न्यूनतम प्रतिरूप के तीन मामले हैं जो दो न्यूनतम प्रतिरूप के उत्पाद हैं।<ref>T. Quella, I. Runkel, G. Watts, "Reflection and Transmission for Conformal Defects", [https://arxiv.org/abs/hep-th/0611296 arxiv:hep-th/0611296]</ref>
न्यूनतम प्रतिरूप की तीन स्थितियाँ हैं जो दो न्यूनतम प्रतिरू के गुणन हैं।<ref>T. Quella, I. Runkel, G. Watts, "Reflection and Transmission for Conformal Defects", [https://arxiv.org/abs/hep-th/0611296 arxiv:hep-th/0611296]</ref>
अगर <math>q\equiv 0\bmod 4</math>, ए-सीरीज़ और डी-सीरीज़ <math>(p,q)</math> न्यूनतम प्रतिरूप में प्रत्येक का फर्मीओनिक विस्तार होता है। इन दो फर्मियोनिक एक्सटेंशन में अर्ध-पूर्णांक स्पिन वाले फ़ील्ड समिलित हैं, और वे एक समानता-शिफ्ट ऑपरेशन द्वारा एक दूसरे से संबंधित हैं।<ref name="rw20"/>
अगर <math>q\equiv 0\bmod 4</math>, A-सीरीज़ और D-सीरीज़ <math>(p,q)</math> न्यूनतम प्रतिरूप में प्रत्येक का फर्मीओनिक विस्तार होता है। इन दो फर्मियोनिक विस्तार में अर्ध-पूर्णांक घुमाव वाले क्षेत्र समिलित हैं, और वे एक समानता-परिवर्तन संचालन द्वारा एक दूसरे से संबंधित हैं।<ref name="rw20"/>
सैद्धांतिक भौतिकी में, एक न्यूनतम प्रतिरूप या विरासोरो न्यूनतम प्रतिरूप एक द्वि-आयामी अनुकोण क्षेत्र सिद्धांत है जिसका वर्णक्रम विरासोरो बीजगणित के परिमित संख्या के कई अखंडनीय निरूपण से बनाया गया है। न्यूनतम प्रतिरूप को इसलिए वर्गीकृत और हल किया गया है, ताकि यह ADE वर्गीकरण का पालन कर सके।[1] शब्द न्यूनतम प्रतिरूप एक बीजगणित पर आधारित एक उचित CFT का भी उल्लेख कर सकता है जो वीरासोरो बीजगणित से बड़ा है, जैसे W-बीजगणित।
न्यूनतम प्रतिरूप में, विरासोरो बीजगणित का केंद्रीय आवेश प्रकार के मान लेता है
जहाँ सह अभाज्य पूर्णांक हैं जैसे कि . फिर पतित निरूपण के अनुकोण आयाम हैं
और वे तत्समक का पालन करते हैं
न्यूनतम प्रतिरूप के वर्णक्रम, विरासोरो बीजगणित के अखंडनीय, पतित निम्नतम-वजन निरूपण से बने होते हैं, जिनके अनुकोण आयाम प्रकार के हैं
ऐसा निरूपण एक वर्मा मॉड्यूल का एक सह समुच्चय है, जो इसके अनंत संख्या से कई असतहीय उपप्रतिरूपक द्वारा बनाया गया है। यह ऐकिक है अगर और केवल .
किसी दिए गए केंद्रीय आवेश पर, इस प्रकार के विशिष्ट निरूपण है। इन निरूपण, या उनके अनुकोण आयामों के सेट को मापदंडों के साथ केएसी तालिका कहा जाता है। केएसी तालिका समान्यतः , आकार के आयत के रूप में खींची जाती है, जहां संबंध के कारण प्रत्येक निरूपण दो बार प्रकट होता है
संलयन नियम
बहुपतित निरूपण के संलयन नियम उनके सभी अशक्त वैक्टर से बाधाओं को कूटबद्ध करते हैं। इसलिए उन्हे केवल पतित निरूपण के संलयन नियमों से घटाया जा सकता है, जो एकाकी शून्य वैक्टर से बाधाओं को कूटबद्ध करता है।[2]स्पष्ट रूप से, संलयन नियम
है, जहां रकम दो की वृद्धि से चलती है।
वर्गीकरण
A-श्रृंखला न्यूनतम प्रतिरूप: विकर्ण स्थिति
किसी भी सह अभाज्य पूर्णांक के लिए जैसे कि , एक विकर्ण न्यूनतम प्रतिरूप उपस्थित है जिसके वर्णक्रम केएसी तालिका में प्रत्येक विशिष्ट निरूपण की एक प्रति है:
और प्रतिरूप समान हैं।
दो क्षेत्रों के OPE में वे सभी क्षेत्र समिलित हैं जो संबंधित निरूपण के संलयन नियमों द्वारा अनुमत हैं।
D-श्रृंखला न्यूनतम प्रतिरूप
प्रमुख प्रभार के साथ D-श्रृंखला न्यूनतम प्रतिरूप उपस्थित है यदि या सम और कम से कम हैं। समरूपता का उपयोग करके हम मानते हैं कि सम है, तो विषम है। वर्णक्रम वह जगह है
है
जहां के योग दो की वृद्धि से चलते हैं। किसी दिए गए वर्णक्रम में, प्रत्येक निरूपण में बहुलता एक होती है, इस प्रकार के निरूपण के अतिरिक्त , जिसकी बहुलता दो है। वर्णक्रम के लिए हमारे सूत्र में ये निरूपण वास्तव में दोनों शब्दों में दिखाई देते हैं।
दो क्षेत्रों के OPE में वे सभी क्षेत्र समिलित हैं जो संबंधित निरूपण के संलयन नियमों द्वारा अनुमत हैं, और जो विकर्णता के संरक्षण का सम्मान करते हैं: एक विकर्ण और एक गैर-विकर्ण क्षेत्र का OPE केवल गैर-विकर्ण क्षेत्र उत्पन्न करता है, और OPE एक ही प्रकार के दो क्षेत्रों से केवल विकर्ण क्षेत्र प्राप्त होते हैं।
इस नियम के लिए निरूपण की एक प्रति को विकर्ण के रूप में गिना जाता है, और दूसरी प्रति को गैर-विकर्ण के रूप में गिना जाता है।
E-श्रृंखला न्यूनतम प्रतिरूप
E-श्रृंखला के न्यूनतम प्रतिरूप की तीन श्रृंखलाएँ हैं। प्रत्येक श्रृंखला के किसी दिए गए मान के लिए उपस्थित है जो के साथ सह अभाज्य है (यह वास्तव में तात्पर्य है।) अंकन का उपयोग करना वर्णक्रम पढ़ता है:
उदाहरण
निम्नलिखित A-श्रृंखला न्यूनतम प्रतिरूप प्रसिद्ध भौतिक तंत्र से संबंधित हैं:[2]
इन प्रतिरूपों की Kac तालिकाएँ, साथ ही में कुछ अन्य Kac तालिकाएँ , हैं:
संबंधित अनुकोण क्षेत्र सिद्धांत
सह समुच्चय प्रतिफलन
सूचकांकों के साथ A-श्रृंखला न्यूनतम प्रतिरूप WZW प्रतिरूप के निम्नलिखित सह समुच्चय के साथ मेल खाता है:[2]:
यह मानते हुए कि , स्तर पूर्णांक है अगर और केवल यानी अगर और केवल न्यूनतम प्रतिरूप एकात्मक है।
WZW प्रतिरूप के सह समुच्चय के रूप में कुछ न्यूनतम प्रतिरूप, विकर्ण या नहीं, के अन्य प्रतिफलन उपस्थित हैं, जरूरी नहीं है कि यह समूह पर ही आधारित हो।[2]
सामान्यीकृत न्यूनतम प्रतिरूप
किसी भी प्रमुख प्रभार के लिए , एक विकर्ण CFT है जिसका वर्णक्रम सभी पतित निरूपण से बना होता है,
जब प्रमुख प्रभार , की ओर जाता है, तो सामान्यीकृत न्यूनतम प्रतिरूप संबंधित A-श्रृंखला के प्रवृत्त होते हैं।[4] इसका विशेष रूप से मतलब है कि पतित निरूपण जो कि केएसी तालिका में नहीं हैं।
लिउविल सिद्धांत
चूंकि लिउविले क्षेत्र सिद्धांत सामान्यीकृत न्यूनतम प्रतिरूप में कम हो जाता है जब क्षेत्रों को पतित होने के लिए लिया जाता है,[4] जब केंद्रीय प्रभार को भेजा जाता है तो यह A-श्रृंखला न्यूनतम प्रतिरूप को और कम कर देता है।
इसके अतिरिक्त, A-श्रृंखला के न्यूनतम प्रतिरूप में के रूप में एक अच्छी तरह से परिभाषित सीमा होती है: रंकेल-वाट्स सिद्धांत नामक एक सतत वर्णक्रम के साथ एक विकर्ण CFT,[5] जो लिउविल सिद्धांत की सीमा के साथ मेल खाता है जब .[6]
न्यूनतम प्रतिरूप के गुणन
न्यूनतम प्रतिरूप की तीन स्थितियाँ हैं जो दो न्यूनतम प्रतिरू के गुणन हैं।[7]
उनके वर्णक्रम के स्तर पर, संबंध हैं:
न्यूनतम प्रतिरूपों का फर्मियोनिक विस्तार
अगर , A-सीरीज़ और D-सीरीज़ न्यूनतम प्रतिरूप में प्रत्येक का फर्मीओनिक विस्तार होता है। इन दो फर्मियोनिक विस्तार में अर्ध-पूर्णांक घुमाव वाले क्षेत्र समिलित हैं, और वे एक समानता-परिवर्तन संचालन द्वारा एक दूसरे से संबंधित हैं।[8]
संदर्भ
↑A. Cappelli, J-B. Zuber, "A-D-E Classification of Conformal Field Theories", Scholarpedia