सेमीप्राइम: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 63: | Line 63: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 17/04/2023]] | [[Category:Created On 17/04/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 11:09, 25 April 2023
गणित में,सेमीप्राइम एक प्राकृतिक संख्या है जो दो अभाज्य संख्याओं का गुणनफल है। गुणनफल में दो अभाज्य संख्याएँ एक दूसरे के समान हो सकती हैं, इसलिए सेमिप्राइम संख्याओं में अभाज्य संख्याओं की वर्ग संख्या सम्मिलित होते है।क्योंकि अपरिमित रूप से अनेक अभाज्य संख्याएँ हैं,और अपरिमित रूप से अनेक सेमिप्राइम संख्याएँ भी हैं। सेमीप्राइम्स को बाइप्राइम्स भी कहा जाता है।[1]
उदाहरण और विविधताएं
100 से न्यूनतम के संख्या सेमीप्राइम हैं:
सेमीप्राइम्स जो वर्ग संख्या नहीं हैं, असतत, विशिष्ट, या स्क्वायरफ्री सेमीप्राइम्स कहलाते हैं:
सेमीप्राइम स्थिति के -लगभग अभाज्य संख्याएँ हैं, तथा सटीक संख्याएँ का प्रधान कारक है। यद्यपि, कुछ स्रोत संख्याओं के एक बड़े समूह को संदर्भित करने के लिए "सेमीप्राइम" का उपयोग करते हैं, संख्याएँ अधिकतम दो प्रमुख कारकों (यूनिट (1), प्राइम्स और सेमीप्राइम्स सहित) के सापेक्ष होती हैं।[2] ये संख्याये निम्न हैं :-
सेमीप्राइम्स की संख्या के लिए सूत्र
2005 में ई. नोएल और जी. पैनोस द्वारा एक सेमीप्राइम काउंटिंग विधि खोजी गयी थी। मान लीजिए n से न्यूनतम या उसके समान सेमीप्राइम्स की संख्या को निरूपित करें। तब
गुण
सेमीप्राइम संख्याओं में स्वयं के अतिरिक्त अन्य कारकों के रूप में कोई समग्र संख्या नहीं होती है।[4] उदाहरण के लिए, संख्या 26 सेमीप्राइम है और इसके केवल कारक 1, 2, 13 और 26 हैं, जिनमें से केवल 26 समग्र संख्या हैं।
वर्गमुक्त सेमीप्राइम के लिए (सापेक्ष ) यूलर के कुल फलन का मान (सकारात्मक पूर्णांकों की संख्या इससे न्यूनतम या इसके समान हैं, जो सापेक्षतः अभाज्य संख्या हैं ) सरल रूप लेता है
अनुप्रयोग
सेमिप्राइम्स क्रिप्टोग्राफी और संख्या सिद्धांत के क्षेत्र में अत्यधिक उपयोगी हैं, विशेष रूप से सार्वजनिक कुंजी क्रिप्टोग्राफी में, जहां उनका उपयोग आरएसए और छद्म यादृच्छिक संख्या जनरेटर जैसे ब्लम ब्लम शुब के द्वारा उपयोग किया जाता है। ये विधियाँ इस तथ्य पर निर्भर करती हैं कि दो बड़ी अभाज्य संख्याएँ ढूँढ़ना और उन्हें एक सापेक्ष गुणा करना न्यूनतम कम्प्यूटेशनल रूप से सरल है, जबकि पूर्णांक गुणनखंड करना कठिन प्रतीत होता है। आरएसए फैक्टरिंग चैलेंज में, आरएसए सिक्योरिटी ने विशिष्ट बड़े सेमीप्राइम्स की फैक्टरिंग के लिए पुरस्कारों की प्रस्तुति की और कई पुरस्कार प्रदान किए गए। मूल आरएसए फैक्टरिंग चैलेंज 1991 में जारी किया गया था, और 2001 में न्यू आरएसए फैक्टरिंग चैलेंज द्वारा प्रतिस्थापित किया गया था, जिसे 2007 के उपरांत में वापस ले लिया गया था।[6]
1974 में अरेकिबो संदेश एक स्टार क्लस्टर के उद्देश्य से एक रेडियो सिग्नल के सापेक्ष भेजा गया था। इसमें द्विआधारी अंक को बिटमैप चित्र के रूप में व्याख्या करने का उद्देश्य सम्मिलित है । जो नंबर चुना गया था क्योंकि यह एक सेमीप्राइम है और इसलिए इसे केवल दो भिन्न-भिन्न विधियों द्वारा 23 पंक्तियों और 73 कॉलम, या 73 पंक्तियों और 23 कॉलम में एक आयताकार छवि में व्यवस्थित किया जा सकता है।[7]
यह भी देखें
- चेन की प्रमेय
संदर्भ
- ↑ Sloane, N. J. A. (ed.). "Sequence A001358". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ↑ Stewart, Ian (2010). गणितीय जिज्ञासाओं के प्रोफेसर स्टीवर्ट की कैबिनेट. Profile Books. p. 154. ISBN 9781847651280.
- ↑ Ishmukhametov, Sh. T.; Sharifullina, F. F. (2014). "On distribution of semiprime numbers". Russian Mathematics. 58 (8): 43–48. doi:10.3103/S1066369X14080052. MR 3306238. S2CID 122410656.
- ↑ French, John Homer (1889). माध्यमिक विद्यालयों के लिए उन्नत अंकगणित. New York: Harper & Brothers. p. 53.
- ↑ 5.0 5.1 Cozzens, Margaret; Miller, Steven J. (2013). The Mathematics of Encryption: An Elementary Introduction. Mathematical World. Vol. 29. American Mathematical Society. p. 237. ISBN 9780821883211.
- ↑ "आरएसए फैक्टरिंग चैलेंज अब सक्रिय नहीं है". RSA Laboratories. Archived from the original on 2013-07-27.
- ↑ du Sautoy, Marcus (2011). The Number Mysteries: A Mathematical Odyssey through Everyday Life. St. Martin's Press. p. 19. ISBN 9780230120280.