एक्सचेंज इंटरेक्शन: Difference between revisions
No edit summary |
|||
Line 1: | Line 1: | ||
{{Short description|Physics term; quantum mechanical effect}} | {{Short description|Physics term; quantum mechanical effect}} | ||
[[रसायन विज्ञान]] और भौतिकी में, '''एक्सचेंज इंटरेक्शन''' (विनिमय ऊर्जा और विनिमय शब्द के साथ) एक क्वांटम यांत्रिक प्रभाव है जो केवल [[समान कण|समान]] कणों के बीच होता है। कभी-कभी मौलिक बल के अनुरूप विनिमय बल कहे जाने के अतिरिक्त, यह एक वास्तविक बल नहीं होता है क्योंकि इसमें [[बल वाहक]] का अभाव होता है। | [[रसायन विज्ञान]] और भौतिकी में, '''एक्सचेंज इंटरेक्शन''' (विनिमय ऊर्जा और विनिमय शब्द के साथ) एक क्वांटम यांत्रिक प्रभाव होता है जो केवल [[समान कण|समान]] कणों के बीच होता है। कभी-कभी मौलिक बल के अनुरूप विनिमय बल कहे जाने के अतिरिक्त, यह एक वास्तविक बल नहीं होता है क्योंकि इसमें [[बल वाहक]] का अभाव होता है। | ||
प्रभाव समान कणों के तरंग फलन के कारण [[विनिमय समरूपता]] के अधीन होता है, अर्थात, दो कणों का आदान-प्रदान होने पर या तो शेष अपरिवर्तित (सममित) या बदलते संकेत (एंटीसिमेट्रिक) होते हैं। बोसोन और फ़र्मियन दोनों ही एक्सचेंज इंटरेक्शन का अनुभव कर सकते हैं। फर्मीओन के लिए, इस अंतःक्रिया को कभी-कभी पाउली प्रतिकर्षण कहा जाता है और यह [[पाउली अपवर्जन सिद्धांत]] से संबंधित है। बोसोन के लिए, एक्सचेंज इंटरेक्शन एक प्रभावी | प्रभाव समान कणों के तरंग फलन के कारण [[विनिमय समरूपता]] के अधीन होता है, अर्थात, दो कणों का आदान-प्रदान होने पर या तो शेष अपरिवर्तित (सममित) या बदलते संकेत (एंटीसिमेट्रिक) होते हैं। बोसोन और फ़र्मियन दोनों ही एक्सचेंज इंटरेक्शन का अनुभव कर सकते हैं। फर्मीओन के लिए, इस अंतःक्रिया को कभी-कभी पाउली प्रतिकर्षण कहा जाता है और यह [[पाउली अपवर्जन सिद्धांत]] से संबंधित होता है। बोसोन के लिए, एक्सचेंज इंटरेक्शन एक प्रभावी बल का रूप लेता है जो बोस-आइंस्टीन संक्षेपण के रूप में समान कणों को एक साथ पाया जाता है। | ||
जब दो या दो से अधिक अप्रभेद्य कणों के तरंग कार्य | जब दो या दो से अधिक अप्रभेद्य कणों के तरंग कार्य परस्पर-व्याप्त होते हैं तो एक्सचेंज इंटरैक्शन दूरी की अपेक्षा मूल्य को बदल देता है। यह अंतःक्रिया समान कणों (अलग-अलग कणों की तुलना में) के बीच की दूरी के अपेक्षित मूल्य ([[फर्मियन]] के लिए) को बढ़ाती है या घटाती है ([[बोसॉन]] के लिए)।<ref>[[David J. Griffiths]]: ''Introduction to Quantum Mechanics'', Second Edition, pp. 207–210</ref> अन्य परिणामों के अतिरिक्त, [[ लोह चुंबकत्व |लोह चुंबकत्व]] और पदार्थ की मात्रा के लिए एक्सचेंज इंटरैक्शन जिम्मेदार है। इसका कोई मौलिक [[शास्त्रीय यांत्रिकी|यांत्रिकी]] एनालॉग नहीं होता है। | ||
1926 में भौतिकविदों [[वर्नर हाइजेनबर्ग]]<ref>''Mehrkörperproblem und Resonanz in der Quantenmechanik'', W. Heisenberg, ''Zeitschrift für Physik'' '''38''', #6–7 (June 1926), pp. 411–426. DOI [https://dx.doi.org/10.1007/BF01397160 10.1007/BF01397160].</ref> और [[पॉल डिराक]]<ref>{{cite journal | last=Dirac | first=P. A. M. | title=क्वांटम यांत्रिकी के सिद्धांत पर| journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | publisher=The Royal Society | volume=112 | issue=762 | date=1926-10-01 | issn=1364-5021 | doi=10.1098/rspa.1926.0133 | pages=661–677|jstor=94692| bibcode=1926RSPSA.112..661D | doi-access=free }}</ref> द्वारा स्वतंत्र रूप से एक्सचेंज इंटरैक्शन प्रभाव की खोज की गई थी। | 1926 में भौतिकविदों [[वर्नर हाइजेनबर्ग]]<ref>''Mehrkörperproblem und Resonanz in der Quantenmechanik'', W. Heisenberg, ''Zeitschrift für Physik'' '''38''', #6–7 (June 1926), pp. 411–426. DOI [https://dx.doi.org/10.1007/BF01397160 10.1007/BF01397160].</ref> और [[पॉल डिराक]]<ref>{{cite journal | last=Dirac | first=P. A. M. | title=क्वांटम यांत्रिकी के सिद्धांत पर| journal=Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences | publisher=The Royal Society | volume=112 | issue=762 | date=1926-10-01 | issn=1364-5021 | doi=10.1098/rspa.1926.0133 | pages=661–677|jstor=94692| bibcode=1926RSPSA.112..661D | doi-access=free }}</ref> द्वारा स्वतंत्र रूप से एक्सचेंज इंटरैक्शन प्रभाव की खोज की गई थी। | ||
== बल | == "बल" विवरण == | ||
{{for|कणों के आदान-प्रदान द्वारा अंतःक्रियात्मक मध्यस्थता|बल वाहक}} | {{for|कणों के आदान-प्रदान द्वारा अंतःक्रियात्मक मध्यस्थता|बल वाहक}} | ||
एक्सचेंज इंटरैक्शन को कभी-कभी एक्सचेंज बल कहा जाता है। चूँकि, यह एक वास्तविक बल नहीं है और बल वाहकों के आदान-प्रदान द्वारा उत्पन्न [[विनिमय बल|विनिमय बलों]] के साथ | एक्सचेंज इंटरैक्शन को कभी-कभी एक्सचेंज बल कहा जाता है। चूँकि, यह एक वास्तविक बल नहीं है और बल वाहकों के आदान-प्रदान द्वारा उत्पन्न [[विनिमय बल|विनिमय बलों]] के साथ अलग नहीं होना चाहिए, जैसे कि फोटॉन के आदान-प्रदान से दो इलेक्ट्रॉनों के बीच उत्पन्न [[विद्युत चुम्बकीय बल]], या दो [[क्वार्क|क्वार्कों]] के बीच मजबूत बल उत्पन्न होता है। और ग्लूऑन का आदान-प्रदान करता है।<ref>[http://hyperphysics.phy-astr.gsu.edu/hbase/forces/exchg.html ''Exchange Forces''], HyperPhysics, [[Georgia State University]], accessed June 2, 2007.</ref> | ||
चूँकि कभी-कभी गलत विधि से एक बल के रूप में वर्णित किया जाता है, एक्सचेंज इंटरैक्शन अन्य बलों के विपरीत विशुद्ध रूप से क्वांटम यांत्रिक प्रभाव | चूँकि कभी-कभी गलत विधि से एक बल के रूप में वर्णित किया जाता है, एक्सचेंज इंटरैक्शन अन्य बलों के विपरीत विशुद्ध रूप से क्वांटम यांत्रिक प्रभाव डालता है। | ||
== स्थानीयकृत [[इलेक्ट्रॉन]] चुंबकीय क्षणों के बीच आदान-प्रदान == | == स्थानीयकृत [[इलेक्ट्रॉन]] चुंबकीय क्षणों के बीच आदान-प्रदान == | ||
क्वांटम यांत्रिक कणों को बोसोन या फर्मिऑन के रूप में वर्गीकृत किया | क्वांटम यांत्रिक कणों को बोसोन या फर्मिऑन के रूप में वर्गीकृत किया जाता है। क्वांटम क्षेत्र सिद्धांत के स्पिन-सांख्यिकी प्रमेय की मांग है कि आधे-[[पूर्णांक]] [[स्पिन (भौतिकी)|स्पिन]] वाले सभी कण फर्मियन के रूप में प्रस्तुत करते हैं और पूर्णांक स्पिन वाले सभी कण बोसोन के रूप में प्रस्तुत करते हैं। एक से अधिक बोसोन एक ही क्वांटम स्थिति में हो सकते हैं; चूँकि, '''पाउली अपवर्जन सिद्धांत''' द्वारा, कोई भी दो फ़र्मियन एक ही स्थिति में नहीं रह सकते हैं। चूँकि इलेक्ट्रॉनों का स्पिन 1/2 होता है, वे फ़र्मियन होते हैं। इसका मतलब यह है कि जब दो इलेक्ट्रॉनों का आदान-प्रदान किया जाता है, अर्थात स्थानिक और स्पिन निर्देशांक दोनों के संबंध में एक-दूसरे से जुड़े होते हैं, तो सिस्टम का समग्र तरंग कार्य एंटीसिमेट्रिक होना चाहिए। चूँकि, सबसे पहले, स्पिन की उपेक्षा के साथ विनिमय की व्याख्या की जाती है। | ||
=== स्थानिक निर्देशांक का आदान-प्रदान === | === स्थानिक निर्देशांक का आदान-प्रदान === | ||
हाइड्रोजन अणु जैसी प्रणाली (अर्थात दो इलेक्ट्रॉनों के साथ एक) लेते हुए, पहले इलेक्ट्रॉनों को स्वतंत्र रूप से | हाइड्रोजन अणु जैसी प्रणाली (अर्थात दो इलेक्ट्रॉनों के साथ एक) लेते हुए, पहले इलेक्ट्रॉनों को स्वतंत्र रूप से प्रस्तुत करने और स्थिति स्थान में तरंग कार्यों को लेकर प्रत्येक इलेक्ट्रॉन की स्थिति को मॉडल करने का प्रयास किया जा सकता है। <math>\Phi_a(r_1)</math> पहले इलेक्ट्रॉन के लिए और <math>\Phi_b(r_2)</math> दूसरे इलेक्ट्रॉन के लिए। हम मानते हैं कि <math>\Phi_a</math> और <math>\Phi_b</math> ओर्थोगोनल हैं, और यह कि प्रत्येक अपने इलेक्ट्रॉन की एक ऊर्जा आइजेनस्टेट से मेल खाता है। अब, स्थिति स्थान में उत्पाद तरंग कार्यों के एक एंटीसिमेट्रिक संयोजन का उपयोग करके स्थिति स्थान में समग्र प्रणाली के लिए एक तरंग फलन का निर्माण किया जा सकता है: | ||
{{NumBlk|:|<math>\Psi_{\rm A}(\vec r_1,\vec r_2)= \frac{1}{\sqrt{2}}[\Phi_a(\vec r_1) \Phi_b(\vec r_2) - \Phi_b(\vec r_1) \Phi_a(\vec r_2)]</math>|{{EquationRef|1}}}} | {{NumBlk|:|<math>\Psi_{\rm A}(\vec r_1,\vec r_2)= \frac{1}{\sqrt{2}}[\Phi_a(\vec r_1) \Phi_b(\vec r_2) - \Phi_b(\vec r_1) \Phi_a(\vec r_2)]</math>|{{EquationRef|1}}}} | ||
Line 32: | Line 32: | ||
जहाँ <math>\mathcal{H}^{(0)} = -\frac{\hbar^2}{2m}\Delta_{1}-\frac{\hbar^2}{2m}\Delta_{2}-\frac{e^2}{r_{a1}}-\frac{e^2}{r_{b2}}</math> और <math>\mathcal{H}^{(1)} = \left(\frac {e^2}{R_{ab}} + \frac {e^2}{r_{12}} - \frac {e^2}{r_{a2}} - \frac {e^2}{r_{b1}}\right)</math> | जहाँ <math>\mathcal{H}^{(0)} = -\frac{\hbar^2}{2m}\Delta_{1}-\frac{\hbar^2}{2m}\Delta_{2}-\frac{e^2}{r_{a1}}-\frac{e^2}{r_{b2}}</math> और <math>\mathcal{H}^{(1)} = \left(\frac {e^2}{R_{ab}} + \frac {e^2}{r_{12}} - \frac {e^2}{r_{a2}} - \frac {e^2}{r_{b1}}\right)</math> | ||
पहले दो पद गतिज ऊर्जा को निरूपित करते हैं, निम्नलिखित शब्द संभावित ऊर्जा से संबंधित हैं: प्रोटॉन-प्रोटोन प्रतिकर्षण (आर<sub>ab</sub>), इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण (आर<sub>12</sub>), और इलेक्ट्रॉन-प्रोटॉन | पहले दो पद गतिज ऊर्जा को निरूपित करते हैं, निम्नलिखित शब्द संभावित ऊर्जा से संबंधित हैं: प्रोटॉन-प्रोटोन प्रतिकर्षण (आर<sub>ab</sub>), इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण (आर<sub>12</sub>), और इलेक्ट्रॉन-प्रोटॉन बल (आर<sub>a1/a2/b1/b2</sub>). सभी मात्राएँ [[वास्तविक संख्या]] माना जाता है। | ||
सिस्टम ऊर्जा के लिए दो eigenvalues पाए जाते हैं: | सिस्टम ऊर्जा के लिए दो eigenvalues पाए जाते हैं: | ||
Line 49: | Line 49: | ||
=== स्पिन का समावेश === | === स्पिन का समावेश === | ||
समीकरणों (1) और (2) में सममित और विषम संयोजनों में स्पिन चर | समीकरणों (1) और (2) में सममित और विषम संयोजनों में स्पिन चर सम्मलित नहीं थे (α = स्पिन-अप; β = स्पिन-डाउन); स्पिन वेरिएबल्स के एंटीसिमेट्रिक और सममित संयोजन भी हैं: | ||
{{NumBlk|:|<math>\alpha(1) \beta(2) \pm \alpha(2) \beta(1)</math>|{{EquationRef|7}}}} | {{NumBlk|:|<math>\alpha(1) \beta(2) \pm \alpha(2) \beta(1)</math>|{{EquationRef|7}}}} | ||
Line 78: | Line 78: | ||
===विनिमय के प्रभाव=== | ===विनिमय के प्रभाव=== | ||
यदि ''J<sub>ab</sub>'' सकारात्मक है विनिमय ऊर्जा समानांतर स्पिन वाले इलेक्ट्रॉनों का समर्थन करती है; यह उन सामग्रियों में लोह चुंबकत्व का एक प्राथमिक कारण है जिसमें इलेक्ट्रॉनों को रासायनिक बंधन के हेटलर-लंदन मॉडल में स्थानीयकृत माना जाता है, लेकिन लोह चुंबकत्व के इस मॉडल की ठोस में गंभीर सीमाएँ हैं (नीचे देखें)। यदि ''J<sub>ab</sub>'' ऋणात्मक है, तो अंतःक्रिया एंटीपैरेलल स्पिन वाले इलेक्ट्रॉनों का समर्थन करती है, संभावित रूप से [[ प्रतिलौह चुंबकत्व ]]का कारण बनती है। ''J''<sub>ab</sub> का चिन्ह अनिवार्य रूप से ''J''<sub>ex</sub> के सापेक्ष आकार और के उत्पाद द्वारा निर्धारित किया जाता है और उत्पाद <math>C \mathcal{S}</math>. इस चिह्न को त्रिक और एकक | यदि ''J<sub>ab</sub>'' सकारात्मक है विनिमय ऊर्जा समानांतर स्पिन वाले इलेक्ट्रॉनों का समर्थन करती है; यह उन सामग्रियों में लोह चुंबकत्व का एक प्राथमिक कारण है जिसमें इलेक्ट्रॉनों को रासायनिक बंधन के हेटलर-लंदन मॉडल में स्थानीयकृत माना जाता है, लेकिन लोह चुंबकत्व के इस मॉडल की ठोस में गंभीर सीमाएँ हैं (नीचे देखें)। यदि ''J<sub>ab</sub>'' ऋणात्मक है, तो अंतःक्रिया एंटीपैरेलल स्पिन वाले इलेक्ट्रॉनों का समर्थन करती है, संभावित रूप से [[ प्रतिलौह चुंबकत्व ]]का कारण बनती है। ''J''<sub>ab</sub> का चिन्ह अनिवार्य रूप से ''J''<sub>ex</sub> के सापेक्ष आकार और के उत्पाद द्वारा निर्धारित किया जाता है और उत्पाद <math>C \mathcal{S}</math>. इस चिह्न को त्रिक और एकक स्थितिओं की ऊर्जाओं के बीच के अंतर के लिए व्यंजक से निकाला जा सकता है, E<sub>−</sub> - और<sub>+</sub>: | ||
{{NumBlk|:|<math>\ E_{-} - E_{+} = \frac{2(C\mathcal{S}^2 - J_{\rm ex})}{1-\mathcal{S}^4} </math>|{{EquationRef|13}}}} | {{NumBlk|:|<math>\ E_{-} - E_{+} = \frac{2(C\mathcal{S}^2 - J_{\rm ex})}{1-\mathcal{S}^4} </math>|{{EquationRef|13}}}} |
Revision as of 09:17, 25 April 2023
रसायन विज्ञान और भौतिकी में, एक्सचेंज इंटरेक्शन (विनिमय ऊर्जा और विनिमय शब्द के साथ) एक क्वांटम यांत्रिक प्रभाव होता है जो केवल समान कणों के बीच होता है। कभी-कभी मौलिक बल के अनुरूप विनिमय बल कहे जाने के अतिरिक्त, यह एक वास्तविक बल नहीं होता है क्योंकि इसमें बल वाहक का अभाव होता है।
प्रभाव समान कणों के तरंग फलन के कारण विनिमय समरूपता के अधीन होता है, अर्थात, दो कणों का आदान-प्रदान होने पर या तो शेष अपरिवर्तित (सममित) या बदलते संकेत (एंटीसिमेट्रिक) होते हैं। बोसोन और फ़र्मियन दोनों ही एक्सचेंज इंटरेक्शन का अनुभव कर सकते हैं। फर्मीओन के लिए, इस अंतःक्रिया को कभी-कभी पाउली प्रतिकर्षण कहा जाता है और यह पाउली अपवर्जन सिद्धांत से संबंधित होता है। बोसोन के लिए, एक्सचेंज इंटरेक्शन एक प्रभावी बल का रूप लेता है जो बोस-आइंस्टीन संक्षेपण के रूप में समान कणों को एक साथ पाया जाता है।
जब दो या दो से अधिक अप्रभेद्य कणों के तरंग कार्य परस्पर-व्याप्त होते हैं तो एक्सचेंज इंटरैक्शन दूरी की अपेक्षा मूल्य को बदल देता है। यह अंतःक्रिया समान कणों (अलग-अलग कणों की तुलना में) के बीच की दूरी के अपेक्षित मूल्य (फर्मियन के लिए) को बढ़ाती है या घटाती है (बोसॉन के लिए)।[1] अन्य परिणामों के अतिरिक्त, लोह चुंबकत्व और पदार्थ की मात्रा के लिए एक्सचेंज इंटरैक्शन जिम्मेदार है। इसका कोई मौलिक यांत्रिकी एनालॉग नहीं होता है।
1926 में भौतिकविदों वर्नर हाइजेनबर्ग[2] और पॉल डिराक[3] द्वारा स्वतंत्र रूप से एक्सचेंज इंटरैक्शन प्रभाव की खोज की गई थी।
"बल" विवरण
एक्सचेंज इंटरैक्शन को कभी-कभी एक्सचेंज बल कहा जाता है। चूँकि, यह एक वास्तविक बल नहीं है और बल वाहकों के आदान-प्रदान द्वारा उत्पन्न विनिमय बलों के साथ अलग नहीं होना चाहिए, जैसे कि फोटॉन के आदान-प्रदान से दो इलेक्ट्रॉनों के बीच उत्पन्न विद्युत चुम्बकीय बल, या दो क्वार्कों के बीच मजबूत बल उत्पन्न होता है। और ग्लूऑन का आदान-प्रदान करता है।[4]
चूँकि कभी-कभी गलत विधि से एक बल के रूप में वर्णित किया जाता है, एक्सचेंज इंटरैक्शन अन्य बलों के विपरीत विशुद्ध रूप से क्वांटम यांत्रिक प्रभाव डालता है।
स्थानीयकृत इलेक्ट्रॉन चुंबकीय क्षणों के बीच आदान-प्रदान
क्वांटम यांत्रिक कणों को बोसोन या फर्मिऑन के रूप में वर्गीकृत किया जाता है। क्वांटम क्षेत्र सिद्धांत के स्पिन-सांख्यिकी प्रमेय की मांग है कि आधे-पूर्णांक स्पिन वाले सभी कण फर्मियन के रूप में प्रस्तुत करते हैं और पूर्णांक स्पिन वाले सभी कण बोसोन के रूप में प्रस्तुत करते हैं। एक से अधिक बोसोन एक ही क्वांटम स्थिति में हो सकते हैं; चूँकि, पाउली अपवर्जन सिद्धांत द्वारा, कोई भी दो फ़र्मियन एक ही स्थिति में नहीं रह सकते हैं। चूँकि इलेक्ट्रॉनों का स्पिन 1/2 होता है, वे फ़र्मियन होते हैं। इसका मतलब यह है कि जब दो इलेक्ट्रॉनों का आदान-प्रदान किया जाता है, अर्थात स्थानिक और स्पिन निर्देशांक दोनों के संबंध में एक-दूसरे से जुड़े होते हैं, तो सिस्टम का समग्र तरंग कार्य एंटीसिमेट्रिक होना चाहिए। चूँकि, सबसे पहले, स्पिन की उपेक्षा के साथ विनिमय की व्याख्या की जाती है।
स्थानिक निर्देशांक का आदान-प्रदान
हाइड्रोजन अणु जैसी प्रणाली (अर्थात दो इलेक्ट्रॉनों के साथ एक) लेते हुए, पहले इलेक्ट्रॉनों को स्वतंत्र रूप से प्रस्तुत करने और स्थिति स्थान में तरंग कार्यों को लेकर प्रत्येक इलेक्ट्रॉन की स्थिति को मॉडल करने का प्रयास किया जा सकता है। पहले इलेक्ट्रॉन के लिए और दूसरे इलेक्ट्रॉन के लिए। हम मानते हैं कि और ओर्थोगोनल हैं, और यह कि प्रत्येक अपने इलेक्ट्रॉन की एक ऊर्जा आइजेनस्टेट से मेल खाता है। अब, स्थिति स्थान में उत्पाद तरंग कार्यों के एक एंटीसिमेट्रिक संयोजन का उपयोग करके स्थिति स्थान में समग्र प्रणाली के लिए एक तरंग फलन का निर्माण किया जा सकता है:
-
(1)
वैकल्पिक रूप से, हम स्थिति स्थान में उत्पाद तरंग कार्यों के सममित संयोजन का उपयोग करके समग्र स्थिति- अन्तराल तरंग फलन का निर्माण भी कर सकते हैं:
-
(2)
क्षोभ विधि द्वारा हाइड्रोजन अणु में विनिमय अन्योन्यक्रिया का उपचार, समग्र हैमिल्टनियन (क्वांटम यांत्रिकी), असंतुलित अलग हाइड्रोजन परमाणुओं के हैमिल्टनियन से बना है और क्षोभ होता है:
जहाँ और
पहले दो पद गतिज ऊर्जा को निरूपित करते हैं, निम्नलिखित शब्द संभावित ऊर्जा से संबंधित हैं: प्रोटॉन-प्रोटोन प्रतिकर्षण (आरab), इलेक्ट्रॉन-इलेक्ट्रॉन प्रतिकर्षण (आर12), और इलेक्ट्रॉन-प्रोटॉन बल (आरa1/a2/b1/b2). सभी मात्राएँ वास्तविक संख्या माना जाता है।
सिस्टम ऊर्जा के लिए दो eigenvalues पाए जाते हैं:
-
(3)
जहां ई+ स्थानिक रूप से सममित समाधान है और ई− के अनुरूप स्थानिक रूप से एंटीसिमेट्रिक समाधान है, जिसके अनुरूप है और क्रमश। परिवर्तनशील गणना समान परिणाम देती है। Eqs द्वारा दिए गए स्थान-स्थान कार्यों का उपयोग करके विकर्ण किया जा सकता है। (1) और (2)। Eq में। (3), सी टू-साइट टू-इलेक्ट्रॉन कूलम्ब इंटीग्रल है (इसे एक विशेष बिंदु पर इलेक्ट्रॉन-एक के लिए प्रतिकारक क्षमता के रूप में व्याख्या किया जा सकता है इलेक्ट्रॉन-दो द्वारा बनाए गए विद्युत क्षेत्र में संभाव्यता घनत्व के साथ अन्तराल में वितरित , [lower-alpha 1] ओवरलैप इंटीग्रल है, और Jex एक्सचेंज इंटीग्रल है, जो दो-साइट कूलम्ब इंटीग्रल के समान है लेकिन इसमें दो इलेक्ट्रॉनों का आदान-प्रदान सम्मलित है। इसकी कोई सरल भौतिक व्याख्या नहीं है, लेकिन यह पूरी तरह से विरोधी समरूपता आवश्यकता के कारण उत्पन्न होने के लिए दिखाया जा सकता है। ये अभिन्न द्वारा दिए गए हैं:
-
(4)
-
(5)
-
(6)
चूँकि हाइड्रोजन अणु में एक्सचेंज इंटीग्रल, Eq। (6), नकारात्मक है, हाइजेनबर्ग ने पहले सुझाव दिया था कि यह परमाणु कक्षीय के रेडियल विस्तार के लिए आंतरिक दूरी के कुछ महत्वपूर्ण अनुपात पर संकेत बदलता है।[5][6][7]
स्पिन का समावेश
समीकरणों (1) और (2) में सममित और विषम संयोजनों में स्पिन चर सम्मलित नहीं थे (α = स्पिन-अप; β = स्पिन-डाउन); स्पिन वेरिएबल्स के एंटीसिमेट्रिक और सममित संयोजन भी हैं:
-
(7)
समग्र तरंग फ़ंक्शन प्राप्त करने के लिए, इन स्पिन संयोजनों को Eqs के साथ युग्मित करना होगा। (1) और (2)। परिणामी समग्र तरंग फलन, जिन्हें स्पिन-ऑर्बिटल्स कहा जाता है, को स्लेटर निर्धारक के रूप में लिखा जाता है। जब कक्षीय तरंग समारोह सममित होता है तो स्पिन को सममित विरोधी और इसके विपरीत होना चाहिए। तदनुसार, उपरोक्त E+ स्थानिक रूप से सममित/स्पिन-सिंगलेट समाधान और E− से स्थानिक रूप से एंटीसिमेट्रिक/स्पिन-ट्रिपलेट समाधान से मेल खाता है।
जे. एच. वैन व्लेक ने निम्नलिखित विश्लेषण प्रस्तुत किया:[8]
- ऑर्थोगोनल ऑर्बिटल्स में दो इलेक्ट्रॉनों के बीच परस्पर क्रिया की संभावित ऊर्जा को एक मैट्रिक्स द्वारा दर्शाया जा सकता है, जिसे Eex कहते है समीकरण से। (3), इस मैट्रिक्स के चारित्रिक मान C ± Jex हैं एक मैट्रिक्स के चारित्रिक मान इसके विकर्ण तत्व होते हैं, जब यह एक विकर्ण मैट्रिक्स में परिवर्तित हो जाता है। अब, परिणामी स्पिन के परिमाण के वर्ग के विशिष्ट मान, है . मेट्रिसेस के विशिष्ट मूल्य और प्रत्येक हैं और . स्केलर उत्पाद के विशिष्ट मूल्य हैं और क्रमशः स्पिन-सिंगलेट (S = 0) और स्पिन-ट्रिपलेट (S = 1) दोनों स्थितियों के अनुरूप।
- Eq से होता है। (3) और उपरोक्त संबंध, मैट्रिक्स ईex विशेषता मान C + J देखा जाता हैex कब विशेषता मान -3/4 है (अर्थात जब S = 0; स्थानिक रूप से सममित / स्पिन-सिंगलेट स्थिति)। वैकल्पिक रूप से, इसका विशिष्ट मूल्य C - J हैex कब विशेषता मूल्य +1/4 है (अर्थात जब S = 1; स्थानिक रूप से एंटीसिमेट्रिक / स्पिन-ट्रिपल स्टेट)। इसलिए,
-
(8)
- और इसलिए,
-
(9)
- जहां स्पिन मोमेंटा के रूप में दिया जाता है और .
डिराक ने बताया कि Eq के दाईं ओर पहले दो शब्दों की उपेक्षा करके एक्सचेंज इंटरैक्शन की महत्वपूर्ण विशेषताओं को प्राथमिक विधि से प्राप्त किया जा सकता है।(9), इस प्रकार दो इलेक्ट्रॉनों पर विचार करते हुए केवल उनके स्पिन को फॉर्म की क्षमता से जोड़ा जाता है:
-
(10)
यह इस प्रकार है कि ऑर्बिटल्स Φaऔर Φbमें दो इलेक्ट्रॉनों के बीच एक्सचेंज इंटरेक्शन हैमिल्टनियन को उनके स्पिन गति के संदर्भ में लिखा जा सकता है और . पुराने साहित्य में इस बातचीत को हाइजेनबर्ग एक्सचेंज हैमिल्टनियन या हाइजेनबर्ग-डिराक हैमिल्टनियन नाम दिया गया है:
-
(11)
Jab Eq में Jex लेबल वाली मात्रा के समान नहीं होती है। (6)। बल्कि, Jab, जिसे विनिमय स्थिरांक कहा जाता है, Eqs का एक कार्य है। (4), (5), और (6), अर्थात्,
-
(12)
चूंकि, ऑर्थोगोनल ऑर्बिटल्स के साथ (जिसमें = 0), उदाहरण के लिए एक ही परमाणु में विभिन्न ऑर्बिटल्स के साथ, Jab = Jex
विनिमय के प्रभाव
यदि Jab सकारात्मक है विनिमय ऊर्जा समानांतर स्पिन वाले इलेक्ट्रॉनों का समर्थन करती है; यह उन सामग्रियों में लोह चुंबकत्व का एक प्राथमिक कारण है जिसमें इलेक्ट्रॉनों को रासायनिक बंधन के हेटलर-लंदन मॉडल में स्थानीयकृत माना जाता है, लेकिन लोह चुंबकत्व के इस मॉडल की ठोस में गंभीर सीमाएँ हैं (नीचे देखें)। यदि Jab ऋणात्मक है, तो अंतःक्रिया एंटीपैरेलल स्पिन वाले इलेक्ट्रॉनों का समर्थन करती है, संभावित रूप से प्रतिलौह चुंबकत्व का कारण बनती है। Jab का चिन्ह अनिवार्य रूप से Jex के सापेक्ष आकार और के उत्पाद द्वारा निर्धारित किया जाता है और उत्पाद . इस चिह्न को त्रिक और एकक स्थितिओं की ऊर्जाओं के बीच के अंतर के लिए व्यंजक से निकाला जा सकता है, E− - और+:
-
(13)
चूँकि एक्सचेंज इंटरेक्शन के ये परिणाम प्रकृति में चुंबकीय हैं, इसका कारण नहीं है; यह मुख्य रूप से विद्युत प्रतिकर्षण और पाउली अपवर्जन सिद्धांत के कारण होता है। सामान्य तौर पर, इलेक्ट्रॉनों की एक जोड़ी (उनके इलेक्ट्रॉन चुंबकीय क्षणों के कारण) के बीच प्रत्यक्ष चुंबकीय संपर्क इस विद्युत संपर्क की तुलना में नगण्य रूप से छोटा होता है।
बड़ी आंतरिक दूरी पर आणविक प्रणालियों की गणना करने के लिए विनिमय ऊर्जा विभाजन बहुत अंतरकेंद्रक हैं। चूँकि, हाइड्रोजन आणविक आयन के लिए विश्लेषणात्मक सूत्र तैयार किए गए हैं (यहां संदर्भ देखें)।
सामान्यतः, एक्सचेंज इंटरैक्शन बहुत ही कम-रेंज वाले होते हैं, जो एक ही परमाणु (इंट्रा-एटॉमिक एक्सचेंज) या निकटतम पड़ोसी परमाणुओं (डायरेक्ट एक्सचेंज) पर ऑर्बिटल्स में इलेक्ट्रॉनों तक ही सीमित होते हैं, लेकिन मध्यस्थ परमाणुओं के माध्यम से लंबी दूरी की बातचीत हो सकती है और इसे सुपरएक्सचेंज कहा जाता है। .
सॉलिड्स में डायरेक्ट एक्सचेंज इंटरैक्शन
एक क्रिस्टल में, हाइजेनबर्ग हैमिल्टनियन का सामान्यीकरण जिसमें कई-इलेक्ट्रॉन प्रणाली के परमाणुओं के सभी (i, j) जोड़े के लिए हैमिल्टनियन एक्सचेंज पर योग लिया जाता है:।
-
(14)
1/2 कारक प्रस्तुत किया गया है क्योंकि एक ही दो परमाणुओं के बीच की अन्तःक्रिया को योग के सम्पादित में दो बार गिना जाता है। ध्यान दें कि समीकरण (14) में J विनिमय स्थिरांक Jab है न कि विनिमय समाकल ऊपर एक्सचेंज इंटीग्रल Jex अभी तक एक और मात्रा से संबंधित है, जिसे एक्सचेंज स्टिफनेस कॉन्स्टेंट (A) कहा जाता है, जो फेरोमैग्नेटिक सामग्री की विशेषता के रूप में कार्य करता है। इसका सम्बन्ध क्रिस्टल संरचना पर निर्भर है। लैटिस पैरामीटर के साथ एक साधारण घन लैटिस के लिए होता है ।
-
(15)
शरीर केंद्रित घन जालक के लिए,
-
(16)
और एक फलक केंद्रित घन जालक के लिए,
-
(17)
Eq का रूप। (14) लोह चुंबकत्व के आइसिंग मॉडल के समान है, सिवाय इसके कि ईज़िंग मॉडल में, दो स्पिन कोणीय संवेग के डॉट उत्पाद को स्केलर उत्पाद एस द्वारा प्रतिस्थापित किया जाता हैijSji. ईज़िंग मॉडल का आविष्कार 1920 में विल्हेम लेनज़ द्वारा किया गया था और 1925 में उनके डॉक्टरेट छात्र अर्नस्ट इस्सिंग द्वारा एक-आयामी स्थिति के लिए हल किया गया था। ईज़िंग मॉडल की ऊर्जा को परिभाषित किया गया है:
-
(18)
हाइजेनबर्ग हैमिल्टनियन की सीमाएं और ठोस पदार्थों में स्थानीयकृत इलेक्ट्रॉन मॉडल
चूंकि हाइजेनबर्ग हैमिल्टनियन मानते हैं कि विनिमय युग्मन में सम्मलित इलेक्ट्रॉनों को हेटलर-लंदन, या वैलेंस बांड सिद्धांत (वीबी), रासायनिक बंधन के सिद्धांत के संदर्भ में स्थानीयकृत किया गया है, यह विद्युत रूप से इन्सुलेट संकीर्ण के चुंबकीय गुणों को समझाने के लिए एक पर्याप्त मॉडल है -बैंड आयनिक और सहसंयोजक गैर-आणविक ठोस जहां बंधन की यह तस्वीर उचित है। फिर भी, गैर-आणविक ठोस पदार्थों के लिए एक्सचेंज इंटीग्रल का सैद्धांतिक मूल्यांकन जो धात्विक चालकता प्रदर्शित करता है जिसमें लोह चुंबकत्व के लिए जिम्मेदार इलेक्ट्रॉनों (जैसे लोहा, निकल और कोबाल्ट) ऐतिहासिक रूप से या तो गलत संकेत या परिमाण में बहुत छोटा है प्रयोगात्मक रूप से निर्धारित विनिमय स्थिरांक के लिए खाते में (उदाहरण के लिए टी के माध्यम से क्यूरी तापमान से अनुमान लगाया गया हैC ≈ 2⟨J⟩/3kB जहां ⟨J⟩ सभी साइटों पर एक्सचेंज इंटरैक्शन औसत है)। हाइजेनबर्ग मॉडल इस प्रकार इन सामग्रियों में देखे गए लोह चुंबकत्व की व्याख्या नहीं कर सकता है।[9] इन स्थितियों में, इलेक्ट्रॉन तरंग कार्यों के लिए एक delocalized, या हुंड-मुल्लिकेन-ब्लोच (आणविक कक्षीय / बैंड) विवरण अधिक यथार्थवादी है। तदनुसार, लोहचुंबकत्व का स्टोनर मॉडल अधिक लागू होता है। स्टोनर मॉडल में, लोह चुंबकीय में प्रति परमाणु स्पिन-ओनली चुंबकीय आघुर्ण (बोहर मैग्नेटोन में) बहुसंख्यक स्पिन और अल्पसंख्यक स्पिन स्थितियों में प्रति परमाणु इलेक्ट्रॉनों की संख्या के बीच के अंतर से दिया जाता है। स्टोनर मॉडल इस प्रकार प्रति परमाणु स्पिन-केवल चुंबकीय क्षण के लिए गैर-अभिन्न मूल्यों की अनुमति देता है। चूँकि, लोहचुंबकत्व के साथ (जी = 2.0023 ≈ 2) प्रति परमाणु कुल स्पिन चुंबकीय क्षण | स्पिन-ओनली चुंबकीय क्षण को अधिक अनुमानित करता है। उदाहरण के लिए, 0.54 μ का शुद्ध चुंबकीय क्षणB स्टोनर मॉडल द्वारा निकेल धातु के लिए प्रति परमाणु की भविष्यवाणी की गई है, जो धातु के देखे गए संतृप्ति चुंबकीय प्रेरण, इसके घनत्व और इसके परमाणु भार के आधार पर गणना किए गए 0.61 बोह्र मैग्नेटॉन के बहुत करीब है।[10] इसके विपरीत, एक पृथक नी परमाणु (इलेक्ट्रॉन विन्यास = 3d84से2) एक क्यूबिक क्रिस्टल क्षेत्र में एक ही स्पिन के दो अयुग्मित इलेक्ट्रॉन होंगे (इसलिए, ) और इस प्रकार स्थानीय इलेक्ट्रॉन मॉडल में कुल स्पिन चुंबकीय क्षण होने की उम्मीद की जाएगी (लेकिन मापा स्पिन-ओनली मैग्नेटिक मोमेंट एक अक्ष के साथ, भौतिक अवलोकनीय, द्वारा दिया जाएगा ). सामान्यतः, वैलेंस एस और पी इलेक्ट्रॉनों को बेहतर माना जाता है, जबकि 4f इलेक्ट्रॉन स्थानीय होते हैं और 5f और 3d/4d इलेक्ट्रॉन मध्यवर्ती होते हैं, जो विशेष आंतरिक दूरी पर निर्भर करता है।[11] पदार्थों के स्थिति में जहां डेलोकलाइज्ड और स्थानीय इलेक्ट्रॉन दोनों चुंबकीय गुणों (जैसे दुर्लभ-पृथ्वी प्रणाली) में योगदान करते हैं, आरकेकेवाई इंटरैक्शन रुडरमैन-किटेल-कसुया-योसिडा (आरकेकेवाई) मॉडल वर्तमान में स्वीकृत तंत्र है।
यह भी देखें
- डबल-विनिमय तंत्र
- एक्सचेंज समरूपता
- पाउली अपवर्जन सिद्धांत
- स्लेटर निर्धारक
- सुपरएक्सचेंज
- होल्स्टीन-हेरिंग विधि
- स्पिन-एक्सचेंज इंटरैक्शन
- बहुध्रुवीय विनिमय संपर्क
- एंटीसिमेट्रिक एक्सचेंज
टिप्पणियाँ
- ↑ Not to be confused with the total spin, .
संदर्भ
- ↑ David J. Griffiths: Introduction to Quantum Mechanics, Second Edition, pp. 207–210
- ↑ Mehrkörperproblem und Resonanz in der Quantenmechanik, W. Heisenberg, Zeitschrift für Physik 38, #6–7 (June 1926), pp. 411–426. DOI 10.1007/BF01397160.
- ↑ Dirac, P. A. M. (1926-10-01). "क्वांटम यांत्रिकी के सिद्धांत पर". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. The Royal Society. 112 (762): 661–677. Bibcode:1926RSPSA.112..661D. doi:10.1098/rspa.1926.0133. ISSN 1364-5021. JSTOR 94692.
- ↑ Exchange Forces, HyperPhysics, Georgia State University, accessed June 2, 2007.
- ↑ Derivation of the Heisenberg Hamiltonian Archived 2021-10-21 at the Wayback Machine, Rebecca Hihinashvili, accessed on line October 2, 2007.
- ↑ Quantum Theory of Magnetism: Magnetic Properties of Materials, Robert M. White, 3rd rev. ed., Berlin: Springer-Verlag, 2007, section 2.2.7. ISBN 3-540-65116-0.
- ↑ The Theory of Electric and Magnetic Susceptibilities, J. H. van Vleck, London: Oxford University Press, 1932, chapter XII, section 76.
- ↑ Van Vleck, J. H.: Electric and Magnetic Susceptibilities, Oxford, Clarendon Press, p. 318 (1932).
- ↑ Stuart, R.; Marshall, W. (1960-10-15). "फेरोमैग्नेट्स में डायरेक्ट एक्सचेंज". Physical Review. American Physical Society (APS). 120 (2): 353–357. Bibcode:1960PhRv..120..353S. doi:10.1103/physrev.120.353. ISSN 0031-899X.
- ↑ Elliot, S. R.: The Physics and Chemistry of Solids, John Wiley & Sons, New York, p. 615 (1998)
- ↑ J. B. Goodenough: Magnetism and the Chemical Bond, Interscience Publishers, New York, pp. 5–17 (1966).
बाहरी संबंध
- Exchange Mechanisms in E. Pavarini, E. Koch, F. Anders, and M. Jarrell: Correlated Electrons: From Models to Materials, Jülich 2012, ISBN 978-3-89336-796-2
- Exchange Interaction and Energy
- Exchange Interaction and Exchange Anisotropy Archived 2015-03-30 at the Wayback Machine