न्यूनतम प्रतिरूप (भौतिकी): Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 57: | Line 57: | ||
=== E-श्रृंखला न्यूनतम प्रतिरूप === | === E-श्रृंखला न्यूनतम प्रतिरूप === | ||
E-श्रृंखला के न्यूनतम प्रतिरूप की तीन श्रृंखलाएँ हैं। प्रत्येक श्रृंखला <math>q\in\{12,18,30\},</math> के किसी दिए गए मान के लिए उपस्थित है <math>p\geq 2</math> जो <math>q</math> के साथ सह अभाज्य है (इसका मतलब है <math>p\geq 5</math>) अंकन <math>|\mathcal{R}|^2 = \mathcal{R}\otimes \bar{\mathcal{R}}</math> का उपयोग करना | E-श्रृंखला के न्यूनतम प्रतिरूप की तीन श्रृंखलाएँ हैं। प्रत्येक श्रृंखला <math>q\in\{12,18,30\},</math> के किसी दिए गए मान के लिए उपस्थित है <math>p\geq 2</math> जो <math>q</math> के साथ सह अभाज्य है (इसका मतलब है <math>p\geq 5</math>) अंकन <math>|\mathcal{R}|^2 = \mathcal{R}\otimes \bar{\mathcal{R}}</math> का उपयोग करना: | ||
:<math> \mathcal{S}^\text{E-series}_{p,12} = \frac12 \bigoplus_{s=1}^{p-1} \left\{ | :<math> \mathcal{S}^\text{E-series}_{p,12} = \frac12 \bigoplus_{s=1}^{p-1} \left\{ | ||
\left| \mathcal{R}_{1,s}\oplus \mathcal{R}_{7,s}\right|^2 | \left| \mathcal{R}_{1,s}\oplus \mathcal{R}_{7,s}\right|^2 | ||
Line 79: | Line 79: | ||
* <math>(p,q)=(6,5)</math> : चतुष्क क्रांतिक आइसिंग निदर्श। | * <math>(p,q)=(6,5)</math> : चतुष्क क्रांतिक आइसिंग निदर्श। | ||
निम्नलिखित D-श्रृंखला न्यूनतम प्रतिरूप प्रसिद्ध भौतिक तंत्र से संबंधित हैं: | निम्नलिखित D-श्रृंखला न्यूनतम प्रतिरूप प्रसिद्ध भौतिक तंत्र से संबंधित हैं: | ||
* <math>(p,q)=(6,5)</math> : 3-स्थिति [[क्वांटम थ्री-स्टेट पॉट्स मॉडल|क्वांटम थ्री- | * <math>(p,q)=(6,5)</math> : 3-स्थिति [[क्वांटम थ्री-स्टेट पॉट्स मॉडल|क्वांटम थ्री-स्थिति पॉट्स प्रतिरूप]] क्रांतिकता पर, | ||
* <math>(p,q)=(7,6)</math> : त्री क्रांतिक 3-स्थिति पॉट्स प्रतिरूप। | * <math>(p,q)=(7,6)</math> : त्री क्रांतिक 3-स्थिति पॉट्स प्रतिरूप। | ||
Line 122: | Line 122: | ||
=== सामान्यीकृत न्यूनतम प्रतिरूप === | === सामान्यीकृत न्यूनतम प्रतिरूप === | ||
किसी भी प्रमुख प्रभार | किसी भी प्रमुख प्रभार <math>c\in\mathbb{C}</math> के लिए, एक विकर्ण CFT है जिसका वर्णक्रम सभी अपहृसित अभ्यावेदन से बना होता है, | ||
:<math> \mathcal{S}=\bigoplus_{r,s=1}^\infty \mathcal{R}_{r,s}\otimes \bar{\mathcal{R}}_{r,s} \ . </math> | :<math> \mathcal{S}=\bigoplus_{r,s=1}^\infty \mathcal{R}_{r,s}\otimes \bar{\mathcal{R}}_{r,s} \ . </math> | ||
जब प्रमुख प्रभार <math>c_{p,q}</math>, की ओर जाता है, तो सामान्यीकृत न्यूनतम प्रतिरूप संबंधित A-श्रृंखला के प्रवृत्त होते हैं।<ref name="rib14">S. Ribault, "Conformal field theory on the plane", [https://arxiv.org/abs/1406.4290 arXiv:1406.4290]</ref> इसका विशेष रूप से मतलब है कि अपहृसित अभ्यावेदन जो कि Kac तालिका में नहीं हैं। | जब प्रमुख प्रभार <math>c_{p,q}</math>, की ओर जाता है, तो सामान्यीकृत न्यूनतम प्रतिरूप संबंधित A-श्रृंखला के प्रवृत्त होते हैं।<ref name="rib14">S. Ribault, "Conformal field theory on the plane", [https://arxiv.org/abs/1406.4290 arXiv:1406.4290]</ref> इसका विशेष रूप से मतलब है कि अपहृसित अभ्यावेदन जो कि Kac तालिका में नहीं हैं। | ||
Line 135: | Line 135: | ||
=== न्यूनतम प्रतिरूप के गुणन === | === न्यूनतम प्रतिरूप के गुणन === | ||
न्यूनतम प्रतिरूप की तीन स्थितियाँ हैं जो दो न्यूनतम | न्यूनतम प्रतिरूप की तीन स्थितियाँ हैं जो दो न्यूनतम प्रतिरूप के गुणन हैं।<ref>T. Quella, I. Runkel, G. Watts, "Reflection and Transmission for Conformal Defects", [https://arxiv.org/abs/hep-th/0611296 arxiv:hep-th/0611296]</ref>उनके वर्णक्रम के स्तर पर, संबंध निम्न हैं: | ||
उनके वर्णक्रम के स्तर पर, संबंध हैं: | |||
:<math> \mathcal{S}^\text{A-series}_{2,5}\otimes \mathcal{S}^\text{A-series}_{2,5} = \mathcal{S}^\text{D-series}_{3,10}\ , </math> | :<math> \mathcal{S}^\text{A-series}_{2,5}\otimes \mathcal{S}^\text{A-series}_{2,5} = \mathcal{S}^\text{D-series}_{3,10}\ , </math> | ||
:<math> \mathcal{S}^\text{A-series}_{2,5}\otimes \mathcal{S}^\text{A-series}_{3,4} = | :<math> \mathcal{S}^\text{A-series}_{2,5}\otimes \mathcal{S}^\text{A-series}_{3,4} = |
Revision as of 06:23, 26 April 2023
सैद्धांतिक भौतिकी में, एक न्यूनतम प्रतिरूप या विरासोरो न्यूनतम प्रतिरूप एक द्वि-आयामी अनुकोण क्षेत्र सिद्धांत है जिसका वर्णक्रम विरासोरो बीजगणित के परिमित संख्या के कई अखंडनीय अभ्यावेदन से बनाया गया है। न्यूनतम प्रतिरूप को इसलिए वर्गीकृत और हल किया गया है, ताकि यह ADE वर्गीकरण का पालन कर सके।[1] शब्द न्यूनतम प्रतिरूप एक बीजगणित पर आधारित एक उचित CFT का भी उल्लेख कर सकता है जो वीरासोरो बीजगणित से बड़ा है, जैसे W-बीजगणित।
विरासोरो बीजगणित के सटीक अभ्यावेदन
अभ्यावेदन
न्यूनतम प्रतिरूप में, विरासोरो बीजगणित का प्रमुख प्रभार प्रकार के मान लेता है
जहाँ सह अभाज्य पूर्णांक हैं जैसे कि . फिर अपहृसित अभ्यावेदन के अनुरूप परिमाप हैं
और वे सर्वसमिका का पालन करते हैं
न्यूनतम प्रतिरूप के वर्णक्रम, विरासोरो बीजगणित के अखंडनीय, अपहृसित निम्नतम-वजन अभ्यावेदन से बने होते हैं, जिनके अनुरूप परिमाप प्रकार के हैं
ऐसा अभ्यावेदन एक वर्मा मॉड्यूल का एक सह समुच्चय है, जो इसके अनंत संख्या से कई असतहीय उपप्रतिरूपक द्वारा बनाया गया है। यह ऐकिक है अगर और केवल .
किसी दिए गए प्रमुख प्रभार पर, इस प्रकार के विशिष्ट अभ्यावेदन है। इन अभ्यावेदन, या उनके अनुरूप परिमापों के सेट को मापदंडों के साथ Kac तालिका कहा जाता है। Kac तालिका समान्यतः , आकार के आयत के रूप में खींची जाती है, जहां संबंध के कारण प्रत्येक अभ्यावेदन दो बार प्रकट होता है
संलयन नियम
बहुअपहृसित अभ्यावेदन के संलयन नियम उनके सभी शून्य सदिश से बाधाओं को कूटबद्ध करते हैं। इसलिए उन्हे केवल अपहृसित अभ्यावेदन के संलयन नियमों से घटाया जा सकता है, जो एकाकी शून्य सदिश से बाधाओं को कूटबद्ध करता है।[2]स्पष्ट रूप से, संलयन नियम
है, जहां योग दो की वृद्धि से चलता है।
वर्गीकरण
A-श्रृंखला न्यूनतम प्रतिरूप: विकर्ण स्थिति
किसी भी सह अभाज्य पूर्णांक के लिए जैसे कि , एक विकर्ण न्यूनतम प्रतिरूप उपस्थित है जिसके वर्णक्रम Kac तालिका में प्रत्येक विशिष्ट अभ्यावेदन की एक प्रति है:
और प्रतिरूप समान हैं।
दो क्षेत्रों के OPE में वे सभी क्षेत्र समिलित हैं जो संबंधित अभ्यावेदन के संलयन नियमों द्वारा अनुमत हैं।
D-श्रृंखला न्यूनतम प्रतिरूप
प्रमुख प्रभार के साथ D-श्रृंखला न्यूनतम प्रतिरूप उपस्थित है यदि या सम और कम से कम हैं। समरूपता का उपयोग करके हम मानते हैं कि सम है, तो विषम है। वर्णक्रम वह जगह है
जहां के योग दो की वृद्धि से चलते हैं। किसी दिए गए वर्णक्रम में, प्रत्येक अभ्यावेदन में बहुलता एक होती है, इस प्रकार के अभ्यावेदन के अतिरिक्त , जिसकी बहुलता दो है। वर्णक्रम के लिए हमारे सूत्र में ये अभ्यावेदन वास्तव में दोनों शब्दों में दिखाई देते हैं।
दो क्षेत्रों के OPE में वे सभी क्षेत्र समिलित हैं जो संबंधित अभ्यावेदन के संलयन नियमों द्वारा अनुमत हैं, और जो विकर्णता के संरक्षण का सम्मान करते हैं: एक विकर्ण और एक गैर-विकर्ण क्षेत्र का OPE केवल गैर-विकर्ण क्षेत्र उत्पन्न करता है, और OPE एक ही प्रकार के दो क्षेत्रों से केवल विकर्ण क्षेत्र प्राप्त होते हैं।
[3]
इस नियम के लिए अभ्यावेदन की एक प्रति को विकर्ण के रूप में गिना जाता है, और दूसरी प्रति को गैर-विकर्ण के रूप में गिना जाता है।
E-श्रृंखला न्यूनतम प्रतिरूप
E-श्रृंखला के न्यूनतम प्रतिरूप की तीन श्रृंखलाएँ हैं। प्रत्येक श्रृंखला के किसी दिए गए मान के लिए उपस्थित है जो के साथ सह अभाज्य है (इसका मतलब है ) अंकन का उपयोग करना:
उदाहरण
निम्नलिखित A-श्रृंखला न्यूनतम प्रतिरूप प्रसिद्ध भौतिक तंत्र से संबंधित हैं:[2]
- : तुच्छ CFT,
- : यांग-ली एज विलक्षणता,
- : द्वि-आयामी आइसिंग निदर्श,
- : त्री क्रांतिक आइसिंग निदर्श,
- : चतुष्क क्रांतिक आइसिंग निदर्श।
निम्नलिखित D-श्रृंखला न्यूनतम प्रतिरूप प्रसिद्ध भौतिक तंत्र से संबंधित हैं:
- : 3-स्थिति क्वांटम थ्री-स्थिति पॉट्स प्रतिरूप क्रांतिकता पर,
- : त्री क्रांतिक 3-स्थिति पॉट्स प्रतिरूप।
इन प्रतिरूपों की Kac तालिकाएँ, साथ ही में कुछ अन्य Kac तालिकाएँ , हैं:
संबंधित अनुकोण क्षेत्र सिद्धांत
सह समुच्चय प्रतिफलन
सूचकांकों के साथ A-श्रृंखला न्यूनतम प्रतिरूप WZW प्रतिरूप के निम्नलिखित सह समुच्चय के साथ मेल खाता है:[2]:
यह मानते हुए कि , स्तर पूर्णांक है अगर और केवल यानी अगर और केवल न्यूनतम प्रतिरूप एकात्मक है।
WZW प्रतिरूप के सह समुच्चय के रूप में कुछ न्यूनतम प्रतिरूप, विकर्ण या नहीं, के अन्य प्रतिफलन उपस्थित हैं, जरूरी नहीं है कि यह समूह पर ही आधारित हो।[2]
सामान्यीकृत न्यूनतम प्रतिरूप
किसी भी प्रमुख प्रभार के लिए, एक विकर्ण CFT है जिसका वर्णक्रम सभी अपहृसित अभ्यावेदन से बना होता है,
जब प्रमुख प्रभार , की ओर जाता है, तो सामान्यीकृत न्यूनतम प्रतिरूप संबंधित A-श्रृंखला के प्रवृत्त होते हैं।[4] इसका विशेष रूप से मतलब है कि अपहृसित अभ्यावेदन जो कि Kac तालिका में नहीं हैं।
लिउविल सिद्धांत
चूंकि लिउविले क्षेत्र सिद्धांत सामान्यीकृत न्यूनतम प्रतिरूप में कम हो जाता है जब क्षेत्रों को अपहृसित होने के लिए लिया जाता है,[4] जब केंद्रीय प्रभार को भेजा जाता है तो यह A-श्रृंखला न्यूनतम प्रतिरूप को और कम कर देता है।
इसके अतिरिक्त, A-श्रृंखला के न्यूनतम प्रतिरूप में के रूप में एक अच्छी तरह से परिभाषित सीमा होती है: रंकेल-वाट्स सिद्धांत नामक एक सतत वर्णक्रम के साथ एक विकर्ण CFT,[5] जो लिउविल सिद्धांत की सीमा के साथ मेल खाता है जब .[6]
न्यूनतम प्रतिरूप के गुणन
न्यूनतम प्रतिरूप की तीन स्थितियाँ हैं जो दो न्यूनतम प्रतिरूप के गुणन हैं।[7]उनके वर्णक्रम के स्तर पर, संबंध निम्न हैं:
न्यूनतम प्रतिरूपों का फर्मियोनिक विस्तार
अगर , A-सीरीज़ और D-सीरीज़ न्यूनतम प्रतिरूप में प्रत्येक का फर्मीओनिक विस्तार होता है। इन दो फर्मियोनिक विस्तार में अर्ध-पूर्णांक घुमाव वाले क्षेत्र समिलित हैं, और वे एक समानता-परिवर्तन संचालन द्वारा एक दूसरे से संबंधित हैं।[8]
संदर्भ
- ↑ A. Cappelli, J-B. Zuber, "A-D-E Classification of Conformal Field Theories", Scholarpedia
- ↑ 2.0 2.1 2.2 2.3 P. Di Francesco, P. Mathieu, and D. Sénéchal, Conformal Field Theory, 1997, ISBN 0-387-94785-X
- ↑ I. Runkel, "Structure constants for the D series Virasoro minimal models", hep-th/9908046
- ↑ 4.0 4.1 S. Ribault, "Conformal field theory on the plane", arXiv:1406.4290
- ↑ I. Runkel, G. Watts, "A Nonrational CFT with c = 1 as a limit of minimal models", arXiv:hep-th/0107118
- ↑ V. Schomerus, "Rolling tachyons from Liouville theory",arXiv:hep-th/0306026
- ↑ T. Quella, I. Runkel, G. Watts, "Reflection and Transmission for Conformal Defects", arxiv:hep-th/0611296
- ↑ Runkel, Ingo; Watts, Gerard (2020). "Fermionic CFTs and classifying algebras". Journal of High Energy Physics. 2020 (6): 25. arXiv:2001.05055. Bibcode:2020JHEP...06..025R. doi:10.1007/JHEP06(2020)025. S2CID 210718696.