंपरिक एसआई इकाइयों में, {{mvar|k}} अंग्रेजी में बदलने के लिए सिर्फ आयामी विश्लेषण है। {{math|''k'' {{=}} 1}} एसआई इकाइयों के लिए, और {{math|''k'' {{=}} 1.49}} अंग्रेजी इकाइयों के लिए। (नोट: (1 मीटर)<sup>1/3</sup>/s = (3.2808399 फ़ीट)<sup>1/3</sup>/s = 1.4859 फ़ीट<sup>1/3</sup>/से)


टिप्पणी: {{mvar|Ks}} स्ट्राइकर = 1/{{mvar|n}} मैनिंग। गुणांक {{mvar|Ks}} स्ट्राइकर 20 (खुरदरा पत्थर और खुरदरी सतह) से 80 मीटर तक भिन्न होता है<sup>1/3</sup>/s (चिकना कंक्रीट और कच्चा लोहा)।
टिप्पणी: {{mvar|Ks}} स्ट्राइकर = 1/{{mvar|n}} मैनिंग। गुणांक {{mvar|Ks}} स्ट्राइकर 20 (खुरदरा पत्थर और खुरदरी सतह) से 80 मीटर तक भिन्न होता है<sup>1/3</sup>/s (चिकना कंक्रीट और कच्चा लोहा)।


[[निर्वहन (जल विज्ञान)]] सूत्र, {{math|''Q'' {{=}} ''A'' ''V''}}, के प्रतिस्थापन द्वारा गौकलर-मैनिंग के समीकरण को फिर से लिखने के लिए इस्तेमाल किया जा सकता है {{mvar|V}}. के लिए हल करना {{mvar|Q}} तब सीमित या वास्तविक प्रवाह वेग को जाने बिना [[ मात्रात्मक प्रवाह दर ]] (डिस्चार्ज) का अनुमान लगाने की अनुमति देता है।
[[निर्वहन (जल विज्ञान)]] सूत्र, {{math|''Q'' {{=}} ''A'' ''V''}}, के प्रतिस्थापन द्वारा गौकलर-मैनिंग के समीकरण को फिर से लिखने के लिए इस्तेमाल किया जा सकता है {{mvar|V}}के लिए हल करना {{mvar|Q}} तब सीमित या वास्तविक प्रवाह वेग को जाने बिना [[ मात्रात्मक प्रवाह दर ]] (डिस्चार्ज) का अनुमान लगाने की अनुमति देता है।


[[आयामी विश्लेषण]] के उपयोग से सूत्र प्राप्त किया जा सकता है। 2000 के दशक में इस सूत्र को सैद्धांतिक रूप से विक्षोभ के फेनोमेनोलॉजिकल सिद्धांत का उपयोग करके प्राप्त किया गया था।<ref name="GioiaBombardelli2001">{{cite journal|last1=Gioia|first1=G.|last2=Bombardelli|first2=F. A.|title=रफ चैनल फ्लो में स्केलिंग और समानता|journal=Physical Review Letters|volume=88|issue=1|year=2001|issn=0031-9007|doi=10.1103/PhysRevLett.88.014501|bibcode=2002PhRvL..88a4501G|pmid=11800954|page=014501|hdl=2142/112681|hdl-access=free}}</ref><ref name="GioiaChakraborty2006">{{cite journal|last1=Gioia|first1=G.|last2=Chakraborty|first2=Pinaki|title=रफ पाइप्स में टर्बुलेंट फ्रिक्शन और फेनोमेनोलॉजिकल थ्योरी का एनर्जी स्पेक्ट्रम|journal=Physical Review Letters |volume=96 |issue=4| year=2006| issn=0031-9007 |doi=10.1103/PhysRevLett.96.044502 |url=http://www.oist.jp/sites/default/files/img//pages/units/fm/chakraborty-pinaki-pubs/gioia_Chakraborty_pipes_prl06.pdf |bibcode=2006PhRvL..96d4502G |pmid=16486828 |page=044502|arxiv=physics/0507066|hdl=2142/984|s2cid=7439208}}</ref>
[[आयामी विश्लेषण]] के उपयोग से सूत्र प्राप्त किया जा सकता है। 2000 के दशक में इस सूत्र को सैद्धांतिक रूप से विक्षोभ के फेनोमेनोलॉजिकल सिद्धांत का उपयोग करके प्राप्त किया गया था।<ref name="GioiaBombardelli2001">{{cite journal|last1=Gioia|first1=G.|last2=Bombardelli|first2=F. A.|title=रफ चैनल फ्लो में स्केलिंग और समानता|journal=Physical Review Letters|volume=88|issue=1|year=2001|issn=0031-9007|doi=10.1103/PhysRevLett.88.014501|bibcode=2002PhRvL..88a4501G|pmid=11800954|page=014501|hdl=2142/112681|hdl-access=free}}</ref><ref name="GioiaChakraborty2006">{{cite journal|last1=Gioia|first1=G.|last2=Chakraborty|first2=Pinaki|title=रफ पाइप्स में टर्बुलेंट फ्रिक्शन और फेनोमेनोलॉजिकल थ्योरी का एनर्जी स्पेक्ट्रम|journal=Physical Review Letters |volume=96 |issue=4| year=2006| issn=0031-9007 |doi=10.1103/PhysRevLett.96.044502 |url=http://www.oist.jp/sites/default/files/img//pages/units/fm/chakraborty-pinaki-pubs/gioia_Chakraborty_pipes_prl06.pdf |bibcode=2006PhRvL..96d4502G |pmid=16486828 |page=044502|arxiv=physics/0507066|hdl=2142/984|s2cid=7439208}}</ref>




== हाइड्रोलिक त्रिज्या ==<!-- [[Hydraulic radius]] redirects here -->
== हाइड्रोलिक त्रिज्या ==
हाइड्रोलिक त्रिज्या एक चैनल के गुणों में से एक है जो पानी के निर्वहन को नियंत्रित करता है। यह यह भी निर्धारित करता है कि चैनल कितना काम कर सकता है, उदाहरण के लिए, गतिमान तलछट में। अन्य सभी समान, एक बड़े हाइड्रोलिक त्रिज्या वाली नदी में एक उच्च प्रवाह वेग होगा, और एक बड़ा पार अनुभागीय क्षेत्र भी होगा जिसके माध्यम से तेज पानी यात्रा कर सकता है। इसका मतलब है कि हाइड्रोलिक त्रिज्या जितनी अधिक होगी, चैनल उतना ही अधिक पानी ले जा सकता है।
हाइड्रोलिक त्रिज्या एक चैनल के गुणों में से एक है जो पानी के निर्वहन को नियंत्रित करता है। यह यह भी निर्धारित करता है कि चैनल कितना काम कर सकता है, उदाहरण के लिए, गतिमान तलछट में। अन्य सभी समान, एक बड़े हाइड्रोलिक त्रिज्या वाली नदी में एक उच्च प्रवाह वेग होगा, और एक बड़ा पार अनुभागीय क्षेत्र भी होगा जिसके माध्यम से तेज पानी यात्रा कर सकता है। इसका मतलब है कि हाइड्रोलिक त्रिज्या जितनी अधिक होगी, चैनल उतना ही अधिक पानी ले जा सकता है।


Line 38: Line 37:
दी गई चौड़ाई के चैनलों के लिए, गहरे चैनलों के लिए हाइड्रोलिक त्रिज्या अधिक होती है। विस्तृत आयताकार चैनलों में, हाइड्रोलिक त्रिज्या प्रवाह की गहराई से अनुमानित होती है।
दी गई चौड़ाई के चैनलों के लिए, गहरे चैनलों के लिए हाइड्रोलिक त्रिज्या अधिक होती है। विस्तृत आयताकार चैनलों में, हाइड्रोलिक त्रिज्या प्रवाह की गहराई से अनुमानित होती है।


हाइड्रोलिक त्रिज्या आधा [[हाइड्रोलिक व्यास]] नहीं है जैसा कि नाम से पता चलता है, लेकिन एक पूर्ण पाइप के मामले में एक चौथाई। यह पाइप, चैनल, या नदी के आकार का एक कार्य है जिसमें पानी बह रहा है।
हाइड्रोलिक त्रिज्या आधा [[हाइड्रोलिक व्यास]] नहीं है जैसा कि नाम से पता चलता है, लेकिन एक पूर्ण पाइप की स्थिति में एक चौथाई। यह पाइप, चैनल, या नदी के आकार का एक कार्य है जिसमें पानी बह रहा है।


चैनल की दक्षता (पानी और [[तलछट]] को स्थानांतरित करने की इसकी क्षमता) का निर्धारण करने में हाइड्रोलिक त्रिज्या भी महत्वपूर्ण है, और तलछट परिवहन | चैनल की क्षमता का आकलन करने के लिए जल इंजीनियरों द्वारा उपयोग की जाने वाली संपत्तियों में से एक है।
चैनल की दक्षता (पानी और [[तलछट]] को स्थानांतरित करने की इसकी क्षमता) का निर्धारण करने में हाइड्रोलिक त्रिज्या भी महत्वपूर्ण है, और तलछट परिवहन | चैनल की क्षमता का आकलन करने के लिए जल अभियंताों द्वारा उपयोग की जाने वाली संपत्तियों में से एक है।


==गॉकलर–मैनिंग गुणांक==
==गॉकलर–मैनिंग गुणांक==
Line 47: Line 46:
वीयर और ऑरिफिस में घर्षण गुणांक कम व्यक्तिपरक हैं {{mvar|n}} एक प्राकृतिक (मिट्टी, पत्थर या वनस्पति) चैनल के साथ पहुंचें। पार के अनुभागीय क्षेत्र, साथ ही {{mvar|n}}, एक प्राकृतिक चैनल के साथ अलग-अलग होने की संभावना है। तदनुसार, एक मैनिंग मानकर औसत वेग का अनुमान लगाने में अधिक त्रुटि अपेक्षित है {{mvar|n}}, प्रत्यक्ष नमूनाकरण (यानी, एक [[वर्तमान प्रवाहमापी]] के साथ) की तुलना में, या इसे वीयर, फ्लुम्स या: विक्ट: ऑरिफिस में मापने के बजाय।
वीयर और ऑरिफिस में घर्षण गुणांक कम व्यक्तिपरक हैं {{mvar|n}} एक प्राकृतिक (मिट्टी, पत्थर या वनस्पति) चैनल के साथ पहुंचें। पार के अनुभागीय क्षेत्र, साथ ही {{mvar|n}}, एक प्राकृतिक चैनल के साथ अलग-अलग होने की संभावना है। तदनुसार, एक मैनिंग मानकर औसत वेग का अनुमान लगाने में अधिक त्रुटि अपेक्षित है {{mvar|n}}, प्रत्यक्ष नमूनाकरण (यानी, एक [[वर्तमान प्रवाहमापी]] के साथ) की तुलना में, या इसे वीयर, फ्लुम्स या: विक्ट: ऑरिफिस में मापने के बजाय।


प्राकृतिक धाराओं में, {{mvar|n}} मान इसकी पहुंच के साथ बहुत भिन्न होते हैं, और प्रवाह के विभिन्न चरणों के साथ चैनल की दी गई पहुंच में भी भिन्न होंगे। अधिकांश शोध यह बताते हैं {{mvar|n}} अवस्था के साथ घटेगा, कम से कम बैंक भर जाने तक। ओवरबैंक {{mvar|n}} दिए गए पहुंच के मान वर्ष के समय और प्रवाह के वेग के आधार पर बहुत भिन्न होंगे। ग्रीष्मकालीन वनस्पति आम तौर पर काफी अधिक होगी {{mvar|n}} पत्तियों और मौसमी वनस्पतियों के कारण मूल्य। हालांकि, शोध से पता चला है कि {{mvar|n}} पत्तियों के बिना झाड़ियों की तुलना में पत्तियों वाली अलग-अलग झाड़ियों के लिए मान कम हैं।<ref name="FreemanCopeland1998">{{Cite book|last1=Freeman|first1=Gary E.|last2=Copeland|first2=Ronald R.|last3=Rahmeyer|first3=William|last4=Derrick|first4=David L.|title=झाड़ियों और वुडी वनस्पतियों के लिए मैनिंग के मूल्य का क्षेत्र निर्धारण|year=1998|pages=48–53|doi=10.1061/40382(1998)7|journal=Engineering Approaches to Ecosystem Restoration|isbn=978-0-7844-0382-2}}</ref>
प्राकृतिक धाराओं में, {{mvar|n}} मान इसकी पहुंच के साथ बहुत भिन्न होते हैं, और प्रवाह के विभिन्न चरणों के साथ चैनल की दी गई पहुंच में भी भिन्न होंगे। अधिकांश शोध यह बताते हैं {{mvar|n}} अवस्था के साथ घटेगा, कम से कम बैंक भर जाने तक। ओवरबैंक {{mvar|n}} दिए गए पहुंच के मान वर्ष के समय और प्रवाह के वेग के आधार पर बहुत भिन्न होंगे। ग्रीष्मकालीन वनस्पति आम तौर पर काफी अधिक होगी {{mvar|n}} पत्तियों और मौसमी वनस्पतियों के कारण मूल्य। यद्यपि, शोध से पता चला है कि {{mvar|n}} पत्तियों के बिना झाड़ियों की तुलना में पत्तियों वाली अलग-अलग झाड़ियों के लिए मान कम हैं।<ref name="FreemanCopeland1998">{{Cite book|last1=Freeman|first1=Gary E.|last2=Copeland|first2=Ronald R.|last3=Rahmeyer|first3=William|last4=Derrick|first4=David L.|title=झाड़ियों और वुडी वनस्पतियों के लिए मैनिंग के मूल्य का क्षेत्र निर्धारण|year=1998|pages=48–53|doi=10.1061/40382(1998)7|journal=Engineering Approaches to Ecosystem Restoration|isbn=978-0-7844-0382-2}}</ref>
यह पौधे की पत्तियों की स्ट्रीमलाइन और फ्लेक्स की क्षमता के कारण होता है क्योंकि प्रवाह उनसे गुजरता है और इस प्रकार प्रवाह के प्रतिरोध को कम करता है। उच्च वेग प्रवाह कुछ वनस्पतियों (जैसे घास और कांटे) को समतल करने का कारण बनेगा, जहाँ समान वनस्पति के माध्यम से प्रवाह का कम वेग नहीं होगा।<ref name="Hardy et al">{{citation|last1=Hardy|first1= Thomas|first2= Palavi|last2= Panja|first3= Dean |last3=Mathias|year= 2005|title= WinXSPRO, A Channel Cross Section Analyzer, User's Manual, Version 3.0. Gen. Tech. Rep. RMRS-GTR-147 |location=Fort Collins, CO|publisher= U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station| pages=94| url=http://www.fs.fed.us/rm/pubs/rmrs_gtr147.pdf}}</ref>
यह पौधे की पत्तियों की स्ट्रीमलाइन और फ्लेक्स की क्षमता के कारण होता है क्योंकि प्रवाह उनसे गुजरता है और इस प्रकार प्रवाह के प्रतिरोध को कम करता है। उच्च वेग प्रवाह कुछ वनस्पतियों (जैसे घास और कांटे) को समतल करने का कारण बनेगा, जहाँ समान वनस्पति के माध्यम से प्रवाह का कम वेग नहीं होगा।<ref name="Hardy et al">{{citation|last1=Hardy|first1= Thomas|first2= Palavi|last2= Panja|first3= Dean |last3=Mathias|year= 2005|title= WinXSPRO, A Channel Cross Section Analyzer, User's Manual, Version 3.0. Gen. Tech. Rep. RMRS-GTR-147 |location=Fort Collins, CO|publisher= U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station| pages=94| url=http://www.fs.fed.us/rm/pubs/rmrs_gtr147.pdf}}</ref>
खुले चैनलों में, डार्सी-वीज़बाक समीकरण हाइड्रोलिक व्यास को समतुल्य पाइप व्यास के रूप में उपयोग करके मान्य है।
खुले चैनलों में, डार्सी-वीज़बाक समीकरण हाइड्रोलिक व्यास को समतुल्य पाइप व्यास के रूप में उपयोग करके मान्य है।
मानव निर्मित खुले चैनलों में ऊर्जा हानि का अनुमान लगाने का यह एकमात्र सर्वोत्तम और ठोस तरीका है। विभिन्न कारणों (मुख्य रूप से ऐतिहासिक कारणों) के लिए, अनुभवजन्य प्रतिरोध गुणांक (जैसे चेज़ी, गॉकलर-मैनिंग-स्ट्रिकलर) थे और अभी भी उपयोग किए जाते हैं। चेज़ी गुणांक 1768 में पेश किया गया था, जबकि गॉकलर-मैनिंग गुणांक पहली बार 1865 में विकसित किया गया था, 1920-1930 के दशक में शास्त्रीय पाइप प्रवाह प्रतिरोध प्रयोगों से पहले। ऐतिहासिक रूप से चेज़ी और गॉकलर-मैनिंग गुणांक दोनों ही स्थिर और खुरदुरेपन के कार्य होने की उम्मीद थी। लेकिन अब यह अच्छी तरह से मान्यता प्राप्त है कि ये गुणांक केवल प्रवाह दर की एक सीमा के लिए स्थिर हैं। अधिकांश घर्षण गुणांक (शायद डार्सी-वीसबैक घर्षण कारक को छोड़कर) अनुमानित रूप से 100% अनुमानित हैं और वे केवल स्थिर प्रवाह स्थितियों के तहत पूरी तरह से अशांत जल प्रवाह पर लागू होते हैं।
मानव निर्मित खुले चैनलों में ऊर्जा हानि का अनुमान लगाने का यह एकमात्र सर्वोत्तम और ठोस तरीका है। विभिन्न कारणों (मुख्य रूप से ऐतिहासिक कारणों) के लिए, अनुभवजन्य प्रतिरोध गुणांक (जैसे चेज़ी, गॉकलर-मैनिंग-स्ट्रिकलर) थे और अभी भी उपयोग किए जाते हैं। चेज़ी गुणांक 1768 में पेश किया गया था, जबकि गॉकलर-मैनिंग गुणांक पहली बार 1865 में विकसित किया गया था, 1920-1930 के दशक में शास्त्रीय पाइप प्रवाह प्रतिरोध प्रयोगों से पहले। ऐतिहासिक रूप से चेज़ी और गॉकलर-मैनिंग गुणांक दोनों ही स्थिर और खुरदुरेपन के कार्य होने की उम्मीद थी। लेकिन अब यह ठीक रूप से मान्यता प्राप्त है कि ये गुणांक केवल प्रवाह दर की एक सीमा के लिए स्थिर हैं। अधिकांश घर्षण गुणांक (शायद डार्सी-वीसबैक घर्षण कारक को छोड़कर) अनुमानित रूप से 100% अनुमानित हैं और वे केवल स्थिर प्रवाह स्थितियों के तहत पूर्ण रूप से अशांत जल प्रवाह पर लागू होते हैं।


मैनिंग समीकरण के सबसे महत्वपूर्ण अनुप्रयोगों में से एक सीवर डिजाइन में इसका उपयोग है। सीवरों का निर्माण प्रायः वृत्ताकार पाइपों के रूप में किया जाता है। यह लंबे समय से स्वीकार किया गया है कि का मूल्य {{mvar|n}} आंशिक रूप से भरे हुए गोलाकार पाइपों में प्रवाह की गहराई के साथ बदलता रहता है।<ref name="Camp">{{cite journal|last=Camp|first= T. R.|year=1946|title=प्रवाह को सुविधाजनक बनाने के लिए सीवरों का डिजाइन|journal= Sewage Works Journal|volume= 18|issue=1|pages= 3–16|jstor=25030187|pmid= 21011592}}</ref> सर्कुलर पाइपों पर मैनिंग समीकरण लागू करते समय स्पष्ट समीकरणों का एक पूरा सेट उपलब्ध है जिसका उपयोग प्रवाह की गहराई और अन्य अज्ञात चर की गणना के लिए किया जा सकता है।<ref name="Akgiray">{{cite journal|last1=Akgiray|first1=Ömer|title=आंशिक रूप से भरे हुए वृत्ताकार पाइपों के लिए मैनिंग समीकरण का स्पष्ट समाधान|journal=Canadian Journal of Civil Engineering|volume=32|issue=3|year=2005|pages=490–499|issn=0315-1468|doi=10.1139/l05-001}}</ref> ये समीकरण की भिन्नता के लिए खाते हैं {{mvar|n}} शिविर द्वारा प्रस्तुत वक्रों के अनुसार प्रवाह की गहराई के साथ।
मैनिंग समीकरण के सबसे महत्वपूर्ण अनुप्रयोगों में से एक सीवर डिजाइन में इसका उपयोग है। सीवरों का निर्माण प्रायः वृत्ताकार पाइपों के रूप में किया जाता है। यह लंबे समय से स्वीकार किया गया है कि का मूल्य {{mvar|n}} आंशिक रूप से भरे हुए गोलाकार पाइपों में प्रवाह की गहराई के साथ बदलता रहता है।<ref name="Camp">{{cite journal|last=Camp|first= T. R.|year=1946|title=प्रवाह को सुविधाजनक बनाने के लिए सीवरों का डिजाइन|journal= Sewage Works Journal|volume= 18|issue=1|pages= 3–16|jstor=25030187|pmid= 21011592}}</ref> सर्कुलर पाइपों पर मैनिंग समीकरण लागू करते समय स्पष्ट समीकरणों का एक पूरा सेट उपलब्ध है जिसका उपयोग प्रवाह की गहराई और अन्य अज्ञात चर की गणना के लिए किया जा सकता है।<ref name="Akgiray">{{cite journal|last1=Akgiray|first1=Ömer|title=आंशिक रूप से भरे हुए वृत्ताकार पाइपों के लिए मैनिंग समीकरण का स्पष्ट समाधान|journal=Canadian Journal of Civil Engineering|volume=32|issue=3|year=2005|pages=490–499|issn=0315-1468|doi=10.1139/l05-001}}</ref> ये समीकरण की भिन्नता के लिए खाते हैं {{mvar|n}} शिविर द्वारा प्रस्तुत वक्रों के अनुसार प्रवाह की गहराई के साथ।
Line 60: Line 59:
* [[जूलियस लुडविग वीसबैक]] (1806-1871)
* [[जूलियस लुडविग वीसबैक]] (1806-1871)
*{{ill|Philippe Gaspard Gauckler|fr}} (1826-1905)
*{{ill|Philippe Gaspard Gauckler|fr}} (1826-1905)
*रॉबर्ट मैनिंग (इंजीनियर) (1816–1897)
*रॉबर्ट मैनिंग (अभियंता) (1816–1897)
*विलियम रुडोल्फ कुटर (1818-1888)
*विलियम रुडोल्फ कुटर (1818-1888)
*[[हेनरी बाज़िन]] (1843-1917)
*[[हेनरी बाज़िन]] (1843-1917)
Line 69: Line 68:


== यह भी देखें ==
== यह भी देखें ==
* चेजी फॉर्मूला
* चेजी सूत्र
* डार्सी-वीसबैक समीकरण
* डार्सी-वीसबैक समीकरण
* [[जलगति विज्ञान]]
* [[जलगति विज्ञान]]

Revision as of 08:44, 23 April 2023

मैनिंग सूत्र या मैनिंग का समीकरण एक अनुभवजन्य संबंध है जो एक नाली में बहने वाले तरल के औसत वेग का अनुमान लगाता है जो तरल को पूर्ण रूप से बंद नहीं करता है, अर्थात, खुला चैनल प्रवाह। यद्यपि, इस समीकरण का उपयोग आंशिक रूप से पूर्ण नाली में प्रवाह की स्थिति में प्रवाह चर की गणना के लिए भी किया जाता है, क्योंकि उनके निकट खुले चैनल प्रवाह के जैसे एक मुक्त सतह भी होती है। तथाकथित खुले चैनलों में सभी प्रवाह गुरुत्वाकर्षण द्वारा संचालित होते हैं।

यह पहली बार 1867 में फ्रांसीसी अभियंता फिलिप गैस्पर्ड गॉकलर [fr] द्वारा प्रस्तुत किया गया था,[1] और बाद में 1890 में आयरिश अभियंता रॉबर्ट मैनिंग (अभियंता) द्वारा फिर से विकसित किया गया था।[2] इस प्रकार, सूत्र को यूरोप में गॉकलर-मैनिंग सूत्र या गॉकलर-मैनिंग-स्ट्रिकलर सूत्र (Albert Strickler [fr]) के रूप में भी जाना जाता है।

गौकलर-मैनिंग सूत्र का उपयोग खुले चैनल में बहने वाले पानी के औसत वेग का अनुमान लगाने के लिए किया जाता है, जहां अधिक सटीकता के साथ प्रवाह को मापने के लिए एक बांध या फ्लूम का निर्माण करना व्यावहारिक नहीं है। एक खुले चैनल में बहने वाले पानी की मुक्त सतह प्रोफ़ाइल को चित्रित करने के लिए मैनिंग के समीकरण का उपयोग आमतौर पर एक संख्यात्मक चरण विधि के भाग के रूप में किया जाता है, जैसे कि मानक चरण विधि[3]


सूत्रीकरण

गॉकलर-मैनिंग सूत्र कहता है:

कहाँ:

  • V अनुप्रस्थ-अनुभागीय औसत वेग है (लंबाई/समय; फीट/सेकंड, मी/से);
  • n गौकलर-मैनिंग गुणांक है। की इकाइयाँ n यद्यपि, अक्सर छोड़े जाते हैं n आयामहीन नहीं है, इसकी इकाइयाँ हैं: (T/[L1/3]; एस/[फीट1/3]; एस / [एम1/3])।
  • Rh हाइड्रोलिक त्रिज्या है (L; ft, m);
  • S धारा ढलान या हाइड्रोलिक ढाल है, रैखिक हाइड्रोलिक सिर का नुकसान लॉस (एल/एल); जब पानी की गहराई स्थिर होती है तो यह चैनल बिस्तर स्लोप के समान होता है। (S = hf/L)।
  • k SI और अंग्रेजी इकाइयों के बीच रूपांतरण कारक है। इसे तब तक छोड़ा जा सकता है, जब तक आप इकाइयों को नोट करना और सही करना सुनिश्चित करते हैं n अवधि। यदि तुम जाओ n पारंपरिक एसआई इकाइयों में, k अंग्रेजी में बदलने के लिए सिर्फ आयामी विश्लेषण है। k = 1 एसआई इकाइयों के लिए, और k = 1.49 अंग्रेजी इकाइयों के लिए। (नोट: (1 मीटर)1/3/s = (3.2808399 फ़ीट)1/3/s = 1.4859 फ़ीट1/3/से)

टिप्पणी: Ks स्ट्राइकर = 1/n मैनिंग। गुणांक Ks स्ट्राइकर 20 (खुरदरा पत्थर और खुरदरी सतह) से 80 मीटर तक भिन्न होता है1/3/s (चिकना कंक्रीट और कच्चा लोहा)।

निर्वहन (जल विज्ञान) सूत्र, Q = A V, के प्रतिस्थापन द्वारा गौकलर-मैनिंग के समीकरण को फिर से लिखने के लिए इस्तेमाल किया जा सकता है V। के लिए हल करना Q तब सीमित या वास्तविक प्रवाह वेग को जाने बिना मात्रात्मक प्रवाह दर (डिस्चार्ज) का अनुमान लगाने की अनुमति देता है।

आयामी विश्लेषण के उपयोग से सूत्र प्राप्त किया जा सकता है। 2000 के दशक में इस सूत्र को सैद्धांतिक रूप से विक्षोभ के फेनोमेनोलॉजिकल सिद्धांत का उपयोग करके प्राप्त किया गया था।[4][5]


हाइड्रोलिक त्रिज्या

हाइड्रोलिक त्रिज्या एक चैनल के गुणों में से एक है जो पानी के निर्वहन को नियंत्रित करता है। यह यह भी निर्धारित करता है कि चैनल कितना काम कर सकता है, उदाहरण के लिए, गतिमान तलछट में। अन्य सभी समान, एक बड़े हाइड्रोलिक त्रिज्या वाली नदी में एक उच्च प्रवाह वेग होगा, और एक बड़ा पार अनुभागीय क्षेत्र भी होगा जिसके माध्यम से तेज पानी यात्रा कर सकता है। इसका मतलब है कि हाइड्रोलिक त्रिज्या जितनी अधिक होगी, चैनल उतना ही अधिक पानी ले जा सकता है।

'निरंतर कतरनी तनाव # सीमा पर तरल पदार्थ में कतरनी तनाव' धारणा के आधार पर,[6] हाइड्रोलिक त्रिज्या को प्रवाह के चैनल के क्रॉस-आंशिक क्षेत्र के अनुपात के रूप में परिभाषित किया जाता है, इसके गीले परिधि (क्रॉस-सेक्शन के परिधि का हिस्सा गीला होता है):

कहाँ:

  • Rh हाइड्रोलिक त्रिज्या (लंबाई) है;
  • A प्रवाह का क्रॉस सेक्शनल क्षेत्र है (L2);
  • P गीला परिधि (L) है।

दी गई चौड़ाई के चैनलों के लिए, गहरे चैनलों के लिए हाइड्रोलिक त्रिज्या अधिक होती है। विस्तृत आयताकार चैनलों में, हाइड्रोलिक त्रिज्या प्रवाह की गहराई से अनुमानित होती है।

हाइड्रोलिक त्रिज्या आधा हाइड्रोलिक व्यास नहीं है जैसा कि नाम से पता चलता है, लेकिन एक पूर्ण पाइप की स्थिति में एक चौथाई। यह पाइप, चैनल, या नदी के आकार का एक कार्य है जिसमें पानी बह रहा है।

चैनल की दक्षता (पानी और तलछट को स्थानांतरित करने की इसकी क्षमता) का निर्धारण करने में हाइड्रोलिक त्रिज्या भी महत्वपूर्ण है, और तलछट परिवहन | चैनल की क्षमता का आकलन करने के लिए जल अभियंताों द्वारा उपयोग की जाने वाली संपत्तियों में से एक है।

गॉकलर–मैनिंग गुणांक

गॉकलर-मैनिंग गुणांक, जिसे अक्सर निरूपित किया जाता है n, अनुभवजन्य रूप से व्युत्पन्न गुणांक है, जो सतह खुरदरापन और साइनोसिटी सहित कई कारकों पर निर्भर है। जब फील्ड निरीक्षण संभव नहीं है, तो निर्धारित करने का सबसे अच्छा तरीका है n जहां नदी चैनलों की तस्वीरों का उपयोग करना है n गॉकलर-मैनिंग के सूत्र का उपयोग करके निर्धारित किया गया है।

वीयर और ऑरिफिस में घर्षण गुणांक कम व्यक्तिपरक हैं n एक प्राकृतिक (मिट्टी, पत्थर या वनस्पति) चैनल के साथ पहुंचें। पार के अनुभागीय क्षेत्र, साथ ही n, एक प्राकृतिक चैनल के साथ अलग-अलग होने की संभावना है। तदनुसार, एक मैनिंग मानकर औसत वेग का अनुमान लगाने में अधिक त्रुटि अपेक्षित है n, प्रत्यक्ष नमूनाकरण (यानी, एक वर्तमान प्रवाहमापी के साथ) की तुलना में, या इसे वीयर, फ्लुम्स या: विक्ट: ऑरिफिस में मापने के बजाय।

प्राकृतिक धाराओं में, n मान इसकी पहुंच के साथ बहुत भिन्न होते हैं, और प्रवाह के विभिन्न चरणों के साथ चैनल की दी गई पहुंच में भी भिन्न होंगे। अधिकांश शोध यह बताते हैं n अवस्था के साथ घटेगा, कम से कम बैंक भर जाने तक। ओवरबैंक n दिए गए पहुंच के मान वर्ष के समय और प्रवाह के वेग के आधार पर बहुत भिन्न होंगे। ग्रीष्मकालीन वनस्पति आम तौर पर काफी अधिक होगी n पत्तियों और मौसमी वनस्पतियों के कारण मूल्य। यद्यपि, शोध से पता चला है कि n पत्तियों के बिना झाड़ियों की तुलना में पत्तियों वाली अलग-अलग झाड़ियों के लिए मान कम हैं।[7] यह पौधे की पत्तियों की स्ट्रीमलाइन और फ्लेक्स की क्षमता के कारण होता है क्योंकि प्रवाह उनसे गुजरता है और इस प्रकार प्रवाह के प्रतिरोध को कम करता है। उच्च वेग प्रवाह कुछ वनस्पतियों (जैसे घास और कांटे) को समतल करने का कारण बनेगा, जहाँ समान वनस्पति के माध्यम से प्रवाह का कम वेग नहीं होगा।[8] खुले चैनलों में, डार्सी-वीज़बाक समीकरण हाइड्रोलिक व्यास को समतुल्य पाइप व्यास के रूप में उपयोग करके मान्य है। मानव निर्मित खुले चैनलों में ऊर्जा हानि का अनुमान लगाने का यह एकमात्र सर्वोत्तम और ठोस तरीका है। विभिन्न कारणों (मुख्य रूप से ऐतिहासिक कारणों) के लिए, अनुभवजन्य प्रतिरोध गुणांक (जैसे चेज़ी, गॉकलर-मैनिंग-स्ट्रिकलर) थे और अभी भी उपयोग किए जाते हैं। चेज़ी गुणांक 1768 में पेश किया गया था, जबकि गॉकलर-मैनिंग गुणांक पहली बार 1865 में विकसित किया गया था, 1920-1930 के दशक में शास्त्रीय पाइप प्रवाह प्रतिरोध प्रयोगों से पहले। ऐतिहासिक रूप से चेज़ी और गॉकलर-मैनिंग गुणांक दोनों ही स्थिर और खुरदुरेपन के कार्य होने की उम्मीद थी। लेकिन अब यह ठीक रूप से मान्यता प्राप्त है कि ये गुणांक केवल प्रवाह दर की एक सीमा के लिए स्थिर हैं। अधिकांश घर्षण गुणांक (शायद डार्सी-वीसबैक घर्षण कारक को छोड़कर) अनुमानित रूप से 100% अनुमानित हैं और वे केवल स्थिर प्रवाह स्थितियों के तहत पूर्ण रूप से अशांत जल प्रवाह पर लागू होते हैं।

मैनिंग समीकरण के सबसे महत्वपूर्ण अनुप्रयोगों में से एक सीवर डिजाइन में इसका उपयोग है। सीवरों का निर्माण प्रायः वृत्ताकार पाइपों के रूप में किया जाता है। यह लंबे समय से स्वीकार किया गया है कि का मूल्य n आंशिक रूप से भरे हुए गोलाकार पाइपों में प्रवाह की गहराई के साथ बदलता रहता है।[9] सर्कुलर पाइपों पर मैनिंग समीकरण लागू करते समय स्पष्ट समीकरणों का एक पूरा सेट उपलब्ध है जिसका उपयोग प्रवाह की गहराई और अन्य अज्ञात चर की गणना के लिए किया जा सकता है।[10] ये समीकरण की भिन्नता के लिए खाते हैं n शिविर द्वारा प्रस्तुत वक्रों के अनुसार प्रवाह की गहराई के साथ।

प्रवाह सूत्रों के लेखक

यह भी देखें

नोट्स और संदर्भ

  1. Gauckler, Ph. (1867), Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux, vol. Tome 64, Paris, France: Comptes Rendues de l'Académie des Sciences, pp. 818–822
  2. Manning, R. (1891). "खुले चैनलों और पाइपों में पानी के बहाव पर". Transactions of the Institution of Civil Engineers of Ireland. 20: 161–207.
  3. Chow (1959) pp. 262-267
  4. Gioia, G.; Bombardelli, F. A. (2001). "रफ चैनल फ्लो में स्केलिंग और समानता". Physical Review Letters. 88 (1): 014501. Bibcode:2002PhRvL..88a4501G. doi:10.1103/PhysRevLett.88.014501. hdl:2142/112681. ISSN 0031-9007. PMID 11800954.
  5. Gioia, G.; Chakraborty, Pinaki (2006). "रफ पाइप्स में टर्बुलेंट फ्रिक्शन और फेनोमेनोलॉजिकल थ्योरी का एनर्जी स्पेक्ट्रम" (PDF). Physical Review Letters. 96 (4): 044502. arXiv:physics/0507066. Bibcode:2006PhRvL..96d4502G. doi:10.1103/PhysRevLett.96.044502. hdl:2142/984. ISSN 0031-9007. PMID 16486828. S2CID 7439208.
  6. Le Mehaute, Bernard (2013). हाइड्रोडायनामिक्स और जल तरंगों का परिचय. Springer. p. 84. ISBN 978-3-642-85567-2.
  7. Freeman, Gary E.; Copeland, Ronald R.; Rahmeyer, William; Derrick, David L. (1998). झाड़ियों और वुडी वनस्पतियों के लिए मैनिंग के मूल्य का क्षेत्र निर्धारण. pp. 48–53. doi:10.1061/40382(1998)7. ISBN 978-0-7844-0382-2. {{cite book}}: |journal= ignored (help)
  8. Hardy, Thomas; Panja, Palavi; Mathias, Dean (2005), WinXSPRO, A Channel Cross Section Analyzer, User's Manual, Version 3.0. Gen. Tech. Rep. RMRS-GTR-147 (PDF), Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, p. 94
  9. Camp, T. R. (1946). "प्रवाह को सुविधाजनक बनाने के लिए सीवरों का डिजाइन". Sewage Works Journal. 18 (1): 3–16. JSTOR 25030187. PMID 21011592.
  10. Akgiray, Ömer (2005). "आंशिक रूप से भरे हुए वृत्ताकार पाइपों के लिए मैनिंग समीकरण का स्पष्ट समाधान". Canadian Journal of Civil Engineering. 32 (3): 490–499. doi:10.1139/l05-001. ISSN 0315-1468.

अग्रिम पठन


बाहरी संबंध