वेवफ्रंट: Difference between revisions
No edit summary |
No edit summary |
||
(8 intermediate revisions by 4 users not shown) | |||
Line 1: | Line 1: | ||
{{Short description|Locus of points at equal phase in a wave}} | {{Short description|Locus of points at equal phase in a wave}} | ||
भौतिकी में, समय के परिवर्ती'' तरंग [[क्षेत्र (भौतिकी)]]'' का[[ लहर | तरंगफलक]] सभी बिंदुओं (ज्यामिति) का समुच्चय बिंदु होता है, जिसमें समान'' प्रावस्था तरंगो'' के रूप में होता है।<ref>''Essential Principles of Physics'', P. M. Whelan, M. J. Hodgeson, 2nd Edition, 1978, John Murray, {{ISBN|0-7195-3382-1}}</ref> यह शब्द सामान्यतः केवल उन क्षेत्रों के लिए ही अर्थपूर्ण रूप में होता है, जो प्रत्येक बिंदु पर एक अस्थायी आवृत्ति के समय में ज्यावक्रीय रूप से भिन्न होते हैं अन्यथा प्रावस्था अच्छी तरह से परिभाषित नहीं होता है। | |||
भौतिकी में, | |||
वेवफ्रंट सामान्यतः | वेवफ्रंट सामान्यतः समय के साथ चलते हैं। आयाम (गणित) माध्यम में प्रसार वाली तरंगों के रूप में होती है, वेवफ्रंट सामान्यतः एकल बिंदु के रूप में होते हैं; वे दो आयामी माध्यम में [[वक्र]] के रूप में होते हैं और एक त्रि-आयामी एकल में [[सतह (गणित)]] के रूप में होते हैं ।[[File:Plane wave wavefronts 3D.svg|thumb|समतल तरंग के तरंगाग्र समतल (गणित) होते हैं।]] | ||
[[File:Lens and wavefronts.gif|frame|वेवफ्रंट लेंस से गुजरने के बाद आकार बदलते हैं।]]ज्यावक्रीय समतल तरंग के लिए, वेवफ्रंट्स प्रसार की दिशा के लंबवत समतल के रूप में होते है, जो उस दिशा में लहर के साथ फैलती हैं। ज्यावक्रीय गोलाकार तरंग के लिए वेवफ्रंट गोलाकार सतहें के रूप में होती हैं जो इसके साथ फैलती हैं। यदि तरंगाग्र के विभिन्न बिंदुओं पर प्रसार की गति भिन्न रूप में होती है, तो तरंगाग्र का आकार या अभिविन्यास [[अपवर्तन]] द्वारा बदल सकता है। विशेष रूप से लेंस (प्रकाशिकी) प्रकाशीय वेवफ्रंट्स के आकार को प्लानर से गोलाकार या इसके विपरीत बदल जा सकते है। | |||
[[File:Lens and wavefronts.gif|frame|वेवफ्रंट लेंस से गुजरने के बाद आकार बदलते हैं।]] | |||
[[शास्त्रीय भौतिकी|मौलिक | [[शास्त्रीय भौतिकी|मौलिक भौतिकी]] में, विवर्तन घटना को ह्यूजेंस-फ्रेस्नेल सिद्धांत द्वारा वर्णित किया गया है, जो प्रत्येक बिंदु को व्यक्तिगत गोलाकार तरंगों के संग्रह के रूप में प्रसार तरंग में व्यवहार करता है।<ref>Wireless Communications: Principles and Practice, Prentice Hall communications engineering and emerging technologies series, T. S. Rappaport, Prentice Hall, 2002 pg 126</ref> विशेषता झुकाव पैटर्न सबसे अधिक स्पष्ट रूप में होता है जब एक सुसंगतता भौतिकी स्रोत के रूप में होता है, जैसे लेजर से एक लहर एक स्लिट/एपर्चर का सामना करती है जो आकार में इसकी [[तरंग दैर्ध्य]] के तुलनीय रूप में होती है, जैसा कि सम्मिलित छवि में दिखाया गया है। यह वेवफ्रंट या समतुल्य प्रत्येक तरंगिका पर विभिन्न बिंदुओं के जोड या हस्तक्षेप तरंग प्रसार के कारण होता है, जो अलग-अलग लंबाई के पथ से पंजीकरण सतह तक यात्रा करते हैं। उदाहरण के लिए, अलग-अलग तीव्रता के एक जटिल पैटर्न को झंझरी देने वाला विवर्तन के रूप में परिणाम होते है। | ||
== सरल वेवफ्रंट और प्रसार == | == सरल वेवफ्रंट और प्रसार == | ||
मैक्सवेल के समीकरणों के साथ | मैक्सवेल के समीकरणों के साथ प्रकाशीय प्रणाली का वर्णन किया जा सकता है और रैखिक प्रवर्धक तरंगों जैसे ध्वनि या इलेक्ट्रान पुंज में भी उसी तरंग समीकरण के रूप में होते है। चूँकि, उपरोक्त सरलीकरणों को देखते हुए, ह्यूजेंस का सिद्धांत एक तरंगफ्रंट के प्रसार की भविष्यवाणी करने के लिए एक त्वरित विधि प्रदान करता है, उदाहरण के लिए [[मुक्त स्थान|मुक्त क्षेत्र]] रचना इस प्रकार है, तरंगाग्र पर प्रत्येक बिंदु को एक नया [[बिंदु स्रोत]] माना जाता है। प्रत्येक बिंदु स्रोत से कुल प्रभाव की गणना करते है और नए बिंदुओं पर परिणामी क्षेत्र की गणना की जा सकती है। संगणनात्मक कलन विधि अधिकांशतः इस दृष्टिकोण पर आधारित होते हैं। जो साधारण वेवफ्रंट के लिए विशिष्ट स्थितियों की सीधे गणना की जा सकती है। उदाहरण के लिए एक गोलाकार तरंगाग्र गोलाकार के रूप में रहता है क्योंकि तरंग की ऊर्जा सभी दिशाओं में समान रूप से प्रवाहित होती है। ऊर्जा प्रवाह की ऐसी दिशाएँ जो सदैव तरंगाग्र के लंबवत रूप में होती हैं और इस प्रकार [[किरण (प्रकाशिकी)|किरण प्रकाशिकी]] कहलाती हैं जो बहुल तरंगाग्र बनाती हैं।<ref>''University Physics – With Modern Physics'' (12th Edition), H. D. Young, R. A. Freedman (Original edition), Addison-Wesley (Pearson International), 1st Edition: 1949, 12th Edition: 2008, {{ISBN|0-321-50130-6}}, {{ISBN|978-0-321-50130-1}}</ref> | ||
[[Image:Hamiltonian Optics-Rays and Wavefronts.svg|200px|thumb|left|किरणें और लहरें]]वेवफ्रंट का सबसे सरल रूप | |||
[[Image:Hamiltonian Optics-Rays and Wavefronts.svg|200px|thumb|left|किरणें और लहरें]]वेवफ्रंट का सबसे सरल रूप समतल तरंग के रूप में होता है, जहां किरणें एक दूसरे के [[समानांतर (ज्यामिति)|समानांतर ज्यामिति]] रूप में होती हैं। इस प्रकार की तरंग से निकलने वाले प्रकाश को [[संपार्श्विक]] प्रकाश कहा जाता है। समतल तरंग फ्रंट एक बहुत बड़े गोलाकार वेवफ्रंट के सतह-खंड के लिए एक अच्छा मॉडल के रूप में होते है उदाहरण के लिए सूर्य का प्रकाश पृथ्वी पर एक गोलाकार वेवफ्रंट से टकराता है जिसकी त्रिज्या लगभग 150 मिलियन किलोमीटर (1 [[खगोलीय इकाई]]) के रूप में होती है। कई उद्देश्यों के लिए इस तरह के तरंगाग्र को पृथ्वी के व्यास की दूरियों को समतल रूप में जाना जाता है। | |||
तरंगाग्र समदैशिक माध्यम में सभी दिशाओं में प्रकाश की गति से गति करते हैं। | तरंगाग्र समदैशिक माध्यम में सभी दिशाओं में प्रकाश की गति से गति करते हैं। | ||
Line 18: | Line 16: | ||
== वेवफ्रंट विपथन == | == वेवफ्रंट विपथन == | ||
{{Main article| | {{Main article|ऑप्टिकल विपथन}} | ||
वेवफ्रंट माप या भविष्यवाणियों का उपयोग करने वाली विधियों को लेंस ऑप्टिक्स के लिए एक उन्नत दृष्टिकोण के रूप में माना जाता है, जहां लेंस की मोटाई या खामियों के कारण एकल फोकल दूरी के रूप में उपस्थित नहीं होती है। विनिर्माण कारणों से एक आदर्श लेंस में एक गोलाकार या टॉरॉयडल सतह का आकार होता है, चूंकि सैद्धांतिक रूप से आदर्श सतह एस्फेरिक लेंस से बनी होती है। और इस प्रकार प्रकाशीय प्रणाली में इस तरह की कमियां प्रकाशीय प्रणाली में विपथन कहलाती हैं। और इस प्रकार सबसे प्रसिद्ध विपथन में गोलाकार विपथन और [[कोमा (प्रकाशिकी)]] के रूप में सम्मलित होती है।<ref>''Encyclopaedia of Physics (2nd Edition)'', [[Rita G. Lerner|R.G. Lerner]], G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3</ref> | |||
चूंकि, विपथन के अधिक जटिल स्रोत हो सकते हैं जैसे कि एक बड़े टेलीस्कोप में वातावरण के अपवर्तन के सूचकांक में स्थानिक भिन्नता के कारण होते है। किसी प्रकाशीय प्रणाली में एक वांछित पूर्ण तलीय तरंगाग्र से तरंगाग्र का विचलन तरंगाग्र विपथन कहलाता है। वेवफ्रंट विपथन को सामान्यतः या तो एक नमूना छवि या द्वि-आयामी बहुपद शब्दों के संग्रह के रूप में वर्णित किया जाता है। प्रकाशीय प्रणाली में कई अनुप्रयोगों के लिए इन विपथनों को कम करना वांछनीय माना जाता है। | |||
चूंकि , विपथन के अधिक जटिल स्रोत हो सकते हैं जैसे कि एक बड़े टेलीस्कोप में वातावरण के अपवर्तन के सूचकांक में स्थानिक भिन्नता के | |||
== वेवफ्रंट सेंसर और पुनर्निर्माण | == वेवफ्रंट सेंसर और पुनर्निर्माण प्रोद्योगिकीय == | ||
[[वेवफ्रंट सेंसर]] एक उपकरण के रूप में होता है, जो प्रकाशीय प्रणाली में प्रकाशीय गुणवत्ता या इसकी कमी का वर्णन करने के लिए होता है और इस प्रकार सुसंगत सिग्नल में वेवफ्रंट विपथन का माप करता है। शैक हार्टमैन [[लेंसलेट]] सरणी का उपयोग करना एक बहुत ही सामान्य विधि के रूप में है। ऐसे कई अनुप्रयोग हैं जिनमें [[अनुकूली प्रकाशिकी|अनुकूलनीय प्रकाशिकी]], प्रकाशीय मैट्रोलोजी और यहां तक कि मानव आंखों में आंख के विपथन का माप के रूप में सम्मलित होते है। इस दृष्टिकोण में एक कमजोर लेजर स्रोत को आंख में निर्देशित किया जाता है और [[रेटिना]] से प्रतिबिंब का नमूना के रूप में संसाधित किया जाता है। | |||
शैक-हार्टमैन प्रणाली के लिए वैकल्पिक वेवफ्रंट सेंसिंग | शैक-हार्टमैन प्रणाली के लिए वैकल्पिक वेवफ्रंट सेंसिंग प्रोद्योगिकीय उभर रही हैं। प्रावस्था इमेजिंग या वक्रता संवेदन जैसी गणितीय प्रोद्योगिकीय भी वेवफ्रंट का अनुमान प्रदान करने में सक्षम रूप में होती है। ये कलन विधि विशिष्ट वेवफ्रंट ऑप्टिक्स की आवश्यकता के बिना विभिन्न फोकल समतलो पर मूल ब्राइटफील्ड छवियों से वेवफ्रंट छवियों की गणना करते हैं। जबकि शेक-हार्टमैन लेंसलेट सरणियाँ लेंसलेट सरणी के आकार के पार्श्व रिज़ॉल्यूशन के रूप में सीमित होते है और इस तरह की प्रोद्योगिकीय केवल वेवफ्रंट मापों की गणना करने के लिए उपयोग की जाने वाली डिजिटल छवियों के रिज़ॉल्यूशन द्वारा सीमित होती है। कहा जाता है कि, वे वेवफ्रंट सेंसर रैखिकता के विषय से पीड़ित हैं और इसलिए प्रावस्था माप की अवधि में मूल एसएचडब्ल्यूएफएस की तुलना में बहुत कम मजबूत होते है। | ||
प्रावस्था के सॉफ्टवेयर पुनर्निर्माण का एक अन्य अनुप्रयोग अनुकूलनीय प्रकाशिकी के उपयोग के माध्यम से दूरबीनों का नियंत्रण होता है। एक सामान्य विधि रोडियर टेस्ट के रूप में है, जिसे वेवफ्रंट वक्रता सेंसिंग भी कहा जाता है। यह अच्छा सुधार उत्पन्न करता है लेकिन प्रारंभिक बिंदु के रूप में पहले से ही अच्छी प्रणाली की जरूरत होती है। | |||
== यह भी देखें == | == यह भी देखें == | ||
* [[ह्यूजेंस-फ्रेस्नेल सिद्धांत]] | * [[ह्यूजेंस-फ्रेस्नेल सिद्धांत]] | ||
* वेवफ्रंट सेंसर | * वेवफ्रंट सेंसर के रूप में होता है | ||
* | * अनुकूलनीय प्रकाशिकी | ||
* [[विकृत दर्पण]] | * [[विकृत दर्पण]] | ||
* [[तरंग क्षेत्र संश्लेषण]] | * [[तरंग क्षेत्र संश्लेषण]] | ||
Line 43: | Line 41: | ||
==अग्रिम पठन== | ==अग्रिम पठन== | ||
=== पाठ्यपुस्तकें और किताबें === | === पाठ्यपुस्तकें और किताबें === | ||
Line 68: | Line 62: | ||
==बाहरी संबंध== | ==बाहरी संबंध== | ||
* [http://www.okotech.com/software/lightpipes/ LightPipes] – Free [[Unix]] wavefront propagation software | * [http://www.okotech.com/software/lightpipes/ LightPipes] – Free [[Unix]] wavefront propagation software | ||
[[Category: | [[Category:Articles with hatnote templates targeting a nonexistent page]] | ||
[[Category:CS1 maint]] | |||
[[Category:Created On 10/04/2023]] | [[Category:Created On 10/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] | |||
[[Category:प्रकाशिकी]] | |||
[[Category:लहर की]] |
Latest revision as of 16:12, 27 April 2023
भौतिकी में, समय के परिवर्ती तरंग क्षेत्र (भौतिकी) का तरंगफलक सभी बिंदुओं (ज्यामिति) का समुच्चय बिंदु होता है, जिसमें समान प्रावस्था तरंगो के रूप में होता है।[1] यह शब्द सामान्यतः केवल उन क्षेत्रों के लिए ही अर्थपूर्ण रूप में होता है, जो प्रत्येक बिंदु पर एक अस्थायी आवृत्ति के समय में ज्यावक्रीय रूप से भिन्न होते हैं अन्यथा प्रावस्था अच्छी तरह से परिभाषित नहीं होता है।
वेवफ्रंट सामान्यतः समय के साथ चलते हैं। आयाम (गणित) माध्यम में प्रसार वाली तरंगों के रूप में होती है, वेवफ्रंट सामान्यतः एकल बिंदु के रूप में होते हैं; वे दो आयामी माध्यम में वक्र के रूप में होते हैं और एक त्रि-आयामी एकल में सतह (गणित) के रूप में होते हैं ।
ज्यावक्रीय समतल तरंग के लिए, वेवफ्रंट्स प्रसार की दिशा के लंबवत समतल के रूप में होते है, जो उस दिशा में लहर के साथ फैलती हैं। ज्यावक्रीय गोलाकार तरंग के लिए वेवफ्रंट गोलाकार सतहें के रूप में होती हैं जो इसके साथ फैलती हैं। यदि तरंगाग्र के विभिन्न बिंदुओं पर प्रसार की गति भिन्न रूप में होती है, तो तरंगाग्र का आकार या अभिविन्यास अपवर्तन द्वारा बदल सकता है। विशेष रूप से लेंस (प्रकाशिकी) प्रकाशीय वेवफ्रंट्स के आकार को प्लानर से गोलाकार या इसके विपरीत बदल जा सकते है।
मौलिक भौतिकी में, विवर्तन घटना को ह्यूजेंस-फ्रेस्नेल सिद्धांत द्वारा वर्णित किया गया है, जो प्रत्येक बिंदु को व्यक्तिगत गोलाकार तरंगों के संग्रह के रूप में प्रसार तरंग में व्यवहार करता है।[2] विशेषता झुकाव पैटर्न सबसे अधिक स्पष्ट रूप में होता है जब एक सुसंगतता भौतिकी स्रोत के रूप में होता है, जैसे लेजर से एक लहर एक स्लिट/एपर्चर का सामना करती है जो आकार में इसकी तरंग दैर्ध्य के तुलनीय रूप में होती है, जैसा कि सम्मिलित छवि में दिखाया गया है। यह वेवफ्रंट या समतुल्य प्रत्येक तरंगिका पर विभिन्न बिंदुओं के जोड या हस्तक्षेप तरंग प्रसार के कारण होता है, जो अलग-अलग लंबाई के पथ से पंजीकरण सतह तक यात्रा करते हैं। उदाहरण के लिए, अलग-अलग तीव्रता के एक जटिल पैटर्न को झंझरी देने वाला विवर्तन के रूप में परिणाम होते है।
सरल वेवफ्रंट और प्रसार
मैक्सवेल के समीकरणों के साथ प्रकाशीय प्रणाली का वर्णन किया जा सकता है और रैखिक प्रवर्धक तरंगों जैसे ध्वनि या इलेक्ट्रान पुंज में भी उसी तरंग समीकरण के रूप में होते है। चूँकि, उपरोक्त सरलीकरणों को देखते हुए, ह्यूजेंस का सिद्धांत एक तरंगफ्रंट के प्रसार की भविष्यवाणी करने के लिए एक त्वरित विधि प्रदान करता है, उदाहरण के लिए मुक्त क्षेत्र रचना इस प्रकार है, तरंगाग्र पर प्रत्येक बिंदु को एक नया बिंदु स्रोत माना जाता है। प्रत्येक बिंदु स्रोत से कुल प्रभाव की गणना करते है और नए बिंदुओं पर परिणामी क्षेत्र की गणना की जा सकती है। संगणनात्मक कलन विधि अधिकांशतः इस दृष्टिकोण पर आधारित होते हैं। जो साधारण वेवफ्रंट के लिए विशिष्ट स्थितियों की सीधे गणना की जा सकती है। उदाहरण के लिए एक गोलाकार तरंगाग्र गोलाकार के रूप में रहता है क्योंकि तरंग की ऊर्जा सभी दिशाओं में समान रूप से प्रवाहित होती है। ऊर्जा प्रवाह की ऐसी दिशाएँ जो सदैव तरंगाग्र के लंबवत रूप में होती हैं और इस प्रकार किरण प्रकाशिकी कहलाती हैं जो बहुल तरंगाग्र बनाती हैं।[3]
वेवफ्रंट का सबसे सरल रूप समतल तरंग के रूप में होता है, जहां किरणें एक दूसरे के समानांतर ज्यामिति रूप में होती हैं। इस प्रकार की तरंग से निकलने वाले प्रकाश को संपार्श्विक प्रकाश कहा जाता है। समतल तरंग फ्रंट एक बहुत बड़े गोलाकार वेवफ्रंट के सतह-खंड के लिए एक अच्छा मॉडल के रूप में होते है उदाहरण के लिए सूर्य का प्रकाश पृथ्वी पर एक गोलाकार वेवफ्रंट से टकराता है जिसकी त्रिज्या लगभग 150 मिलियन किलोमीटर (1 खगोलीय इकाई) के रूप में होती है। कई उद्देश्यों के लिए इस तरह के तरंगाग्र को पृथ्वी के व्यास की दूरियों को समतल रूप में जाना जाता है।
तरंगाग्र समदैशिक माध्यम में सभी दिशाओं में प्रकाश की गति से गति करते हैं।
वेवफ्रंट विपथन
वेवफ्रंट माप या भविष्यवाणियों का उपयोग करने वाली विधियों को लेंस ऑप्टिक्स के लिए एक उन्नत दृष्टिकोण के रूप में माना जाता है, जहां लेंस की मोटाई या खामियों के कारण एकल फोकल दूरी के रूप में उपस्थित नहीं होती है। विनिर्माण कारणों से एक आदर्श लेंस में एक गोलाकार या टॉरॉयडल सतह का आकार होता है, चूंकि सैद्धांतिक रूप से आदर्श सतह एस्फेरिक लेंस से बनी होती है। और इस प्रकार प्रकाशीय प्रणाली में इस तरह की कमियां प्रकाशीय प्रणाली में विपथन कहलाती हैं। और इस प्रकार सबसे प्रसिद्ध विपथन में गोलाकार विपथन और कोमा (प्रकाशिकी) के रूप में सम्मलित होती है।[4]
चूंकि, विपथन के अधिक जटिल स्रोत हो सकते हैं जैसे कि एक बड़े टेलीस्कोप में वातावरण के अपवर्तन के सूचकांक में स्थानिक भिन्नता के कारण होते है। किसी प्रकाशीय प्रणाली में एक वांछित पूर्ण तलीय तरंगाग्र से तरंगाग्र का विचलन तरंगाग्र विपथन कहलाता है। वेवफ्रंट विपथन को सामान्यतः या तो एक नमूना छवि या द्वि-आयामी बहुपद शब्दों के संग्रह के रूप में वर्णित किया जाता है। प्रकाशीय प्रणाली में कई अनुप्रयोगों के लिए इन विपथनों को कम करना वांछनीय माना जाता है।
वेवफ्रंट सेंसर और पुनर्निर्माण प्रोद्योगिकीय
वेवफ्रंट सेंसर एक उपकरण के रूप में होता है, जो प्रकाशीय प्रणाली में प्रकाशीय गुणवत्ता या इसकी कमी का वर्णन करने के लिए होता है और इस प्रकार सुसंगत सिग्नल में वेवफ्रंट विपथन का माप करता है। शैक हार्टमैन लेंसलेट सरणी का उपयोग करना एक बहुत ही सामान्य विधि के रूप में है। ऐसे कई अनुप्रयोग हैं जिनमें अनुकूलनीय प्रकाशिकी, प्रकाशीय मैट्रोलोजी और यहां तक कि मानव आंखों में आंख के विपथन का माप के रूप में सम्मलित होते है। इस दृष्टिकोण में एक कमजोर लेजर स्रोत को आंख में निर्देशित किया जाता है और रेटिना से प्रतिबिंब का नमूना के रूप में संसाधित किया जाता है।
शैक-हार्टमैन प्रणाली के लिए वैकल्पिक वेवफ्रंट सेंसिंग प्रोद्योगिकीय उभर रही हैं। प्रावस्था इमेजिंग या वक्रता संवेदन जैसी गणितीय प्रोद्योगिकीय भी वेवफ्रंट का अनुमान प्रदान करने में सक्षम रूप में होती है। ये कलन विधि विशिष्ट वेवफ्रंट ऑप्टिक्स की आवश्यकता के बिना विभिन्न फोकल समतलो पर मूल ब्राइटफील्ड छवियों से वेवफ्रंट छवियों की गणना करते हैं। जबकि शेक-हार्टमैन लेंसलेट सरणियाँ लेंसलेट सरणी के आकार के पार्श्व रिज़ॉल्यूशन के रूप में सीमित होते है और इस तरह की प्रोद्योगिकीय केवल वेवफ्रंट मापों की गणना करने के लिए उपयोग की जाने वाली डिजिटल छवियों के रिज़ॉल्यूशन द्वारा सीमित होती है। कहा जाता है कि, वे वेवफ्रंट सेंसर रैखिकता के विषय से पीड़ित हैं और इसलिए प्रावस्था माप की अवधि में मूल एसएचडब्ल्यूएफएस की तुलना में बहुत कम मजबूत होते है।
प्रावस्था के सॉफ्टवेयर पुनर्निर्माण का एक अन्य अनुप्रयोग अनुकूलनीय प्रकाशिकी के उपयोग के माध्यम से दूरबीनों का नियंत्रण होता है। एक सामान्य विधि रोडियर टेस्ट के रूप में है, जिसे वेवफ्रंट वक्रता सेंसिंग भी कहा जाता है। यह अच्छा सुधार उत्पन्न करता है लेकिन प्रारंभिक बिंदु के रूप में पहले से ही अच्छी प्रणाली की जरूरत होती है।
यह भी देखें
- ह्यूजेंस-फ्रेस्नेल सिद्धांत
- वेवफ्रंट सेंसर के रूप में होता है
- अनुकूलनीय प्रकाशिकी
- विकृत दर्पण
- तरंग क्षेत्र संश्लेषण
संदर्भ
- ↑ Essential Principles of Physics, P. M. Whelan, M. J. Hodgeson, 2nd Edition, 1978, John Murray, ISBN 0-7195-3382-1
- ↑ Wireless Communications: Principles and Practice, Prentice Hall communications engineering and emerging technologies series, T. S. Rappaport, Prentice Hall, 2002 pg 126
- ↑ University Physics – With Modern Physics (12th Edition), H. D. Young, R. A. Freedman (Original edition), Addison-Wesley (Pearson International), 1st Edition: 1949, 12th Edition: 2008, ISBN 0-321-50130-6, ISBN 978-0-321-50130-1
- ↑ Encyclopaedia of Physics (2nd Edition), R.G. Lerner, G.L. Trigg, VHC publishers, 1991, ISBN (Verlagsgesellschaft) 3-527-26954-1, ISBN (VHC Inc.) 0-89573-752-3
अग्रिम पठन
पाठ्यपुस्तकें और किताबें
- कॉन्सेप्ट ऑफ़ मॉडर्न फ़िज़िक्स (चौथा संस्करण), ए. बीज़र, फ़िज़िक्स, मैकग्रा-हिल (इंटरनेशनल), 1987, ISBN 0-07-100144-1
- आधुनिक अनुप्रयोगों के साथ भौतिकी, एलएच ग्रीनबर्ग, होल्ट-सॉन्डर्स इंटरनेशनल डब्ल्यूबी सॉन्डर्स एंड कंपनी, 1978, ISBN 0-7216-4247-0
- भौतिकी के सिद्धांत, जे. बी. मैरियन, डब्ल्यू. एफ. हॉर्न्याक, होल्ट-सॉन्डर्स इंटरनेशनल सॉन्डर्स कॉलेज, 1984, ISBN 4-8337-0195-2
- इलेक्ट्रोडायनामिक्स का परिचय (तीसरा संस्करण), डीजे ग्रिफिथ्स, पियर्सन एजुकेशन, डोरलिंग किंडरस्ले, 2007, ISBN 81-7758-293-3
- लाइट एंड मैटर: इलेक्ट्रोमैग्नेटिज्म, ऑप्टिक्स, स्पेक्ट्रोस्कोपी एंड लेजर्स, वाई.बी. बैंड, जॉन विले एंड संस, 2010, ISBN 978-0-471-89931-0
- दी लाइट फैंटास्टिक - इंट्रोडक्शन टू क्लासिक एंड क्वांटम ऑप्टिक्स, आई. आर. केन्योन, ऑक्सफोर्ड यूनिवर्सिटी प्रेस, 2008, ISBN 978-0-19-856646-5
- मैकग्रा हिल एनसाइक्लोपीडिया ऑफ फिजिक्स (दूसरा संस्करण), सी. बी. पार्कर, 1994, ISBN 0-07-051400-3
- Arnold, V. I. (1990). कास्टिक और वेव मोर्चों की विलक्षणता. Mathematics and Its Applications. Vol. 62. Dordrecht: Springer Netherlands. doi:10.1007/978-94-011-3330-2. ISBN 978-1-4020-0333-2. OCLC 22509804.
पत्रिकाओं
- Arnol'd, V. I. (1983). "Особенности систем лучей" [Singularities in ray systems] (PDF). Успехи математических наук (in Russian). 38 (2(230)): 77–147. doi:10.1070/RM1983v038n02ABEH003471. S2CID 250754811 – via Russian Mathematical Surveys, 38:2 (1983), 87–176.
{{cite journal}}
: CS1 maint: unrecognized language (link) - François Roddier, Claude Roddier (April 1991). "Wavefront reconstruction using iterative Fourier transforms". Applied Optics. 30 (11): 1325–1327. Bibcode:1991ApOpt..30.1325R. doi:10.1364/AO.30.001325. ISSN 0003-6935. PMID 20700283.
- Claude Roddier, François Roddier (November 1993). "Wave-front reconstruction from defocused images and the testing of ground-based optical telescopes". Journal of the Optical Society of America A. 10 (11): 2277–2287. Bibcode:1993JOSAA..10.2277R. doi:10.1364/JOSAA.10.002277.
- Shcherbak, O. P. (1988). "Волновые фронты и группы отражений" [Wavefronts and reflection groups] (PDF). Успехи математических наук (in Russian). 43 (3(261)): 125–160. doi:10.1070/RM1988v043n03ABEH001741. S2CID 250792552 – via Russian Mathematical Surveys, 43:3 (1988), 149–194.
{{cite journal}}
: CS1 maint: unrecognized language (link) - Wavefront tip/tilt estimation from defocused images
बाहरी संबंध
- LightPipes – Free Unix wavefront propagation software