सामान्यीकृत मैक्सवेल मॉडल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Image:Weichert.svg|right|thumb|300px| मैक्सवेल-वीचर्ट प्रारूप का योजनाबद्ध]]सामान्यीकृत मैक्सवेल प्रारूप को मैक्सवेल-विचर्ट प्रारूप के रूप में भी जाना जाता है ([[जेम्स क्लर्क मैक्सवेल]] और ई विचर्ट के बाद)<ref name=Wiechert1>Wiechert, E (1889); "<!--Original spelling-->Ueber elastische Nachwirkung", Dissertation, Königsberg University, Germany</ref><ref name=Wiechert2>Wiechert, E (1893); "Gesetze der elastischen Nachwirkung für constante Temperatur", Annalen der Physik, Vol. 286, [https://doi.org/10.1002/andp.18932861011 issue 10, p. 335–348] and [https://doi.org/10.1002/andp.18932861110 issue 11, p. 546–570]</ref>) श्यानताप्रत्यस्थ के लिए रैखिक प्रारूप का सबसे सामान्य रूप है। इस प्रारूप में कई [[मैक्सवेल सामग्री|मैक्सवेल तत्व]] समानांतर में एकत्रित होते हैं। यह ध्यान में रखा जाता है कि [[आराम का समय|छूट एक बार में नहीं,]] बल्कि समय के सेट में होता है। अलग-अलग लंबाई के आणविक खंडों की उपस्थिति के कारण, छोटे वाले लंबे समय से कम योगदान देते हैं, अलग'''-अलग''' समय वितरण होता है। वीचर्ट प्रारूप वितरण को सही रूप से दर्शाने के लिए जितने आवश्यक हैं उतने स्प्रिंग-डैशपॉट मैक्सवेल तत्व होने से यह दिखाता है। दाईं ओर का आंकड़ा सामान्यीकृत वीचर्ट प्रारूप दिखाता है।<ref name=Roylance>Roylance, David (2001); "Engineering Viscoelasticity", 14-15</ref><ref name=Tschoegl>Tschoegl, Nicholas W. (1989); "The Phenomenological Theory of Linear Viscoelastic Behavior", 119-126</ref>  
[[Image:Weichert.svg|right|thumb|300px| मैक्सवेल-वीचर्ट प्रारूप का योजनाबद्ध]]सामान्यीकृत मैक्सवेल प्रारूप को मैक्सवेल-विचर्ट प्रारूप के रूप में भी जाना जाता है ([[जेम्स क्लर्क मैक्सवेल]] और ई विचर्ट के बाद)<ref name=Wiechert1>Wiechert, E (1889); "<!--Original spelling-->Ueber elastische Nachwirkung", Dissertation, Königsberg University, Germany</ref><ref name=Wiechert2>Wiechert, E (1893); "Gesetze der elastischen Nachwirkung für constante Temperatur", Annalen der Physik, Vol. 286, [https://doi.org/10.1002/andp.18932861011 issue 10, p. 335–348] and [https://doi.org/10.1002/andp.18932861110 issue 11, p. 546–570]</ref>) श्यानताप्रत्यस्थ के लिए रैखिक प्रारूप का सबसे सामान्य रूप है। इस प्रारूप में कई [[मैक्सवेल सामग्री|मैक्सवेल तत्व]] समानांतर में एकत्रित होते हैं। यह ध्यान में रखा जाता है कि [[आराम का समय|छूट एक बार में नहीं,]] बल्कि समय के समुच्चय में होता है। अलग-अलग लंबाई के आणविक खंडों की उपस्थिति के कारण, छोटे वाले लंबे समय से कम योगदान देते हैं, अलग-अलग समय वितरण होता है। वीचर्ट प्रारूप वितरण को सही रूप से दर्शाने के लिए जितने आवश्यक हैं उतने स्प्रिंग-डैशपॉट मैक्सवेल तत्व होने से यह दिखाता है। दाईं ओर का आंकड़ा सामान्यीकृत वीचर्ट प्रारूप दिखाता है।<ref name=Roylance>Roylance, David (2001); "Engineering Viscoelasticity", 14-15</ref><ref name=Tschoegl>Tschoegl, Nicholas W. (1989); "The Phenomenological Theory of Linear Viscoelastic Behavior", 119-126</ref>  




Line 5: Line 5:


=== ठोस ===
=== ठोस ===
दिया गया <math>N+1</math> मोडुली के साथ तत्व <math>E_i</math>, श्यानताप्रत्यस्थ <math>\eta_i</math>, और विश्राम का समय <math>\tau_i=\frac{\eta_i}{E_i}</math>
दिया गया <math>N+1</math> मोडुली के साथ तत्व <math>E_i</math>, श्यानताप्रत्यस्थ <math>\eta_i</math>, और छूट का समय <math>\tau_i=\frac{\eta_i}{E_i}</math>


ठोस के लिए प्रारूप का सामान्य रूप किसके द्वारा दिया गया है :
ठोस के लिए प्रारूप का सामान्य रूप किसके द्वारा दिया गया है :
Line 209: Line 209:


=== तरल पदार्थ ===
=== तरल पदार्थ ===
दिया गया <math>N+1</math> मोडुली के साथ तत्व <math>E_i</math>, श्यानताप्रत्यस्थ <math>\eta_i</math>, और विश्राम का समय <math>\tau_i=\frac{\eta_i}{E_i}</math>
दिया गया <math>N+1</math> मोडुली के साथ तत्व <math>E_i</math>, श्यानताप्रत्यस्थ <math>\eta_i</math>, और छूट का समय <math>\tau_i=\frac{\eta_i}{E_i}</math>


तरल पदार्थ के प्रारूप के लिए सामान्य रूप निम्न द्वारा दिया गया है:
तरल पदार्थ के प्रारूप के लिए सामान्य रूप निम्न द्वारा दिया गया है:
Line 436: Line 436:
==संदर्भ==
==संदर्भ==
<references/>
<references/>
[[Category: पदार्थ विज्ञान]] [[Category: गैर-न्यूटोनियन तरल पदार्थ]] [[Category: जेम्स क्लर्क मैक्सवेल]]


[[Category: Machine Translated Page]]
[[Category:Created On 24/03/2023]]
[[Category:Created On 24/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Templates Vigyan Ready]]
[[Category:गैर-न्यूटोनियन तरल पदार्थ]]
[[Category:जेम्स क्लर्क मैक्सवेल]]
[[Category:पदार्थ विज्ञान]]

Latest revision as of 16:48, 27 April 2023

मैक्सवेल-वीचर्ट प्रारूप का योजनाबद्ध

सामान्यीकृत मैक्सवेल प्रारूप को मैक्सवेल-विचर्ट प्रारूप के रूप में भी जाना जाता है (जेम्स क्लर्क मैक्सवेल और ई विचर्ट के बाद)[1][2]) श्यानताप्रत्यस्थ के लिए रैखिक प्रारूप का सबसे सामान्य रूप है। इस प्रारूप में कई मैक्सवेल तत्व समानांतर में एकत्रित होते हैं। यह ध्यान में रखा जाता है कि छूट एक बार में नहीं, बल्कि समय के समुच्चय में होता है। अलग-अलग लंबाई के आणविक खंडों की उपस्थिति के कारण, छोटे वाले लंबे समय से कम योगदान देते हैं, अलग-अलग समय वितरण होता है। वीचर्ट प्रारूप वितरण को सही रूप से दर्शाने के लिए जितने आवश्यक हैं उतने स्प्रिंग-डैशपॉट मैक्सवेल तत्व होने से यह दिखाता है। दाईं ओर का आंकड़ा सामान्यीकृत वीचर्ट प्रारूप दिखाता है।[3][4]


सामान्य प्रारूप प्रपत्र

ठोस

दिया गया मोडुली के साथ तत्व , श्यानताप्रत्यस्थ , और छूट का समय

ठोस के लिए प्रारूप का सामान्य रूप किसके द्वारा दिया गया है :

General Maxwell Solid Model (1)

This may be more easily understood by showing the model in a slightly more expanded form:

General Maxwell Solid Model (2)

उदाहरण: मानक रैखिक ठोस प्रारूप

उपरोक्त प्रारूप के साथ तत्व मानक रैखिक ठोस प्रारूप उत्पन्न करते हैं:

Standard Linear Solid Model (3)

तरल पदार्थ

दिया गया मोडुली के साथ तत्व , श्यानताप्रत्यस्थ , और छूट का समय

तरल पदार्थ के प्रारूप के लिए सामान्य रूप निम्न द्वारा दिया गया है:

General Maxwell Fluid Model (4)

This may be more easily understood by showing the model in a slightly more expanded form:

General Maxwell Fluid Model (5)

उदाहरण: तीन पैरामीटर द्रव

मानक रेखीय ठोस प्रारूप के अनुरूप प्रारूप तीन पैरामीटर द्रव है, जिसे जेफ़रीज़ प्रारूप के रूप में भी जाना जाता है:[5]

Three Parameter Maxwell Fluid Model (6)

संदर्भ

  1. Wiechert, E (1889); "Ueber elastische Nachwirkung", Dissertation, Königsberg University, Germany
  2. Wiechert, E (1893); "Gesetze der elastischen Nachwirkung für constante Temperatur", Annalen der Physik, Vol. 286, issue 10, p. 335–348 and issue 11, p. 546–570
  3. Roylance, David (2001); "Engineering Viscoelasticity", 14-15
  4. Tschoegl, Nicholas W. (1989); "The Phenomenological Theory of Linear Viscoelastic Behavior", 119-126
  5. Gutierrez-Lemini, Danton (2013). Engineering Viscoelasticity. Springer. p. 88. ISBN 9781461481393.