मैनिंग सूत्र: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(6 intermediate revisions by 3 users not shown)
Line 1: Line 1:
मैनिंग सूत्र या मैनिंग का समीकरण एक [[अनुभवजन्य संबंध]] है जो एक वाहिका में बहने वाले तरल के औसत वेग का अनुमान लगाता है जो तरल को पूर्ण रूप से बंद नहीं करता है, अर्थात, [[खुला चैनल प्रवाह]]। यद्यपि, इस समीकरण का उपयोग [[आंशिक रूप से पूर्ण नाली में प्रवाह|आंशिक रूप से पूर्ण वाहिका में प्रवाह]] की स्थिति में प्रवाह चर की गणना के लिए भी किया जाता है, क्योंकि उनके निकट खुले चैनल प्रवाह के जैसे एक मुक्त सतह भी होती है। तथाकथित खुले चैनलों में सभी प्रवाह [[गुरुत्वाकर्षण]] द्वारा संचालित होते हैं।
मैनिंग सूत्र या मैनिंग का समीकरण एक [[अनुभवजन्य संबंध]] है जो एक वाहिका में बहने वाले तरल के औसत वेग का अनुमान लगाता है जो तरल को पूर्ण रूप से बंद नहीं करता है, अर्थात, [[खुला चैनल प्रवाह]]। यद्यपि, इस समीकरण का उपयोग [[आंशिक रूप से पूर्ण नाली में प्रवाह|आंशिक रूप से पूर्ण वाहिका में प्रवाह]] की स्थिति में प्रवाह चर की गणना के लिए भी किया जाता है, क्योंकि उनके निकट खुले चैनल प्रवाह के जैसे एक मुक्त सतह भी होती है। तथाकथित खुले चैनलों में सभी प्रवाह [[गुरुत्वाकर्षण]] द्वारा संचालित होते हैं।


यह पहली बार 1867 में फ्रांसीसी अभियंता फिलिप गैस्पर्ड गॉकलर [fr] द्वारा प्रस्तुत किया गया था,<ref>{{citation|last=Gauckler|first =Ph. |year=1867|title= Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux|publisher= Comptes Rendues de l'Académie des Sciences|location= Paris, France|volume= Tome 64| pages= 818–822}}</ref> और बाद में 1890 में आयरिश अभियंता [[रॉबर्ट मैनिंग (इंजीनियर)|रॉबर्ट मैनिंग (अभियंता)]] द्वारा फिर से विकसित किया गया था।<ref>{{cite journal|last=Manning |first=R.|author-link=Robert Manning (engineer)|year=1891|title= खुले चैनलों और पाइपों में पानी के बहाव पर|journal= Transactions of the Institution of Civil Engineers of Ireland|volume= 20|pages= 161–207}}</ref> इस प्रकार, सूत्र को यूरोप में गॉकलर-मैनिंग सूत्र या गॉकलर-मैनिंग-स्ट्रिकलर सूत्र ({{ill|अल्बर्ट स्ट्रीक्लर|fr|Albert Strickler (ingénieur)}}) के रूप में भी जाना जाता है।
यह पहली बार 1867 में फ्रांसीसी अभियंता फिलिप गैस्पर्ड गॉकलर [fr] द्वारा प्रस्तुत किया गया था,<ref>{{citation|last=Gauckler|first =Ph. |year=1867|title= Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux|publisher= Comptes Rendues de l'Académie des Sciences|location= Paris, France|volume= Tome 64| pages= 818–822}}</ref> और बाद में 1890 में आयरिश अभियंता [[रॉबर्ट मैनिंग (इंजीनियर)|रॉबर्ट मैनिंग (अभियंता]]) द्वारा फिर से विकसित किया गया था।<ref>{{cite journal|last=Manning |first=R.|author-link=Robert Manning (engineer)|year=1891|title= खुले चैनलों और पाइपों में पानी के बहाव पर|journal= Transactions of the Institution of Civil Engineers of Ireland|volume= 20|pages= 161–207}}</ref> इस प्रकार, सूत्र को यूरोप में गॉकलर-मैनिंग सूत्र या गॉकलर-मैनिंग-स्ट्रिकलर सूत्र ({{ill|अल्बर्ट स्ट्रीक्लर|fr|Albert Strickler (ingénieur)}}) के रूप में भी जाना जाता है।


गौकलर-मैनिंग सूत्र का उपयोग खुले चैनल में बहने वाले जल के औसत वेग का अनुमान लगाने के लिए किया जाता है, जहां अधिक यथार्थता के साथ प्रवाह को मापने के लिए एक [[बांध]] या [[फ्लूम|वाहिका]] का निर्माण करना व्यावहारिक नहीं है। एक खुले चैनल में बहने वाले जल की मुक्त पृष्ठ प्रोफ़ाइल को चित्रित करने के लिए मैनिंग के समीकरण का उपयोग सामान्यतः एक संख्यात्मक चरण विधि के भाग के रूप में किया जाता है, जैसे कि [[मानक चरण विधि]]।<ref>[[Ven Te Chow|Chow]] (1959) pp. 262-267</ref>
गौकलर-मैनिंग सूत्र का उपयोग खुले चैनल में बहने वाले जल के औसत वेग का अनुमान लगाने के लिए किया जाता है, जहां अधिक यथार्थता के साथ प्रवाह को मापने के लिए एक [[बांध]] या [[फ्लूम|वाहिका]] का निर्माण करना व्यावहारिक नहीं है। एक खुले चैनल में बहने वाले जल की मुक्त पृष्ठ प्रोफ़ाइल को चित्रित करने के लिए मैनिंग के समीकरण का उपयोग सामान्यतः एक संख्यात्मक चरण विधि के भाग के रूप में किया जाता है, जैसे कि [[मानक चरण विधि]]।<ref>[[Ven Te Chow|Chow]] (1959) pp. 262-267</ref>
Line 15: Line 15:
* {{mvar|R<sub>h</sub>}} द्रवचालित त्रिज्या है (L; ft, m);
* {{mvar|R<sub>h</sub>}} द्रवचालित त्रिज्या है (L; ft, m);
* {{mvar|S}} धारा प्रवणता या [[हाइड्रोलिक ढाल|द्रवचालित प्रवणता]] है, रैखिक [[हाइड्रोलिक सिर का नुकसान|द्रवचालित शीर्ष की क्षति]] (एल/एल); जब जल की गहराई स्थिर होती है तो यह [[ चैनल बिस्तर |चैनल तल]] प्रवणता के समान होता है। ({{math|''S'' {{=}} {{sfrac|''h''<sub>''f''</sub>|''L''}}}})।
* {{mvar|S}} धारा प्रवणता या [[हाइड्रोलिक ढाल|द्रवचालित प्रवणता]] है, रैखिक [[हाइड्रोलिक सिर का नुकसान|द्रवचालित शीर्ष की क्षति]] (एल/एल); जब जल की गहराई स्थिर होती है तो यह [[ चैनल बिस्तर |चैनल तल]] प्रवणता के समान होता है। ({{math|''S'' {{=}} {{sfrac|''h''<sub>''f''</sub>|''L''}}}})।
* {{mvar|k}} एसआई [[और]] अंग्रेजी इकाइयों के बीच रूपांतरण कारक है। इसे तब तक छोड़ा जा सकता है, जब तक आप {{mvar|n}} अवधि में इकाइयों को ध्यान देना और संशुद्ध करना सुनिश्चित करते हैं। यदि आप पारंपरिक एसआई इकाइयों में {{mvar|n}} को छोड़ देते हैं, तो {{mvar|k}} अंग्रेजी में बदलने के लिए मात्र आयामी विश्लेषण है। {{math|''k'' {{=}} 1}} एसआई इकाइयों के लिए, और {{math|''k'' {{=}} 1.49}} अंग्रेजी इकाइयों के लिए। (ध्यान दें: (1 मीटर)<sup>1/3</sup>/s = (3.2808399 फ़ीट)<sup>1/3</sup>/s = 1.4859 फ़ीट<sup>1/3</sup>/s)
* {{mvar|k}} एसआई [[और]] अंग्रेजी इकाइयों के बीच रूपांतरण कारक है। इसे तब तक छोड़ा जा सकता है, जब तक आप {{mvar|n}} अवधि में इकाइयों को ध्यान देना और संशुद्ध करना सुनिश्चित करते हैं। यदि आप पारंपरिक एसआई इकाइयों में {{mvar|n}} को छोड़ देते हैं, तो {{mvar|k}} अंग्रेजी में बदलने के लिए मात्र आयामी विश्लेषण है। {{math|''k'' {{=}} 1}} एसआई इकाइयों के लिए, और {{math|''k'' {{=}} 1.49}} अंग्रेजी इकाइयों के लिए। (ध्यान दें: (1 मीटर) <sup>1/3</sup>/s = (3.2808399 फ़ीट) <sup>1/3</sup>/s = 1.4859 फ़ीट<sup>1/3</sup>/s)  


टिप्पणी: {{mvar|Ks}} स्ट्राइकर = 1/{{mvar|n}} मैनिंग। गुणांक {{mvar|Ks}} स्ट्राइकर 20 (इष्टिका पत्थर और इष्टिका सतह) से 80 मीटर<sup>1/3</sup>/s (चिकना कंक्रीट और कच्चा लोहा) तक भिन्न होता है।
टिप्पणी: {{mvar|Ks}} स्ट्राइकर = 1/{{mvar|n}} मैनिंग। गुणांक {{mvar|Ks}} स्ट्राइकर 20 (इष्टिका पत्थर और इष्टिका सतह) से 80 मीटर<sup>1/3</sup>/s (चिकना कंक्रीट और कच्चा लोहा) तक भिन्न होता है।


[[निर्वहन (जल विज्ञान)]] सूत्र, {{math|''Q'' {{=}} ''A'' ''V''}}, के प्रतिस्थापन द्वारा गौकलर-मैनिंग के समीकरण को फिर से लिखने के लिए उपयोग किया जा सकता है {{mvar|V}}के लिए हल करना {{mvar|Q}} तब सीमित या वास्तविक प्रवाह वेग को जाने बिना [[ मात्रात्मक प्रवाह दर |मात्रात्मक प्रवाह दर]] (डिस्चार्ज) का अनुमान लगाने की अनुमति देता है।
[[निर्वहन (जल विज्ञान)|निर्वहन (जल विज्ञान]]) सूत्र, {{math|''Q'' {{=}} ''A'' ''V''}}, {{mvar|V}} के लिए प्रतिस्थापन द्वारा गौकलर-मैनिंग के समीकरण को फिर से लिखने के लिए उपयोग किया जा सकता है। {{mvar|Q}} के लिए हल करना तब सीमित या वास्तविक प्रवाह वेग को जाने बिना [[ मात्रात्मक प्रवाह दर |मात्रात्मक प्रवाह दर]] (विसर्जन) का अनुमान लगाने की अनुमति देता है।


[[आयामी विश्लेषण]] के उपयोग से सूत्र प्राप्त किया जा सकता है। 2000 के दशक में इस सूत्र को सैद्धांतिक रूप से विक्षोभ के फेनोमेनोलॉजिकल सिद्धांत का उपयोग करके प्राप्त किया गया था।<ref name="GioiaBombardelli2001">{{cite journal|last1=Gioia|first1=G.|last2=Bombardelli|first2=F. A.|title=रफ चैनल फ्लो में स्केलिंग और समानता|journal=Physical Review Letters|volume=88|issue=1|year=2001|issn=0031-9007|doi=10.1103/PhysRevLett.88.014501|bibcode=2002PhRvL..88a4501G|pmid=11800954|page=014501|hdl=2142/112681|hdl-access=free}}</ref><ref name="GioiaChakraborty2006">{{cite journal|last1=Gioia|first1=G.|last2=Chakraborty|first2=Pinaki|title=रफ पाइप्स में टर्बुलेंट फ्रिक्शन और फेनोमेनोलॉजिकल थ्योरी का एनर्जी स्पेक्ट्रम|journal=Physical Review Letters |volume=96 |issue=4| year=2006| issn=0031-9007 |doi=10.1103/PhysRevLett.96.044502 |url=http://www.oist.jp/sites/default/files/img//pages/units/fm/chakraborty-pinaki-pubs/gioia_Chakraborty_pipes_prl06.pdf |bibcode=2006PhRvL..96d4502G |pmid=16486828 |page=044502|arxiv=physics/0507066|hdl=2142/984|s2cid=7439208}}</ref>
[[आयामी विश्लेषण]] के उपयोग से सूत्र प्राप्त किया जा सकता है। 2000 के दशक में इस सूत्र को सैद्धांतिक रूप से विक्षोभ के परिघटनात्मक सिद्धांत का उपयोग करके प्राप्त किया गया था।<ref name="GioiaBombardelli2001">{{cite journal|last1=Gioia|first1=G.|last2=Bombardelli|first2=F. A.|title=रफ चैनल फ्लो में स्केलिंग और समानता|journal=Physical Review Letters|volume=88|issue=1|year=2001|issn=0031-9007|doi=10.1103/PhysRevLett.88.014501|bibcode=2002PhRvL..88a4501G|pmid=11800954|page=014501|hdl=2142/112681|hdl-access=free}}</ref><ref name="GioiaChakraborty2006">{{cite journal|last1=Gioia|first1=G.|last2=Chakraborty|first2=Pinaki|title=रफ पाइप्स में टर्बुलेंट फ्रिक्शन और फेनोमेनोलॉजिकल थ्योरी का एनर्जी स्पेक्ट्रम|journal=Physical Review Letters |volume=96 |issue=4| year=2006| issn=0031-9007 |doi=10.1103/PhysRevLett.96.044502 |url=http://www.oist.jp/sites/default/files/img//pages/units/fm/chakraborty-pinaki-pubs/gioia_Chakraborty_pipes_prl06.pdf |bibcode=2006PhRvL..96d4502G |pmid=16486828 |page=044502|arxiv=physics/0507066|hdl=2142/984|s2cid=7439208}}</ref>




== द्रवचालित त्रिज्या ==
== द्रवचालित त्रिज्या ==
द्रवचालित त्रिज्या एक चैनल के गुणों में से एक है जो जल के निर्वहन को नियंत्रित करता है। यह यह भी निर्धारित करता है कि चैनल कितना काम कर सकता है, उदाहरण के लिए, गतिमान तलछट में। अन्य सभी समान, एक बड़े द्रवचालित त्रिज्या वाली नदी में एक उच्च प्रवाह वेग होगा, और एक बड़ा पार अनुभागीय क्षेत्र भी होगा जिसके माध्यम से तेज जल यात्रा कर सकता है। इसका मतलब है कि द्रवचालित त्रिज्या जितनी अधिक होगी, चैनल उतना ही अधिक जल ले जा सकता है।
द्रवचालित त्रिज्या एक चैनल के गुणों में से एक है जो जल के निर्वहन को नियंत्रित करता है। यह यह भी निर्धारित करता है कि चैनल कितना कार्य कर सकता है, उदाहरण के लिए, गतिमान अवसाद में। अन्य सभी समान, एक बड़े द्रवचालित त्रिज्या वाली नदी में एक उच्च प्रवाह वेग होगा, और एक बड़ा पार अनुभागीय क्षेत्र भी होगा जिसके माध्यम से तीव्र जल यात्रा कर सकता है। इसका तात्पर्य है कि द्रवचालित त्रिज्या जितनी अधिक होगी, चैनल उतना ही अधिक जल ले जा सकता है।


'निरंतर कतरनी तनाव # सीमा पर तरल पदार्थ में कतरनी तनाव' धारणा के आधार पर,<ref name="Mehaute2013">{{cite book|last=Le Mehaute|first=Bernard |title=हाइड्रोडायनामिक्स और जल तरंगों का परिचय|url=https://books.google.com/books?id=-FPuCAAAQBAJ|year=2013|publisher=Springer|isbn=978-3-642-85567-2|page=84}}</ref> द्रवचालित त्रिज्या को प्रवाह के चैनल के क्रॉस-आंशिक क्षेत्र के अनुपात के रूप में परिभाषित किया जाता है, इसके गीले परिधि (क्रॉस-सेक्शन के परिधि का हिस्सा गीला होता है):
'सीमा पर निरंतर अपरूपण प्रतिबल' धारणा के आधार पर,<ref name="Mehaute2013">{{cite book|last=Le Mehaute|first=Bernard |title=हाइड्रोडायनामिक्स और जल तरंगों का परिचय|url=https://books.google.com/books?id=-FPuCAAAQBAJ|year=2013|publisher=Springer|isbn=978-3-642-85567-2|page=84}}</ref> द्रवचालित त्रिज्या को प्रवाह के चैनल के अनुप्रस्थ काट क्षेत्र के अनुपात के रूप में परिभाषित किया जाता है, इसके गीले परिधि (अनुप्रस्थ काट के परिधि का भाग आर्द्र होता है):


:<math>R_h = \frac{A}{P}</math>
:<math>R_h = \frac{A}{P}</math>
जहाँ:
जहाँ:
* {{mvar|R<sub>h</sub>}} द्रवचालित त्रिज्या (लंबाई) है;
* {{mvar|R<sub>h</sub>}} द्रवचालित त्रिज्या (लंबाई) है;
* {{mvar|A}} प्रवाह का क्रॉस सेक्शनल क्षेत्र है (L<sup>2</sup>);
* {{mvar|A}} प्रवाह का अनुप्रस्थ काट क्षेत्र है (L<sup>2</sup>);
* {{mvar|P}} गीला परिधि (L) है।
* {{mvar|P}} आर्द्र परिधि (L) है।
   
   
दी गई चौड़ाई के चैनलों के लिए, गहरे चैनलों के लिए द्रवचालित त्रिज्या अधिक होती है। विस्तृत आयताकार चैनलों में, द्रवचालित त्रिज्या प्रवाह की गहराई से अनुमानित होती है।
दी गई चौड़ाई के चैनलों के लिए, गहरे चैनलों के लिए द्रवचालित त्रिज्या अधिक होती है। विस्तृत आयताकार चैनलों में, द्रवचालित त्रिज्या प्रवाह की गहराई से अनुमानित होती है।


द्रवचालित त्रिज्या आधा [[हाइड्रोलिक व्यास|द्रवचालित व्यास]] नहीं है जैसा कि नाम से पता चलता है, लेकिन एक पूर्ण पाइप की स्थिति में एक चौथाई। यह पाइप, चैनल, या नदी के आकार का एक कार्य है जिसमें जल बह रहा है।
द्रवचालित त्रिज्या आधा [[हाइड्रोलिक व्यास|द्रवचालित व्यास]] नहीं है जैसा कि नाम से पता चलता है, परन्तु एक पूर्ण पाइप की स्थिति में एक चौथाई। यह पाइप, चैनल, या नदी के आकार का एक कार्य है जिसमें जल बह रहा है।


चैनल की दक्षता (जल और [[तलछट]] को स्थानांतरित करने की इसकी क्षमता) का निर्धारण करने में द्रवचालित त्रिज्या भी महत्वपूर्ण है, और तलछट परिवहन | चैनल की क्षमता का आकलन करने के लिए जल अभियंताों द्वारा उपयोग की जाने वाली संपत्तियों में से एक है।
चैनल की दक्षता (जल और [[तलछट|अवसाद]] को स्थानांतरित करने की इसकी क्षमता) का निर्धारण करने में द्रवचालित त्रिज्या भी महत्वपूर्ण है, और चैनल की क्षमता का आकलन करने के लिए जल अभियंता द्वारा उपयोग किए जाने वाले गुणों में से एक है।


==गॉकलर–मैनिंग गुणांक==
==गॉकलर–मैनिंग गुणांक==
गॉकलर-मैनिंग गुणांक, जिसे प्रायः निरूपित किया जाता है {{mvar|n}}, अनुभवजन्य रूप से व्युत्पन्न गुणांक है, जो सतह खुरदरापन और साइनोसिटी सहित कई कारकों पर निर्भर है। जब फील्ड निरीक्षण संभव नहीं है, तो निर्धारित करने का सबसे अच्छा तरीका है {{mvar|n}} जहां नदी चैनलों की तस्वीरों का उपयोग करना है {{mvar|n}} गॉकलर-मैनिंग के सूत्र का उपयोग करके निर्धारित किया गया है।
गॉकलर-मैनिंग गुणांक, जिसे प्रायः {{mvar|n}} निरूपित किया जाता है, अनुभवजन्य रूप से व्युत्पन्न गुणांक है, जो सतह रूक्षता और तरंगिलता सहित कई कारकों पर निर्भर है। जब क्षेत्र निरीक्षण संभव नहीं है, तो {{mvar|n}} निर्धारित करने का सबसे ठीक प्रकार है जहां नदी चैनलों की छायाचित्रों का उपयोग करना है जहां गौकलर-मैनिंग के सूत्र का उपयोग करके {{mvar|n}} निर्धारित किया गया है।


वीयर और ऑरिफिस में घर्षण गुणांक कम व्यक्तिपरक हैं {{mvar|n}} एक प्राकृतिक (मिट्टी, पत्थर या वनस्पति) चैनल के साथ पहुंचें। पार के अनुभागीय क्षेत्र, साथ ही {{mvar|n}}, एक प्राकृतिक चैनल के साथ अलग-अलग होने की संभावना है। तदनुसार, एक मैनिंग मानकर औसत वेग का अनुमान लगाने में अधिक त्रुटि अपेक्षित है {{mvar|n}}, प्रत्यक्ष नमूनाकरण (यानी, एक [[वर्तमान प्रवाहमापी]] के साथ) की तुलना में, या इसे वीयर, फ्लुम्स या: विक्ट: ऑरिफिस में मापने के बजाय।
बांधों और छिद्रों में घर्षण गुणांक एक प्राकृतिक (मृदा, पत्थर या वनस्पति) चैनल पहुंच के साथ {{mvar|n}} की तुलना में कम व्यक्तिपरक होते हैं। अनुप्रस्थ काट के क्षेत्र, साथ ही {{mvar|n}}, प्राकृतिक चैनल के साथ अलग-अलग होंगे। तदनुसार, प्रत्यक्ष प्रतिचयन (यानी, एक [[वर्तमान प्रवाहमापी]] के साथ) की तुलना में मैनिंग के {{mvar|n}} को मानकर औसत वेग का अनुमान लगाने में अधिक त्रुटि की अपेक्षा है, या इसे बांध, अवनालिका या छिद्रों में मापते हैं।


प्राकृतिक धाराओं में, {{mvar|n}} मान इसकी पहुंच के साथ बहुत भिन्न होते हैं, और प्रवाह के विभिन्न चरणों के साथ चैनल की दी गई पहुंच में भी भिन्न होंगे। अधिकांश शोध यह बताते हैं {{mvar|n}} अवस्था के साथ घटेगा, कम से कम बैंक भर जाने तक। ओवरबैंक {{mvar|n}} दिए गए पहुंच के मान वर्ष के समय और प्रवाह के वेग के आधार पर बहुत भिन्न होंगे। ग्रीष्मकालीन वनस्पति सामान्यतः काफी अधिक होगी {{mvar|n}} पत्तियों और मौसमी वनस्पतियों के कारण मूल्य। यद्यपि, शोध से पता चला है कि {{mvar|n}} पत्तियों के बिना झाड़ियों की तुलना में पत्तियों वाली अलग-अलग झाड़ियों के लिए मान कम हैं।<ref name="FreemanCopeland1998">{{Cite book|last1=Freeman|first1=Gary E.|last2=Copeland|first2=Ronald R.|last3=Rahmeyer|first3=William|last4=Derrick|first4=David L.|title=झाड़ियों और वुडी वनस्पतियों के लिए मैनिंग के मूल्य का क्षेत्र निर्धारण|year=1998|pages=48–53|doi=10.1061/40382(1998)7|journal=Engineering Approaches to Ecosystem Restoration|isbn=978-0-7844-0382-2}}</ref>
प्राकृतिक धाराओं में, {{mvar|n}} मान इसकी पहुंच के साथ बहुत भिन्न होते हैं, और प्रवाह के विभिन्न चरणों के साथ चैनल की दी गई पहुंच में भी भिन्न होंगे। अधिकांश शोध से पता चलता है कि चरण के साथ {{mvar|n}} घटेगा, कम से कम किनारे-पूर्ण होने तक। किसी दिए गए पहुंच के लिए किनारे के ऊपर {{mvar|n}} मान वर्ष के समय और प्रवाह की गति के आधार पर अत्यधिक भिन्न होंगे। पत्तियों और ऋतुनिष्ट वनस्पतियों के कारण ग्रीष्मकालीन वनस्पतियों का विशेष रूप से अत्यधिक अधिक {{mvar|n}} मान होगा।
यह पौधे की पत्तियों की स्ट्रीमलाइन और फ्लेक्स की क्षमता के कारण होता है क्योंकि प्रवाह उनसे गुजरता है और इस प्रकार प्रवाह के प्रतिरोध को कम करता है। उच्च वेग प्रवाह कुछ वनस्पतियों (जैसे घास और कांटे) को समतल करने का कारण बनेगा, जहाँ समान वनस्पति के माध्यम से प्रवाह का कम वेग नहीं होगा।<ref name="Hardy et al">{{citation|last1=Hardy|first1= Thomas|first2= Palavi|last2= Panja|first3= Dean |last3=Mathias|year= 2005|title= WinXSPRO, A Channel Cross Section Analyzer, User's Manual, Version 3.0. Gen. Tech. Rep. RMRS-GTR-147 |location=Fort Collins, CO|publisher= U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station| pages=94| url=http://www.fs.fed.us/rm/pubs/rmrs_gtr147.pdf}}</ref>
खुले चैनलों में, डार्सी-वीज़बाक समीकरण द्रवचालित व्यास को समतुल्य पाइप व्यास के रूप में उपयोग करके मान्य है।
मानव निर्मित खुले चैनलों में ऊर्जा हानि का अनुमान लगाने का यह एकमात्र सर्वोत्तम और ठोस तरीका है। विभिन्न कारणों (मुख्य रूप से ऐतिहासिक कारणों) के लिए, अनुभवजन्य प्रतिरोध गुणांक (जैसे चेज़ी, गॉकलर-मैनिंग-स्ट्रिकलर) थे और अभी भी उपयोग किए जाते हैं। चेज़ी गुणांक 1768 में पेश किया गया था, जबकि गॉकलर-मैनिंग गुणांक पहली बार 1865 में विकसित किया गया था, 1920-1930 के दशक में शास्त्रीय पाइप प्रवाह प्रतिरोध प्रयोगों से पहले। ऐतिहासिक रूप से चेज़ी और गॉकलर-मैनिंग गुणांक दोनों ही स्थिर और खुरदुरेपन के कार्य होने की उम्मीद थी। लेकिन अब यह ठीक रूप से मान्यता प्राप्त है कि ये गुणांक मात्र प्रवाह दर की एक सीमा के लिए स्थिर हैं। अधिकांश घर्षण गुणांक (शायद डार्सी-वीसबैक घर्षण कारक को छोड़कर) अनुमानित रूप से 100% अनुमानित हैं और वे मात्र स्थिर प्रवाह स्थितियों के तहत पूर्ण रूप से अशांत जल प्रवाह पर लागू होते हैं।


मैनिंग समीकरण के सबसे महत्वपूर्ण अनुप्रयोगों में से एक सीवर डिजाइन में इसका उपयोग है। सीवरों का निर्माण प्रायः वृत्ताकार पाइपों के रूप में किया जाता है। यह लंबे समय से स्वीकार किया गया है कि का मूल्य {{mvar|n}} आंशिक रूप से भरे हुए गोलाकार पाइपों में प्रवाह की गहराई के साथ बदलता रहता है।<ref name="Camp">{{cite journal|last=Camp|first= T. R.|year=1946|title=प्रवाह को सुविधाजनक बनाने के लिए सीवरों का डिजाइन|journal= Sewage Works Journal|volume= 18|issue=1|pages= 3–16|jstor=25030187|pmid= 21011592}}</ref> सर्कुलर पाइपों पर मैनिंग समीकरण लागू करते समय स्पष्ट समीकरणों का एक पूरा सेट उपलब्ध है जिसका उपयोग प्रवाह की गहराई और अन्य अज्ञात चर की गणना के लिए किया जा सकता है।<ref name="Akgiray">{{cite journal|last1=Akgiray|first1=Ömer|title=आंशिक रूप से भरे हुए वृत्ताकार पाइपों के लिए मैनिंग समीकरण का स्पष्ट समाधान|journal=Canadian Journal of Civil Engineering|volume=32|issue=3|year=2005|pages=490–499|issn=0315-1468|doi=10.1139/l05-001}}</ref> ये समीकरण की भिन्नता के लिए खाते हैं {{mvar|n}} शिविर द्वारा प्रस्तुत वक्रों के अनुसार प्रवाह की गहराई के साथ।
यद्यपि, शोध से पता चला है कि {{mvar|n}} पत्तियों के बिना झाड़ियों की तुलना में पत्तियों वाली अलग-अलग झाड़ियों के लिए मान कम हैं।<ref name="FreemanCopeland1998">{{Cite book|last1=Freeman|first1=Gary E.|last2=Copeland|first2=Ronald R.|last3=Rahmeyer|first3=William|last4=Derrick|first4=David L.|title=झाड़ियों और वुडी वनस्पतियों के लिए मैनिंग के मूल्य का क्षेत्र निर्धारण|year=1998|pages=48–53|doi=10.1061/40382(1998)7|journal=Engineering Approaches to Ecosystem Restoration|isbn=978-0-7844-0382-2}}</ref> यह पौधे की पत्तियों की धारारेखी और नम्य की क्षमता के कारण होता है क्योंकि प्रवाह उनसे गुजरता है और इस प्रकार प्रवाह के प्रतिरोध को कम करता है। उच्च वेग प्रवाह कुछ वनस्पतियों (जैसे घास और कांटे) को समतल करने का कारण बनेगा, जहाँ समान वनस्पति के माध्यम से प्रवाह का कम वेग नहीं होगा।<ref name="Hardy et al">{{citation|last1=Hardy|first1= Thomas|first2= Palavi|last2= Panja|first3= Dean |last3=Mathias|year= 2005|title= WinXSPRO, A Channel Cross Section Analyzer, User's Manual, Version 3.0. Gen. Tech. Rep. RMRS-GTR-147 |location=Fort Collins, CO|publisher= U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station| pages=94| url=http://www.fs.fed.us/rm/pubs/rmrs_gtr147.pdf}}</ref>
 
खुले चैनलों में, डार्सी-वीज़बाक समीकरण द्रवचालित व्यास को समतुल्य पाइप व्यास के रूप में उपयोग करके मान्य है। मानव निर्मित खुले चैनलों में ऊर्जा हानि का अनुमान लगाने का यह एकमात्र सर्वोत्तम और ठोस विधि है। विभिन्न कारणों (मुख्य रूप से ऐतिहासिक कारणों) के लिए, अनुभवजन्य प्रतिरोध गुणांक (जैसे चेज़ी, गॉकलर-मैनिंग-स्ट्रिकलर) थे और अभी भी उपयोग किए जाते हैं। चेज़ी गुणांक 1768 में प्रस्तुत किया गया था, जबकि गॉकलर-मैनिंग गुणांक पहली बार 1865 में विकसित किया गया था, 1920-1930 के दशक में शास्त्रीय पाइप प्रवाह प्रतिरोध प्रयोगों से पूर्व। ऐतिहासिक रूप से चेज़ी और गॉकलर-मैनिंग गुणांक दोनों ही स्थिर और खुरदुरेपन के कार्य होने की अपेक्षा थी। परन्तु अब यह ठीक रूप से मान्यता प्राप्त है कि ये गुणांक मात्र प्रवाह दर की एक सीमा के लिए स्थिर हैं। अधिकांश घर्षण गुणांक (संभवतः डार्सी-वीसबैक घर्षण कारक को छोड़कर) अनुमानित रूप से 100% अनुमानित हैं और वे मात्र स्थिर प्रवाह स्थितियों के अंतर्गत पूर्ण रूप से अशांत जल प्रवाह पर लागू होते हैं।
 
मैनिंग समीकरण के सबसे महत्वपूर्ण अनुप्रयोगों में से एक सीवर डिजाइन में इसका उपयोग है। सीवरों का निर्माण प्रायः वृत्ताकार पाइपों के रूप में किया जाता है। यह लंबे समय से स्वीकार किया गया है कि {{mvar|n}} का मान आंशिक रूप से भरे हुए गोलाकार पाइपों में प्रवाह की गहराई के साथ बदलता रहता है।<ref name="Camp">{{cite journal|last=Camp|first= T. R.|year=1946|title=प्रवाह को सुविधाजनक बनाने के लिए सीवरों का डिजाइन|journal= Sewage Works Journal|volume= 18|issue=1|pages= 3–16|jstor=25030187|pmid= 21011592}}</ref> परिपत्रक पाइपों पर मैनिंग समीकरण लागू करते समय स्पष्ट समीकरणों का एक पूर्ण समूह उपलब्ध है जिसका उपयोग प्रवाह की गहराई और अन्य अज्ञात चर की गणना के लिए किया जा सकता है।<ref name="Akgiray">{{cite journal|last1=Akgiray|first1=Ömer|title=आंशिक रूप से भरे हुए वृत्ताकार पाइपों के लिए मैनिंग समीकरण का स्पष्ट समाधान|journal=Canadian Journal of Civil Engineering|volume=32|issue=3|year=2005|pages=490–499|issn=0315-1468|doi=10.1139/l05-001}}</ref> ये समीकरण शिविर द्वारा प्रस्तुत वक्रों के अनुसार प्रवाह की गहराई के साथ {{mvar|n}} की भिन्नता के लिए खाते हैं।


== प्रवाह सूत्रों के लेखक ==
== प्रवाह सूत्रों के लेखक ==
*[[अल्बर्ट ब्राह्म्स]] (1692-1758)
*[[अल्बर्ट ब्राह्म्स]] (1692-1758)  
* एंटोनी डी चेज़ी (1718–1798)
* एंटोनी डी चेज़ी (1718–1798)  
* [[हेनरी डार्सी]] (1803-1858)
* [[हेनरी डार्सी]] (1803-1858)  
* [[जूलियस लुडविग वीसबैक]] (1806-1871)
* [[जूलियस लुडविग वीसबैक]] (1806-1871)  
*{{ill|Philippe Gaspard Gauckler|fr}} (1826-1905)
*{{ill|फिलिप गैसपार्ड गॉकलर|fr}} (1826-1905)  
*रॉबर्ट मैनिंग (अभियंता) (1816–1897)
*रॉबर्ट मैनिंग (अभियंता) (1816–1897)  
*विलियम रुडोल्फ कुटर (1818-1888)
*विलियम रुडोल्फ कुटर (1818-1888)  
*[[हेनरी बाज़िन]] (1843-1917)
*[[हेनरी बाज़िन]] (1843-1917)  
* [[लुडविग प्रांटल]] (1875-1953)
* [[लुडविग प्रांटल]] (1875-1953)  
*[[पॉल रिचर्ड हेनरिक ब्लेज़]] (1883-1970)
*[[पॉल रिचर्ड हेनरिक ब्लेज़]] (1883-1970)  
*{{ill|Albert Strickler|fr|Albert Strickler (ingénieur)}} (1887-1963)
*{{ill|अल्बर्ट स्ट्रीक्लर|fr|Albert Strickler (ingénieur)}} (1887-1963)  
* सिरिल फ्रैंक कोलब्रुक (1910-1997)
* सिरिल फ्रैंक कोलब्रुक (1910-1997)  


== यह भी देखें ==
== यह भी देखें ==
Line 93: Line 94:
*[http://www.fsl.orst.edu/geowater/FX3/help/8_Hydraulic_Reference/Manning_Equation_Flow_Generator.htm Interactive demo of Manning's equation]
*[http://www.fsl.orst.edu/geowater/FX3/help/8_Hydraulic_Reference/Manning_Equation_Flow_Generator.htm Interactive demo of Manning's equation]
{{Hydraulics}}
{{Hydraulics}}
[[Category: द्रव गतिविज्ञान]] [[Category: जल विज्ञान]] [[Category: पाइपलाइन]] [[Category: हाइड्रोलिक इंजीनियरिंग]] [[Category: सेडीमेंटोलोजी]] [[Category: भू-आकृति विज्ञान]]


[[Category: Machine Translated Page]]
[[Category:CS1]]
[[Category:Collapse templates]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Navigational boxes| ]]
[[Category:Navigational boxes without horizontal lists]]
[[Category:Pages with script errors]]
[[Category:Sidebars with styles needing conversion]]
[[Category:Template documentation pages|Documentation/doc]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates generating microformats]]
[[Category:Templates that are not mobile friendly]]
[[Category:Templates using TemplateData]]
[[Category:Webarchive template wayback links]]
[[Category:Wikipedia metatemplates]]
[[Category:जल विज्ञान]]
[[Category:द्रव गतिविज्ञान]]
[[Category:पाइपलाइन]]
[[Category:भू-आकृति विज्ञान]]
[[Category:सेडीमेंटोलोजी]]
[[Category:हाइड्रोलिक इंजीनियरिंग]]

Latest revision as of 16:02, 27 April 2023

मैनिंग सूत्र या मैनिंग का समीकरण एक अनुभवजन्य संबंध है जो एक वाहिका में बहने वाले तरल के औसत वेग का अनुमान लगाता है जो तरल को पूर्ण रूप से बंद नहीं करता है, अर्थात, खुला चैनल प्रवाह। यद्यपि, इस समीकरण का उपयोग आंशिक रूप से पूर्ण वाहिका में प्रवाह की स्थिति में प्रवाह चर की गणना के लिए भी किया जाता है, क्योंकि उनके निकट खुले चैनल प्रवाह के जैसे एक मुक्त सतह भी होती है। तथाकथित खुले चैनलों में सभी प्रवाह गुरुत्वाकर्षण द्वारा संचालित होते हैं।

यह पहली बार 1867 में फ्रांसीसी अभियंता फिलिप गैस्पर्ड गॉकलर [fr] द्वारा प्रस्तुत किया गया था,[1] और बाद में 1890 में आयरिश अभियंता रॉबर्ट मैनिंग (अभियंता) द्वारा फिर से विकसित किया गया था।[2] इस प्रकार, सूत्र को यूरोप में गॉकलर-मैनिंग सूत्र या गॉकलर-मैनिंग-स्ट्रिकलर सूत्र (अल्बर्ट स्ट्रीक्लर [fr]) के रूप में भी जाना जाता है।

गौकलर-मैनिंग सूत्र का उपयोग खुले चैनल में बहने वाले जल के औसत वेग का अनुमान लगाने के लिए किया जाता है, जहां अधिक यथार्थता के साथ प्रवाह को मापने के लिए एक बांध या वाहिका का निर्माण करना व्यावहारिक नहीं है। एक खुले चैनल में बहने वाले जल की मुक्त पृष्ठ प्रोफ़ाइल को चित्रित करने के लिए मैनिंग के समीकरण का उपयोग सामान्यतः एक संख्यात्मक चरण विधि के भाग के रूप में किया जाता है, जैसे कि मानक चरण विधि[3]


सूत्रीकरण

गॉकलर-मैनिंग सूत्र कहता है:

जहाँ:

  • V अनुप्रस्थ-अनुभागीय औसत वेग है (लंबाई/समय; फीट/सेकंड, मी/से);
  • n गौकलर-मैनिंग गुणांक है। n की इकाइयाँ प्रायः छोड़ दी जाती हैं, यद्यपि, n आयामहीन नहीं है, इसकी इकाइयाँ हैं: (T/[L1/3]; s/[ft1/3]; s/[m1/3])।
  • Rh द्रवचालित त्रिज्या है (L; ft, m);
  • S धारा प्रवणता या द्रवचालित प्रवणता है, रैखिक द्रवचालित शीर्ष की क्षति (एल/एल); जब जल की गहराई स्थिर होती है तो यह चैनल तल प्रवणता के समान होता है। (S = hf/L)।
  • k एसआई और अंग्रेजी इकाइयों के बीच रूपांतरण कारक है। इसे तब तक छोड़ा जा सकता है, जब तक आप n अवधि में इकाइयों को ध्यान देना और संशुद्ध करना सुनिश्चित करते हैं। यदि आप पारंपरिक एसआई इकाइयों में n को छोड़ देते हैं, तो k अंग्रेजी में बदलने के लिए मात्र आयामी विश्लेषण है। k = 1 एसआई इकाइयों के लिए, और k = 1.49 अंग्रेजी इकाइयों के लिए। (ध्यान दें: (1 मीटर) 1/3/s = (3.2808399 फ़ीट) 1/3/s = 1.4859 फ़ीट1/3/s)

टिप्पणी: Ks स्ट्राइकर = 1/n मैनिंग। गुणांक Ks स्ट्राइकर 20 (इष्टिका पत्थर और इष्टिका सतह) से 80 मीटर1/3/s (चिकना कंक्रीट और कच्चा लोहा) तक भिन्न होता है।

निर्वहन (जल विज्ञान) सूत्र, Q = A V, V के लिए प्रतिस्थापन द्वारा गौकलर-मैनिंग के समीकरण को फिर से लिखने के लिए उपयोग किया जा सकता है। Q के लिए हल करना तब सीमित या वास्तविक प्रवाह वेग को जाने बिना मात्रात्मक प्रवाह दर (विसर्जन) का अनुमान लगाने की अनुमति देता है।

आयामी विश्लेषण के उपयोग से सूत्र प्राप्त किया जा सकता है। 2000 के दशक में इस सूत्र को सैद्धांतिक रूप से विक्षोभ के परिघटनात्मक सिद्धांत का उपयोग करके प्राप्त किया गया था।[4][5]


द्रवचालित त्रिज्या

द्रवचालित त्रिज्या एक चैनल के गुणों में से एक है जो जल के निर्वहन को नियंत्रित करता है। यह यह भी निर्धारित करता है कि चैनल कितना कार्य कर सकता है, उदाहरण के लिए, गतिमान अवसाद में। अन्य सभी समान, एक बड़े द्रवचालित त्रिज्या वाली नदी में एक उच्च प्रवाह वेग होगा, और एक बड़ा पार अनुभागीय क्षेत्र भी होगा जिसके माध्यम से तीव्र जल यात्रा कर सकता है। इसका तात्पर्य है कि द्रवचालित त्रिज्या जितनी अधिक होगी, चैनल उतना ही अधिक जल ले जा सकता है।

'सीमा पर निरंतर अपरूपण प्रतिबल' धारणा के आधार पर,[6] द्रवचालित त्रिज्या को प्रवाह के चैनल के अनुप्रस्थ काट क्षेत्र के अनुपात के रूप में परिभाषित किया जाता है, इसके गीले परिधि (अनुप्रस्थ काट के परिधि का भाग आर्द्र होता है):

जहाँ:

  • Rh द्रवचालित त्रिज्या (लंबाई) है;
  • A प्रवाह का अनुप्रस्थ काट क्षेत्र है (L2);
  • P आर्द्र परिधि (L) है।

दी गई चौड़ाई के चैनलों के लिए, गहरे चैनलों के लिए द्रवचालित त्रिज्या अधिक होती है। विस्तृत आयताकार चैनलों में, द्रवचालित त्रिज्या प्रवाह की गहराई से अनुमानित होती है।

द्रवचालित त्रिज्या आधा द्रवचालित व्यास नहीं है जैसा कि नाम से पता चलता है, परन्तु एक पूर्ण पाइप की स्थिति में एक चौथाई। यह पाइप, चैनल, या नदी के आकार का एक कार्य है जिसमें जल बह रहा है।

चैनल की दक्षता (जल और अवसाद को स्थानांतरित करने की इसकी क्षमता) का निर्धारण करने में द्रवचालित त्रिज्या भी महत्वपूर्ण है, और चैनल की क्षमता का आकलन करने के लिए जल अभियंता द्वारा उपयोग किए जाने वाले गुणों में से एक है।

गॉकलर–मैनिंग गुणांक

गॉकलर-मैनिंग गुणांक, जिसे प्रायः n निरूपित किया जाता है, अनुभवजन्य रूप से व्युत्पन्न गुणांक है, जो सतह रूक्षता और तरंगिलता सहित कई कारकों पर निर्भर है। जब क्षेत्र निरीक्षण संभव नहीं है, तो n निर्धारित करने का सबसे ठीक प्रकार है जहां नदी चैनलों की छायाचित्रों का उपयोग करना है जहां गौकलर-मैनिंग के सूत्र का उपयोग करके n निर्धारित किया गया है।

बांधों और छिद्रों में घर्षण गुणांक एक प्राकृतिक (मृदा, पत्थर या वनस्पति) चैनल पहुंच के साथ n की तुलना में कम व्यक्तिपरक होते हैं। अनुप्रस्थ काट के क्षेत्र, साथ ही n, प्राकृतिक चैनल के साथ अलग-अलग होंगे। तदनुसार, प्रत्यक्ष प्रतिचयन (यानी, एक वर्तमान प्रवाहमापी के साथ) की तुलना में मैनिंग के n को मानकर औसत वेग का अनुमान लगाने में अधिक त्रुटि की अपेक्षा है, या इसे बांध, अवनालिका या छिद्रों में मापते हैं।

प्राकृतिक धाराओं में, n मान इसकी पहुंच के साथ बहुत भिन्न होते हैं, और प्रवाह के विभिन्न चरणों के साथ चैनल की दी गई पहुंच में भी भिन्न होंगे। अधिकांश शोध से पता चलता है कि चरण के साथ n घटेगा, कम से कम किनारे-पूर्ण होने तक। किसी दिए गए पहुंच के लिए किनारे के ऊपर n मान वर्ष के समय और प्रवाह की गति के आधार पर अत्यधिक भिन्न होंगे। पत्तियों और ऋतुनिष्ट वनस्पतियों के कारण ग्रीष्मकालीन वनस्पतियों का विशेष रूप से अत्यधिक अधिक n मान होगा।

यद्यपि, शोध से पता चला है कि n पत्तियों के बिना झाड़ियों की तुलना में पत्तियों वाली अलग-अलग झाड़ियों के लिए मान कम हैं।[7] यह पौधे की पत्तियों की धारारेखी और नम्य की क्षमता के कारण होता है क्योंकि प्रवाह उनसे गुजरता है और इस प्रकार प्रवाह के प्रतिरोध को कम करता है। उच्च वेग प्रवाह कुछ वनस्पतियों (जैसे घास और कांटे) को समतल करने का कारण बनेगा, जहाँ समान वनस्पति के माध्यम से प्रवाह का कम वेग नहीं होगा।[8]

खुले चैनलों में, डार्सी-वीज़बाक समीकरण द्रवचालित व्यास को समतुल्य पाइप व्यास के रूप में उपयोग करके मान्य है। मानव निर्मित खुले चैनलों में ऊर्जा हानि का अनुमान लगाने का यह एकमात्र सर्वोत्तम और ठोस विधि है। विभिन्न कारणों (मुख्य रूप से ऐतिहासिक कारणों) के लिए, अनुभवजन्य प्रतिरोध गुणांक (जैसे चेज़ी, गॉकलर-मैनिंग-स्ट्रिकलर) थे और अभी भी उपयोग किए जाते हैं। चेज़ी गुणांक 1768 में प्रस्तुत किया गया था, जबकि गॉकलर-मैनिंग गुणांक पहली बार 1865 में विकसित किया गया था, 1920-1930 के दशक में शास्त्रीय पाइप प्रवाह प्रतिरोध प्रयोगों से पूर्व। ऐतिहासिक रूप से चेज़ी और गॉकलर-मैनिंग गुणांक दोनों ही स्थिर और खुरदुरेपन के कार्य होने की अपेक्षा थी। परन्तु अब यह ठीक रूप से मान्यता प्राप्त है कि ये गुणांक मात्र प्रवाह दर की एक सीमा के लिए स्थिर हैं। अधिकांश घर्षण गुणांक (संभवतः डार्सी-वीसबैक घर्षण कारक को छोड़कर) अनुमानित रूप से 100% अनुमानित हैं और वे मात्र स्थिर प्रवाह स्थितियों के अंतर्गत पूर्ण रूप से अशांत जल प्रवाह पर लागू होते हैं।

मैनिंग समीकरण के सबसे महत्वपूर्ण अनुप्रयोगों में से एक सीवर डिजाइन में इसका उपयोग है। सीवरों का निर्माण प्रायः वृत्ताकार पाइपों के रूप में किया जाता है। यह लंबे समय से स्वीकार किया गया है कि n का मान आंशिक रूप से भरे हुए गोलाकार पाइपों में प्रवाह की गहराई के साथ बदलता रहता है।[9] परिपत्रक पाइपों पर मैनिंग समीकरण लागू करते समय स्पष्ट समीकरणों का एक पूर्ण समूह उपलब्ध है जिसका उपयोग प्रवाह की गहराई और अन्य अज्ञात चर की गणना के लिए किया जा सकता है।[10] ये समीकरण शिविर द्वारा प्रस्तुत वक्रों के अनुसार प्रवाह की गहराई के साथ n की भिन्नता के लिए खाते हैं।

प्रवाह सूत्रों के लेखक

यह भी देखें

नोट्स और संदर्भ

  1. Gauckler, Ph. (1867), Etudes Théoriques et Pratiques sur l'Ecoulement et le Mouvement des Eaux, vol. Tome 64, Paris, France: Comptes Rendues de l'Académie des Sciences, pp. 818–822
  2. Manning, R. (1891). "खुले चैनलों और पाइपों में पानी के बहाव पर". Transactions of the Institution of Civil Engineers of Ireland. 20: 161–207.
  3. Chow (1959) pp. 262-267
  4. Gioia, G.; Bombardelli, F. A. (2001). "रफ चैनल फ्लो में स्केलिंग और समानता". Physical Review Letters. 88 (1): 014501. Bibcode:2002PhRvL..88a4501G. doi:10.1103/PhysRevLett.88.014501. hdl:2142/112681. ISSN 0031-9007. PMID 11800954.
  5. Gioia, G.; Chakraborty, Pinaki (2006). "रफ पाइप्स में टर्बुलेंट फ्रिक्शन और फेनोमेनोलॉजिकल थ्योरी का एनर्जी स्पेक्ट्रम" (PDF). Physical Review Letters. 96 (4): 044502. arXiv:physics/0507066. Bibcode:2006PhRvL..96d4502G. doi:10.1103/PhysRevLett.96.044502. hdl:2142/984. ISSN 0031-9007. PMID 16486828. S2CID 7439208.
  6. Le Mehaute, Bernard (2013). हाइड्रोडायनामिक्स और जल तरंगों का परिचय. Springer. p. 84. ISBN 978-3-642-85567-2.
  7. Freeman, Gary E.; Copeland, Ronald R.; Rahmeyer, William; Derrick, David L. (1998). झाड़ियों और वुडी वनस्पतियों के लिए मैनिंग के मूल्य का क्षेत्र निर्धारण. pp. 48–53. doi:10.1061/40382(1998)7. ISBN 978-0-7844-0382-2. {{cite book}}: |journal= ignored (help)
  8. Hardy, Thomas; Panja, Palavi; Mathias, Dean (2005), WinXSPRO, A Channel Cross Section Analyzer, User's Manual, Version 3.0. Gen. Tech. Rep. RMRS-GTR-147 (PDF), Fort Collins, CO: U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, p. 94
  9. Camp, T. R. (1946). "प्रवाह को सुविधाजनक बनाने के लिए सीवरों का डिजाइन". Sewage Works Journal. 18 (1): 3–16. JSTOR 25030187. PMID 21011592.
  10. Akgiray, Ömer (2005). "आंशिक रूप से भरे हुए वृत्ताकार पाइपों के लिए मैनिंग समीकरण का स्पष्ट समाधान". Canadian Journal of Civil Engineering. 32 (3): 490–499. doi:10.1139/l05-001. ISSN 0315-1468.

अग्रिम पठन


बाहरी संबंध