समय अनुवाद समरूपता: Difference between revisions
No edit summary |
|||
Line 2: | Line 2: | ||
{{about|समय अनुवाद समरूपता (टीटीएस)|समय उलट समरूपता|टी-समरूपता}} | {{about|समय अनुवाद समरूपता (टीटीएस)|समय उलट समरूपता|टी-समरूपता}} | ||
{{Time sidebar |science}} | {{Time sidebar |science}} | ||
समय को एक सामान्य अंतराल के माध्यम से ले जाता है। समय अनुवाद समरूपता कानून है कि इस तरह के परिवर्तन के तहत भौतिकी के नियम अपरिवर्तित (अर्थात् अपरिवर्तनीय) हैं। समय अनुवाद समरूपता इस विचार को तैयार करने का एक कठोर तरीका है कि भौतिकी के नियम पूरे इतिहास में समान हैं। समय अनुवाद समरूपता नोथेर प्रमेय के माध्यम से, ऊर्जा के संरक्षण के लिए निकटता से जुड़ी हुई है। [1] गणित में, किसी दिए गए सिस्टम पर सभी समय के अनुवादों का सेट एक | समय को एक सामान्य अंतराल के माध्यम से ले जाता है। समय अनुवाद समरूपता कानून है कि इस तरह के परिवर्तन के तहत भौतिकी के नियम अपरिवर्तित (अर्थात् अपरिवर्तनीय) हैं। समय अनुवाद समरूपता इस विचार को तैयार करने का एक कठोर तरीका है कि भौतिकी के नियम पूरे इतिहास में समान हैं। समय अनुवाद समरूपता नोथेर प्रमेय के माध्यम से, ऊर्जा के संरक्षण के लिए निकटता से जुड़ी हुई है। [1] गणित में, किसी दिए गए सिस्टम पर सभी समय के अनुवादों का सेट एक लाई समूह बनाता है। | ||
समय के अनुवाद के अलावा प्रकृति में कई समरूपताएं हैं, जैसे कि स्थानिक अनुवाद या घूर्णी समरूपता। इन समरूपताओं को तोड़ा जा सकता है और क्रिस्टल, सुपरकंडक्टिविटी और हिग्स मैकेनिज्म जैसी विविध घटनाओं की व्याख्या की जा सकती है। [2] हालांकि, अभी हाल तक यह सोचा जाता था कि समय अनुवाद समरूपता को तोड़ा नहीं जा सकता।[3] समय क्रिस्टल, 2017 में पहली बार देखी गई पदार्थ की स्थिति, ब्रेक टाइम ट्रांसलेशन समरूपता। | समय के अनुवाद के अलावा प्रकृति में कई समरूपताएं हैं, जैसे कि स्थानिक अनुवाद या घूर्णी समरूपता। इन समरूपताओं को तोड़ा जा सकता है और क्रिस्टल, सुपरकंडक्टिविटी और हिग्स मैकेनिज्म जैसी विविध घटनाओं की व्याख्या की जा सकती है। [2] हालांकि, अभी हाल तक यह सोचा जाता था कि समय अनुवाद समरूपता को तोड़ा नहीं जा सकता।[3] समय क्रिस्टल, 2017 में पहली बार देखी गई पदार्थ की स्थिति, ब्रेक टाइम ट्रांसलेशन समरूपता। | ||
Line 54: | Line 54: | ||
: <math>\frac{1}{2}m\dot{x}(t)^2 + V(x(t))</math> | : <math>\frac{1}{2}m\dot{x}(t)^2 + V(x(t))</math> | ||
चर t पर निर्भर नहीं करता है। बेशक, यह मात्रा कुल ऊर्जा का वर्णन करती है जिसका संरक्षण गति के समीकरण के समय अनुवाद के कारण होता है। समरूपता परिवर्तनों की संरचना का अध्ययन करके, उदा। ज्यामितीय वस्तुओं का, एक निष्कर्ष पर पहुंचता है कि वे एक समूह बनाते हैं और अधिक विशेष रूप से, एक लाई परिवर्तन समूह यदि कोई निरंतर, परिमित समरूपता परिवर्तनों पर विचार करता है। अलग-अलग समरूपताएं अलग-अलग ज्यामिति के साथ अलग-अलग समूह बनाती हैं। समय स्वतंत्र हैमिल्टनियन सिस्टम समय अनुवाद का एक समूह बनाते हैं जो गैर-कॉम्पैक्ट, एबेलियन, | चर t पर निर्भर नहीं करता है। बेशक, यह मात्रा कुल ऊर्जा का वर्णन करती है जिसका संरक्षण गति के समीकरण के समय अनुवाद के कारण होता है। समरूपता परिवर्तनों की संरचना का अध्ययन करके, उदा। ज्यामितीय वस्तुओं का, एक निष्कर्ष पर पहुंचता है कि वे एक समूह बनाते हैं और अधिक विशेष रूप से, एक लाई परिवर्तन समूह यदि कोई निरंतर, परिमित समरूपता परिवर्तनों पर विचार करता है। अलग-अलग समरूपताएं अलग-अलग ज्यामिति के साथ अलग-अलग समूह बनाती हैं। समय स्वतंत्र हैमिल्टनियन सिस्टम समय अनुवाद का एक समूह बनाते हैं जो गैर-कॉम्पैक्ट, एबेलियन, लाई समूह <math>\mathbb R</math> द्वारा वर्णित है। टीटीएस इसलिए गतिज समरूपता के बजाय एक गतिशील या हैमिल्टनियन निर्भर समरूपता है जो इस मुद्दे पर हैमिल्टन के पूरे सेट के लिए समान होगा। शास्त्रीय और क्वांटम भौतिकी के समय विकास समीकरणों के अध्ययन में अन्य उदाहरण देखे जा सकते हैं। | ||
समय के विकास के समीकरणों का वर्णन करने वाले कई [[विभेदक समीकरण]] कुछ | समय के विकास के समीकरणों का वर्णन करने वाले कई [[विभेदक समीकरण]] कुछ लाई समूह से जुड़े आक्रमणकारियों की अभिव्यक्ति हैं और इन समूहों के सिद्धांत सभी विशेष कार्यों और उनके सभी गुणों के अध्ययन के लिए एक एकीकृत दृष्टिकोण प्रदान करते हैं। वास्तव में, [[सोफस झूठ|सोफस लाई]] ने विभेदक समीकरणों की समरूपता का अध्ययन करते समय लाई समूहों के सिद्धांत का आविष्कार किया। एक (आंशिक) अवकल समीकरण का समाकलन चरों के पृथक्करण की विधि या लाई बीजगणितीय विधियों द्वारा समरूपता के अस्तित्व के साथ अंतरंग रूप से जुड़ा हुआ है। उदाहरण के लिए, क्वांटम यांत्रिकी में श्रोडिंगर समीकरण की सटीक घुलनशीलता को अंतर्निहित आक्रमणों में वापस देखा जा सकता है। बाद के मामले में, समरूपता की जांच [[क्वांटम अध: पतन]] की व्याख्या के लिए अनुमति देती है, जहां विभिन्न विन्यासों में समान ऊर्जा होती है, जो आमतौर पर क्वांटम सिस्टम के ऊर्जा स्पेक्ट्रम में होती है। भौतिकी में निरंतर समरूपता अक्सर परिमित परिवर्तनों के बजाय अत्यल्पता के रूप में तैयार की जाती है, अर्थात परिवर्तन के लाईे समूह के बजाय लाई बीजगणित पर विचार किया जाता है। | ||
=== क्वांटम यांत्रिकी === | === क्वांटम यांत्रिकी === | ||
Line 92: | Line 92: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [https://feynmanlectures.caltech.edu/I_52.html The Feynman Lectures on Physics - Time Translation] | * [https://feynmanlectures.caltech.edu/I_52.html The Feynman Lectures on Physics - Time Translation] | ||
[[Category: भौतिकी में अवधारणाएँ]] [[Category: संरक्षण कानून]] [[Category: ऊर्जा (भौतिकी)]] [[Category: ऊष्मप्रवैगिकी के नियम]] [[Category: क्वांटम क्षेत्र सिद्धांत]] [[Category: अंतरिक्ष समय]] [[Category: समरूपता]] [[Category: भौतिकी में समय]] [[Category: सापेक्षता के सिद्धांत]] [[Category: ऊष्मप्रवैगिकी]] | [[Category: भौतिकी में अवधारणाएँ]] [[Category: संरक्षण कानून]] [[Category: ऊर्जा (भौतिकी)]] [[Category: ऊष्मप्रवैगिकी के नियम]] [[Category: क्वांटम क्षेत्र सिद्धांत]] [[Category: अंतरिक्ष समय]] [[Category: समरूपता]] [[Category: भौतिकी में समय]] [[Category: सापेक्षता के सिद्धांत]] [[Category: ऊष्मप्रवैगिकी]] | ||
Revision as of 16:39, 20 April 2023
Time |
---|
Current time (update) |
00:59, 26 November 2024 (UTC) |
समय को एक सामान्य अंतराल के माध्यम से ले जाता है। समय अनुवाद समरूपता कानून है कि इस तरह के परिवर्तन के तहत भौतिकी के नियम अपरिवर्तित (अर्थात् अपरिवर्तनीय) हैं। समय अनुवाद समरूपता इस विचार को तैयार करने का एक कठोर तरीका है कि भौतिकी के नियम पूरे इतिहास में समान हैं। समय अनुवाद समरूपता नोथेर प्रमेय के माध्यम से, ऊर्जा के संरक्षण के लिए निकटता से जुड़ी हुई है। [1] गणित में, किसी दिए गए सिस्टम पर सभी समय के अनुवादों का सेट एक लाई समूह बनाता है।
समय के अनुवाद के अलावा प्रकृति में कई समरूपताएं हैं, जैसे कि स्थानिक अनुवाद या घूर्णी समरूपता। इन समरूपताओं को तोड़ा जा सकता है और क्रिस्टल, सुपरकंडक्टिविटी और हिग्स मैकेनिज्म जैसी विविध घटनाओं की व्याख्या की जा सकती है। [2] हालांकि, अभी हाल तक यह सोचा जाता था कि समय अनुवाद समरूपता को तोड़ा नहीं जा सकता।[3] समय क्रिस्टल, 2017 में पहली बार देखी गई पदार्थ की स्थिति, ब्रेक टाइम ट्रांसलेशन समरूपता।
सिंहावलोकन
Lie groups |
---|
भौतिकी में समरूपता का प्रमुख महत्व है और यह परिकल्पना से निकटता से संबंधित है कि कुछ भौतिक मात्राएँ केवल सापेक्ष और अप्राप्य हैं। [5] समरूपता उन समीकरणों पर लागू होती है जो प्रारंभिक स्थितियों, मूल्यों या समीकरणों के परिमाण के बजाय भौतिक कानूनों (उदाहरण के लिए हैमिल्टनियन या लैग्रेंजियन के लिए) को नियंत्रित करते हैं और बताते हैं कि कानून एक परिवर्तन के तहत अपरिवर्तित रहते हैं। [1] यदि एक परिवर्तन के तहत एक समरूपता संरक्षित है तो इसे अपरिवर्तनीय कहा जाता है। प्रकृति में समरूपता सीधे संरक्षण कानूनों की ओर ले जाती है, कुछ ऐसा जो नोथेर प्रमेय द्वारा सटीक रूप से तैयार किया गया है। [6]
सन्तुलन | परिवर्तन | अप्राप्य | संरक्षण कानून |
---|---|---|---|
अंतरिक्ष-अनुवाद | अंतरिक्ष में पूर्ण स्थिति | गति | |
समय-अनुवाद | पूर्ण समय | शक्ति | |
चक्कर | अंतरिक्ष में पूर्ण दिशा | कोणीय गति | |
अंतरिक्ष व्युत्क्रम | पूर्ण बाएं या दाएं | बराबरी | |
समय-उलट | समय का पूर्ण संकेत | क्रेमर्स अधोगति | |
प्रभार के प्रत्यावर्तन पर हस्ताक्षर करें | विद्युत आवेश का पूर्ण संकेत | चार्ज संयुग्मन | |
कण प्रतिस्थापन | समान कणों की विशिष्टता | बोस या फर्मी के आंकड़े | |
गेज परिवर्तन | विभिन्न सामान्य अवस्थाओं के बीच सापेक्ष चरण | कण संख्या |
न्यूटोनियन यांत्रिकी
औपचारिक रूप से समय अनुवाद समरूपता का वर्णन करने के लिए हम समीकरण, या कानून कहते हैं, जो समय-समय पर एक प्रणाली का वर्णन करते हैं और के किसी भी मान के लिए समान हैं और .
उदाहरण के लिए, न्यूटन के समीकरण पर विचार करना:
उसका समाधान ढूंढता है मेल:
चर t पर निर्भर नहीं करता है। बेशक, यह मात्रा कुल ऊर्जा का वर्णन करती है जिसका संरक्षण गति के समीकरण के समय अनुवाद के कारण होता है। समरूपता परिवर्तनों की संरचना का अध्ययन करके, उदा। ज्यामितीय वस्तुओं का, एक निष्कर्ष पर पहुंचता है कि वे एक समूह बनाते हैं और अधिक विशेष रूप से, एक लाई परिवर्तन समूह यदि कोई निरंतर, परिमित समरूपता परिवर्तनों पर विचार करता है। अलग-अलग समरूपताएं अलग-अलग ज्यामिति के साथ अलग-अलग समूह बनाती हैं। समय स्वतंत्र हैमिल्टनियन सिस्टम समय अनुवाद का एक समूह बनाते हैं जो गैर-कॉम्पैक्ट, एबेलियन, लाई समूह द्वारा वर्णित है। टीटीएस इसलिए गतिज समरूपता के बजाय एक गतिशील या हैमिल्टनियन निर्भर समरूपता है जो इस मुद्दे पर हैमिल्टन के पूरे सेट के लिए समान होगा। शास्त्रीय और क्वांटम भौतिकी के समय विकास समीकरणों के अध्ययन में अन्य उदाहरण देखे जा सकते हैं।
समय के विकास के समीकरणों का वर्णन करने वाले कई विभेदक समीकरण कुछ लाई समूह से जुड़े आक्रमणकारियों की अभिव्यक्ति हैं और इन समूहों के सिद्धांत सभी विशेष कार्यों और उनके सभी गुणों के अध्ययन के लिए एक एकीकृत दृष्टिकोण प्रदान करते हैं। वास्तव में, सोफस लाई ने विभेदक समीकरणों की समरूपता का अध्ययन करते समय लाई समूहों के सिद्धांत का आविष्कार किया। एक (आंशिक) अवकल समीकरण का समाकलन चरों के पृथक्करण की विधि या लाई बीजगणितीय विधियों द्वारा समरूपता के अस्तित्व के साथ अंतरंग रूप से जुड़ा हुआ है। उदाहरण के लिए, क्वांटम यांत्रिकी में श्रोडिंगर समीकरण की सटीक घुलनशीलता को अंतर्निहित आक्रमणों में वापस देखा जा सकता है। बाद के मामले में, समरूपता की जांच क्वांटम अध: पतन की व्याख्या के लिए अनुमति देती है, जहां विभिन्न विन्यासों में समान ऊर्जा होती है, जो आमतौर पर क्वांटम सिस्टम के ऊर्जा स्पेक्ट्रम में होती है। भौतिकी में निरंतर समरूपता अक्सर परिमित परिवर्तनों के बजाय अत्यल्पता के रूप में तैयार की जाती है, अर्थात परिवर्तन के लाईे समूह के बजाय लाई बीजगणित पर विचार किया जाता है।
क्वांटम यांत्रिकी
एक हैमिल्टनियन का आक्रमण समय अनुवाद के तहत एक पृथक प्रणाली का अर्थ है कि इसकी ऊर्जा समय बीतने के साथ नहीं बदलती है। गति के हाइजेनबर्ग समीकरणों के अनुसार, ऊर्जा के संरक्षण का मतलब है कि .
या:
कहाँ टाइम ट्रांसलेशन ऑपरेटर है जो टाइम ट्रांसलेशन ऑपरेशन के तहत हैमिल्टनियन के इनवेरियन को दर्शाता है और ऊर्जा के संरक्षण की ओर ले जाता है।
अरैखिक प्रणालियां
सामान्य सापेक्षता या यांग-मिल्स सिद्धांतों जैसे कई अरेखीय क्षेत्र सिद्धांतों में, मूल क्षेत्र समीकरण अत्यधिक अरैखिक होते हैं और सटीक समाधान केवल पदार्थ के 'पर्याप्त सममित' वितरण के लिए जाना जाता है (उदाहरण के लिए घूर्णी या अक्षीय रूप से सममित विन्यास)। समय अनुवाद समरूपता की गारंटी केवल स्पेसटाइम में दी जाती है जहां मीट्रिक स्थिर है: अर्थात, जहां एक समन्वय प्रणाली होती है जिसमें मीट्रिक गुणांक में कोई समय चर नहीं होता है। कई सामान्य सापेक्षता प्रणालियां संदर्भ के किसी भी फ्रेम में स्थिर नहीं हैं, इसलिए किसी भी संरक्षित ऊर्जा को परिभाषित नहीं किया जा सकता है।
टाइम ट्रांसलेशन सिमिट्री ब्रेकिंग (टीटीएसबी)
समय क्रिस्टल, 2017 में पहली बार देखी गई पदार्थ की अवस्था, असतत समय अनुवाद समरूपता को तोड़ती है।[2]
यह भी देखें
- पूर्ण समय और स्थान
- मच का सिद्धांत
- अंतरिक्ष समय
- समय उत्क्रमण समरूपता
संदर्भ
- ↑ Feng, Duan; Jin, Guojun (2005). संघनित पदार्थ भौतिकी का परिचय. Singapore: World Scientific. p. 18. ISBN 978-981-238-711-0.
- ↑ Gibney, Elizabeth (2017). "समय को क्रिस्टलाइज़ करने की खोज". Nature. 543 (7644): 164–166. Bibcode:2017Natur.543..164G. doi:10.1038/543164a. ISSN 0028-0836. PMID 28277535. S2CID 4460265.