गैस इलेक्ट्रॉन गुणक: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
एक गैस [[इलेक्ट्रॉन]] गुणक (GEM) प्रकार का [[गैसीय आयनीकरण डिटेक्टर]] है जिसका उपयोग परमाणु और कण भौतिकी और विकिरण का पता लगाने में किया जाता है।
एक गैस [[इलेक्ट्रॉन]] गुणक (जीईएम ) प्रकार का [[गैसीय आयनीकरण डिटेक्टर|गैसीय आयनीकरण संसूचक]] है जिसका उपयोग परमाणु और कण भौतिकी और विकिरण का पता लगाने में किया जाता है।


सभी गैसीय आयनीकरण डिटेक्टर आयनकारी विकिरण द्वारा छोड़े गए इलेक्ट्रॉनों को इकट्ठा करने में सक्षम होते हैं, उन्हें बड़े [[विद्युत क्षेत्र]] वाले क्षेत्र में निर्देशित करते हैं, और इस तरह [[इलेक्ट्रॉन हिमस्खलन]] की शुरुआत करते हैं। हिमस्खलन [[विद्युत प्रवाह]] या आवेश (भौतिकी) बनाने के लिए पर्याप्त इलेक्ट्रॉनों का उत्पादन करने में सक्षम है जो इलेक्ट्रॉनिक्स द्वारा पता लगाया जा सकता है। अधिकांश आयनीकरण डिटेक्टरों में, बड़ा क्षेत्र सकारात्मक उच्च-वोल्टेज क्षमता वाले पतले तार से आता है; यही पतला तार हिमस्खलन से इलेक्ट्रॉनों को इकट्ठा करता है और उन्हें रीडआउट इलेक्ट्रॉनिक्स की ओर निर्देशित करता है। जीईएम पतली पॉलीमर शीट में छोटे छिद्रों में बड़े विद्युत क्षेत्र का निर्माण करते हैं; हिमस्खलन इन छिद्रों के अंदर होता है। परिणामी इलेक्ट्रॉनों को शीट से बाहर निकाल दिया जाता है, और इलेक्ट्रॉनों को इकट्ठा करने और उन्हें रीडआउट की ओर निर्देशित करने के लिए अलग प्रणाली का उपयोग किया जाना चाहिए।
सभी गैसीय आयनीकरण संसूचक  आयनकारी विकिरण द्वारा छोड़े गए इलेक्ट्रॉनों को संग्रह करने में सक्षम होते हैं, उन्हें बड़े [[विद्युत क्षेत्र]] वाले क्षेत्र में निर्देशित करते हैं, और इस तरह [[इलेक्ट्रॉन हिमस्खलन]] की प्रारंभ करते हैं। हिमस्खलन [[विद्युत प्रवाह]] या आवेश (भौतिकी) बनाने के लिए पर्याप्त इलेक्ट्रॉनों का उत्पादन करने में सक्षम है जो इलेक्ट्रॉनिक्स द्वारा पता लगाया जा सकता है। अधिकांश आयनीकरण संसूचक में, बड़ा क्षेत्र सकारात्मक उच्च-वोल्टेज क्षमता वाले पतले तार से आता है; यही पतला तार हिमस्खलन से इलेक्ट्रॉनों को संग्रह करता है और उन्हें रीडआउट इलेक्ट्रॉनिक्स की ओर निर्देशित करता है। जीईएम पतली पॉलीमर पत्रक में छोटे छिद्रों में बड़े विद्युत क्षेत्र का निर्माण करते हैं; हिमस्खलन इन छिद्रों के अंदर होता है। परिणामी इलेक्ट्रॉनों को पत्रक से बाहर निकाल दिया जाता है, और इलेक्ट्रॉनों को संग्रह करने और उन्हें रीडआउट की ओर निर्देशित करने के लिए अलग प्रणाली का उपयोग किया जाना चाहिए।


जीईएम [[माइक्रोपैटर्न गैसीय डिटेक्टर]] के वर्ग में से हैं; इस वर्ग में माइक्रोमेगास (कण डिटेक्टर) और अन्य प्रौद्योगिकियां शामिल हैं।
जीईएम [[माइक्रोपैटर्न गैसीय डिटेक्टर|माइक्रोपैटर्न गैसीय संसूचक]] के वर्ग में से हैं; इस वर्ग में माइक्रोमेगास (कण संसूचक ) और अन्य प्रौद्योगिकियां सम्मिलित हैं।


== इतिहास ==
== इतिहास ==


GEM का आविष्कार 1997 में Gas Detector Development Group में हुआ था<ref name="GDD">The Gas Detectors Development group. http://gdd.web.cern.ch/GDD/ {{Webarchive|url=https://web.archive.org/web/20071213020048/http://gdd.web.cern.ch/GDD/ |date=13 December 2007 }}</ref> [[CERN]] में भौतिक विज्ञानी [[फैबियो सौली]] द्वारा।<ref name="CernCourier27Nov1998">"A GEM of a Detector". CERN Courier, 27 November 1998. http://cerncourier.com/cws/article/cern/27921</ref>
जीईएम  का आविष्कार 1997 में [[CERN|सीईआरएन]] में गैस संसूचक विकास समूह में भौतिक विज्ञानी [[फैबियो सौली]] द्वारा किया गया था।<ref name="GDD">The Gas Detectors Development group. http://gdd.web.cern.ch/GDD/ {{Webarchive|url=https://web.archive.org/web/20071213020048/http://gdd.web.cern.ch/GDD/ |date=13 December 2007 }}</ref> '''[[CERN|सीईआरएन]] में भौतिक विज्ञानी [[फैबियो सौली]] द्वारा'''।<ref name="CernCourier27Nov1998">"A GEM of a Detector". CERN Courier, 27 November 1998. http://cerncourier.com/cws/article/cern/27921</ref>
 
 
== ऑपरेशन ==
== ऑपरेशन ==


विशिष्ट जीईएम दोनों तरफ तांबे में लिपटे 50-70 माइक्रोमीटर मोटी केप्टन पन्नी से बने होते हैं। [[फोटोलिथोग्राफी]] और एसिड नक़्क़ाशी प्रक्रिया दोनों तांबे की परतों के माध्यम से 30-50 माइक्रोमीटर व्यास के छेद बनाती है; दूसरी नक़्क़ाशी प्रक्रिया इन छिद्रों को केप्टन के माध्यम से सभी तरह से फैलाती है। छोटे छिद्रों को बहुत नियमित और विमीय रूप से स्थिर बनाया जा सकता है। ऑपरेशन के लिए, 150-400 V का वोल्टेज दो तांबे की परतों में रखा जाता है, जिससे छिद्रों में बड़े विद्युत क्षेत्र बन जाते हैं। इन शर्तों के तहत, उपयुक्त गैसों की उपस्थिति में, किसी भी छेद में प्रवेश करने वाला इलेक्ट्रॉन 100-1000 इलेक्ट्रॉनों वाले हिमस्खलन का निर्माण करेगा; यह GEM का लाभ है। चूंकि इलेक्ट्रॉन GEM के पीछे से बाहर निकलते हैं, पहले के बाद रखा गया दूसरा GEM प्रवर्धन का अतिरिक्त चरण प्रदान करेगा। कई प्रयोग मिलियन या अधिक का लाभ प्राप्त करने के लिए डबल- या ट्रिपल-जीईएम स्टैक का उपयोग करते हैं।
विशिष्ट जीईएम दोनों तरफ तांबे में लिपटे 50-70 माइक्रोमीटर मोटी केप्टन पन्नी से बने होते हैं। [[फोटोलिथोग्राफी]] और एसिड नक़्क़ाशी प्रक्रिया दोनों तांबे की परतों के माध्यम से 30-50 माइक्रोमीटर व्यास के छेद बनाती है; दूसरी नक़्क़ाशी प्रक्रिया इन छिद्रों को केप्टन के माध्यम से सभी तरह से फैलाती है। छोटे छिद्रों को बहुत नियमित और विमीय रूप से स्थिर बनाया जा सकता है। संचालन के लिए, 150-400 V का वोल्टेज दो तांबे की परतों में रखा जाता है, जिससे छिद्रों में बड़े विद्युत क्षेत्र बन जाते हैं। इन नियमो के तहत, उपयुक्त गैसों की उपस्थिति में, किसी भी छेद में प्रवेश करने वाला इलेक्ट्रॉन 100-1000 इलेक्ट्रॉनों वाले हिमस्खलन का निर्माण करेगा; यह जीईएम  का लाभ है। चूंकि इलेक्ट्रॉन जीईएम  के पीछे से बाहर निकलते हैं, पहले के बाद रखा गया दूसरा जीईएम  प्रवर्धन का अतिरिक्त चरण प्रदान करेगा। कई प्रयोग मिलियन या अधिक का लाभ प्राप्त करने के लिए दोहरा या तिगुना-जीईएम स्टैक का उपयोग करते हैं।


तार कक्षों के संचालन में आमतौर पर केवल वोल्टेज सेटिंग शामिल होती है: तार पर वोल्टेज बहाव क्षेत्र और प्रवर्धन क्षेत्र दोनों प्रदान करता है। जीईएम-आधारित डिटेक्टर के लिए कई स्वतंत्र वोल्टेज सेटिंग्स की आवश्यकता होती है: आयनीकरण बिंदु से जीईएम तक इलेक्ट्रॉनों का मार्गदर्शन करने के लिए बहाव वोल्टेज, प्रवर्धन वोल्टेज, और जीईएम निकास से रीडआउट विमान तक इलेक्ट्रॉनों का मार्गदर्शन करने के लिए निष्कर्षण/स्थानांतरण वोल्टेज। बड़े बहाव क्षेत्र वाले डिटेक्टर को [[समय प्रक्षेपण कक्ष]] के रूप में संचालित किया जा सकता है; छोटे बहाव क्षेत्र वाला डिटेक्टर साधारण [[आनुपातिक काउंटर]] के रूप में कार्य करता है।
तार कक्षों के संचालन में सामान्यतः  केवल वोल्टेज सेटिंग सम्मिलित होती है: तार पर वोल्टेज बहाव क्षेत्र और प्रवर्धन क्षेत्र दोनों प्रदान करता है। जीईएम-आधारित संसूचक  के लिए कई स्वतंत्र वोल्टेज समायोजन की आवश्यकता होती है: आयनीकरण बिंदु से जीईएम तक इलेक्ट्रॉनों का मार्गदर्शन करने के लिए बहाव वोल्टेज, प्रवर्धन वोल्टेज, और जीईएम निकास से रीडआउट विमान तक इलेक्ट्रॉनों का मार्गदर्शन करने के लिए निष्कर्षण/स्थानांतरण वोल्टेज बड़े बहाव क्षेत्र वाले संसूचक  को [[समय प्रक्षेपण कक्ष]] के रूप में संचालित किया जा सकता है; छोटे बहाव क्षेत्र वाला संसूचक  साधारण [[आनुपातिक काउंटर]] के रूप में कार्य करता है।


एक जीईएम कक्ष को समतल तल पर बिछाई गई सरल प्रवाहकीय पट्टियों द्वारा पढ़ा जा सकता है; रीडआउट प्लेन, GEM की ही तरह, साधारण सर्किट बोर्ड सामग्री पर साधारण लिथोग्राफी तकनीकों से निर्मित किया जा सकता है। चूंकि रीडआउट स्ट्रिप्स प्रवर्धन प्रक्रिया में शामिल नहीं हैं, इसलिए उन्हें किसी भी आकार में बनाया जा सकता है; [[द्वि-आयामी स्थान]] | 2-डी स्ट्रिप्स और ग्रिड, हेक्सागोनल पैड, रेडियल/एज़ीमुथल सेगमेंट और अन्य रीडआउट ज्यामिति संभव हैं।
एक जीईएम कक्ष को समतल तल पर बिछाई गई सरल प्रवाहकीय पट्टियों द्वारा पढ़ा जा सकता है; रीडआउट प्लेन, जीईएम  की ही तरह, साधारण परिपथ बोर्ड सामग्री पर साधारण लिथोग्राफी विधि से निर्मित किया जा सकता है। चूंकि रीडआउट स्ट्रिप्स प्रवर्धन प्रक्रिया में सम्मिलित नहीं हैं, इसलिए उन्हें किसी भी आकार में बनाया जा सकता है; [[द्वि-आयामी स्थान]] | 2-डी स्ट्रिप्स और ग्रिड, हेक्सागोनल पैड, रेडियल/एज़ीमुथल सेगमेंट और अन्य रीडआउट ज्यामिति संभव हैं।


== उपयोग करता है ==
== उपयोग करता है ==


GEMs का उपयोग कई प्रकार के कण भौतिकी प्रयोगों में किया गया है। उल्लेखनीय प्रारंभिक उपयोगकर्ता CERN में [[कम्पास प्रयोग]] था। GEM- आधारित गैस डिटेक्टरों को [[अंतर्राष्ट्रीय रैखिक कोलाइडर]], स्टार प्रयोग और [[सापेक्षवादी भारी आयन कोलाइडर]] में PHENIX प्रयोग और अन्य के घटकों के लिए प्रस्तावित किया गया है। [[मल्टीवायर आनुपातिक कक्ष]]ों की तुलना में जीईएम के लाभों में शामिल हैं: निर्माण में आसानी, क्योंकि बड़े क्षेत्र के जीईएम सिद्धांत रूप में बड़े पैमाने पर उत्पादित किए जा सकते हैं, जबकि तार कक्षों को श्रम-गहन और त्रुटि-प्रवण असेंबली की आवश्यकता होती है; जीईएम और रीडआउट पैड दोनों के लिए लचीली ज्यामिति; और सकारात्मक आयनों का दमन, जो उच्च दर पर संचालित समय-प्रक्षेपण कक्षों में क्षेत्र विकृतियों का स्रोत था। गैर-एकरूपता और शॉर्ट सर्किट सहित कई विनिर्माण कठिनाइयों ने शुरुआती GEMs को प्रभावित किया, लेकिन इन्हें काफी हद तक हल कर लिया गया है।
जीईएमएस  का उपयोग कई प्रकार के कण भौतिकी प्रयोगों में किया गया है। उल्लेखनीय प्रारंभिक उपयोगकर्ता सीईआरएन में [[कम्पास प्रयोग]] था। जीईएम - आधारित गैस संसूचकको [[अंतर्राष्ट्रीय रैखिक कोलाइडर]], स्टार प्रयोग और [[सापेक्षवादी भारी आयन कोलाइडर]] में फेनिक्स प्रयोग और अन्य के घटकों के लिए प्रस्तावित किया गया है। [[मल्टीवायर आनुपातिक कक्ष]] की तुलना में जीईएम के लाभों में सम्मिलित हैं: निर्माण में आसानी, क्योंकि बड़े क्षेत्र के जीईएम सिद्धांत रूप में बड़े मापदंड पर उत्पादित किए जा सकते हैं, जबकि तार कक्षों को श्रम-गहन और त्रुटि-प्रवण असेंबली की आवश्यकता होती है; जीईएम और रीडआउट पैड दोनों के लिए लचीली ज्यामिति; और सकारात्मक आयनों का दमन, जो उच्च दर पर संचालित समय-प्रक्षेपण कक्षों में क्षेत्र विकृतियों का स्रोत था। गैर-एकरूपता और शॉर्ट परिपथ सहित कई विनिर्माण कठिनाइयों ने प्रारंभिक जीईएमएस  को प्रभावित किया, किंतु इन्हें काफी हद तक हल कर लिया गया है।
 
'''गैर-एकरूपता और शॉर्ट परिपथ सहित कई विनिर्माण कठिनाइयों ने प्रारंभिक जीईएम s को प्रभावित किया, लेकिन इन्हें काफी हद तक हल कर लिया गया है।'''


==संदर्भ==
==संदर्भ==

Revision as of 11:21, 19 April 2023

एक गैस इलेक्ट्रॉन गुणक (जीईएम ) प्रकार का गैसीय आयनीकरण संसूचक है जिसका उपयोग परमाणु और कण भौतिकी और विकिरण का पता लगाने में किया जाता है।

सभी गैसीय आयनीकरण संसूचक आयनकारी विकिरण द्वारा छोड़े गए इलेक्ट्रॉनों को संग्रह करने में सक्षम होते हैं, उन्हें बड़े विद्युत क्षेत्र वाले क्षेत्र में निर्देशित करते हैं, और इस तरह इलेक्ट्रॉन हिमस्खलन की प्रारंभ करते हैं। हिमस्खलन विद्युत प्रवाह या आवेश (भौतिकी) बनाने के लिए पर्याप्त इलेक्ट्रॉनों का उत्पादन करने में सक्षम है जो इलेक्ट्रॉनिक्स द्वारा पता लगाया जा सकता है। अधिकांश आयनीकरण संसूचक में, बड़ा क्षेत्र सकारात्मक उच्च-वोल्टेज क्षमता वाले पतले तार से आता है; यही पतला तार हिमस्खलन से इलेक्ट्रॉनों को संग्रह करता है और उन्हें रीडआउट इलेक्ट्रॉनिक्स की ओर निर्देशित करता है। जीईएम पतली पॉलीमर पत्रक में छोटे छिद्रों में बड़े विद्युत क्षेत्र का निर्माण करते हैं; हिमस्खलन इन छिद्रों के अंदर होता है। परिणामी इलेक्ट्रॉनों को पत्रक से बाहर निकाल दिया जाता है, और इलेक्ट्रॉनों को संग्रह करने और उन्हें रीडआउट की ओर निर्देशित करने के लिए अलग प्रणाली का उपयोग किया जाना चाहिए।

जीईएम माइक्रोपैटर्न गैसीय संसूचक के वर्ग में से हैं; इस वर्ग में माइक्रोमेगास (कण संसूचक ) और अन्य प्रौद्योगिकियां सम्मिलित हैं।

इतिहास

जीईएम का आविष्कार 1997 में सीईआरएन में गैस संसूचक विकास समूह में भौतिक विज्ञानी फैबियो सौली द्वारा किया गया था।[1] सीईआरएन में भौतिक विज्ञानी फैबियो सौली द्वारा[2]

ऑपरेशन

विशिष्ट जीईएम दोनों तरफ तांबे में लिपटे 50-70 माइक्रोमीटर मोटी केप्टन पन्नी से बने होते हैं। फोटोलिथोग्राफी और एसिड नक़्क़ाशी प्रक्रिया दोनों तांबे की परतों के माध्यम से 30-50 माइक्रोमीटर व्यास के छेद बनाती है; दूसरी नक़्क़ाशी प्रक्रिया इन छिद्रों को केप्टन के माध्यम से सभी तरह से फैलाती है। छोटे छिद्रों को बहुत नियमित और विमीय रूप से स्थिर बनाया जा सकता है। संचालन के लिए, 150-400 V का वोल्टेज दो तांबे की परतों में रखा जाता है, जिससे छिद्रों में बड़े विद्युत क्षेत्र बन जाते हैं। इन नियमो के तहत, उपयुक्त गैसों की उपस्थिति में, किसी भी छेद में प्रवेश करने वाला इलेक्ट्रॉन 100-1000 इलेक्ट्रॉनों वाले हिमस्खलन का निर्माण करेगा; यह जीईएम का लाभ है। चूंकि इलेक्ट्रॉन जीईएम के पीछे से बाहर निकलते हैं, पहले के बाद रखा गया दूसरा जीईएम प्रवर्धन का अतिरिक्त चरण प्रदान करेगा। कई प्रयोग मिलियन या अधिक का लाभ प्राप्त करने के लिए दोहरा या तिगुना-जीईएम स्टैक का उपयोग करते हैं।

तार कक्षों के संचालन में सामान्यतः केवल वोल्टेज सेटिंग सम्मिलित होती है: तार पर वोल्टेज बहाव क्षेत्र और प्रवर्धन क्षेत्र दोनों प्रदान करता है। जीईएम-आधारित संसूचक के लिए कई स्वतंत्र वोल्टेज समायोजन की आवश्यकता होती है: आयनीकरण बिंदु से जीईएम तक इलेक्ट्रॉनों का मार्गदर्शन करने के लिए बहाव वोल्टेज, प्रवर्धन वोल्टेज, और जीईएम निकास से रीडआउट विमान तक इलेक्ट्रॉनों का मार्गदर्शन करने के लिए निष्कर्षण/स्थानांतरण वोल्टेज बड़े बहाव क्षेत्र वाले संसूचक को समय प्रक्षेपण कक्ष के रूप में संचालित किया जा सकता है; छोटे बहाव क्षेत्र वाला संसूचक साधारण आनुपातिक काउंटर के रूप में कार्य करता है।

एक जीईएम कक्ष को समतल तल पर बिछाई गई सरल प्रवाहकीय पट्टियों द्वारा पढ़ा जा सकता है; रीडआउट प्लेन, जीईएम की ही तरह, साधारण परिपथ बोर्ड सामग्री पर साधारण लिथोग्राफी विधि से निर्मित किया जा सकता है। चूंकि रीडआउट स्ट्रिप्स प्रवर्धन प्रक्रिया में सम्मिलित नहीं हैं, इसलिए उन्हें किसी भी आकार में बनाया जा सकता है; द्वि-आयामी स्थान | 2-डी स्ट्रिप्स और ग्रिड, हेक्सागोनल पैड, रेडियल/एज़ीमुथल सेगमेंट और अन्य रीडआउट ज्यामिति संभव हैं।

उपयोग करता है

जीईएमएस का उपयोग कई प्रकार के कण भौतिकी प्रयोगों में किया गया है। उल्लेखनीय प्रारंभिक उपयोगकर्ता सीईआरएन में कम्पास प्रयोग था। जीईएम - आधारित गैस संसूचकको अंतर्राष्ट्रीय रैखिक कोलाइडर, स्टार प्रयोग और सापेक्षवादी भारी आयन कोलाइडर में फेनिक्स प्रयोग और अन्य के घटकों के लिए प्रस्तावित किया गया है। मल्टीवायर आनुपातिक कक्ष की तुलना में जीईएम के लाभों में सम्मिलित हैं: निर्माण में आसानी, क्योंकि बड़े क्षेत्र के जीईएम सिद्धांत रूप में बड़े मापदंड पर उत्पादित किए जा सकते हैं, जबकि तार कक्षों को श्रम-गहन और त्रुटि-प्रवण असेंबली की आवश्यकता होती है; जीईएम और रीडआउट पैड दोनों के लिए लचीली ज्यामिति; और सकारात्मक आयनों का दमन, जो उच्च दर पर संचालित समय-प्रक्षेपण कक्षों में क्षेत्र विकृतियों का स्रोत था। गैर-एकरूपता और शॉर्ट परिपथ सहित कई विनिर्माण कठिनाइयों ने प्रारंभिक जीईएमएस को प्रभावित किया, किंतु इन्हें काफी हद तक हल कर लिया गया है।

गैर-एकरूपता और शॉर्ट परिपथ सहित कई विनिर्माण कठिनाइयों ने प्रारंभिक जीईएम s को प्रभावित किया, लेकिन इन्हें काफी हद तक हल कर लिया गया है।

संदर्भ

  1. The Gas Detectors Development group. http://gdd.web.cern.ch/GDD/ Archived 13 December 2007 at the Wayback Machine
  2. "A GEM of a Detector". CERN Courier, 27 November 1998. http://cerncourier.com/cws/article/cern/27921