द्विपक्षीय लाप्लास परिवर्तन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{more footnotes needed|date=September 2015}}
{{more footnotes needed|date=September 2015}}
गणित में, दो तरफा लाप्लास परिवर्तन या द्विपक्षीय लाप्लास परिवर्तन संभाव्यता के क्षण उत्पन्न करने वाले कार्य के समतुल्य एक [[अभिन्न परिवर्तन]]         होता है। दो तरफा [[लाप्लास रूपांतरण]] [[फूरियर रूपांतरण]], मेलिन रूपांतरण, जेड-रूपांतरण और साधारण या एक तरफा लाप्लास रूपांतर से निकटता से संबंधित होता हैं। यदि ''f''(''t'') सभी वास्तविक संख्याओं के लिए परिभाषित वास्तविक चर ''t'' का एक वास्तविक-या जटिल-मूल्यवान कार्य होता है, तो दो तरफा लाप्लास परिवर्तन को अभिन्न द्वारा परिभाषित किया जा सकता है         
गणित में, दो तरफा लाप्लास परिवर्तन या द्विपक्षीय लाप्लास परिवर्तन संभाव्यता के क्षण उत्पन्न करने वाले फलन  के समतुल्य एक [[अभिन्न परिवर्तन]] होता है। दो तरफा [[लाप्लास रूपांतरण]] [[फूरियर रूपांतरण]], मेलिन रूपांतरण, जेड-रूपांतरण और साधारण या एक तरफा लाप्लास रूपांतर से निकटता से संबंधित होता हैं। यदि ''f''(''t'') सभी वास्तविक संख्याओं के लिए परिभाषित वास्तविक चर ''t'' का एक वास्तविक-या जटिल-मूल्यवान फलन  होता है, तो दो तरफा लाप्लास परिवर्तन को अभिन्न द्वारा परिभाषित किया जा सकता है         


:<math>\mathcal{B}\{f\}(s) = F(s) = \int_{-\infty}^\infty e^{-st} f(t)\, dt.</math>
:<math>\mathcal{B}\{f\}(s) = F(s) = \int_{-\infty}^\infty e^{-st} f(t)\, dt.</math>
इंटीग्रल को आमतौर पर एक अनुचित इंटीग्रल के रूप में समझा जाता है, जो दोनों इंटीग्रल होने पर और केवल अगर अभिसरण करता है
समाकलन को सामान्यतः  एक अनुचित समाकलन के रूप में समझा जाता है, जो दोनों समाकलन होने पर केवल अभिसरण करता है
:<math>\int_0^\infty e^{-st} f(t) \, dt,\quad \int_{-\infty}^0  e^{-st} f(t)\, dt</math>
:<math>\int_0^\infty e^{-st} f(t) \, dt,\quad \int_{-\infty}^0  e^{-st} f(t)\, dt</math>
अस्तित्व। ऐसा लगता है कि दो तरफा परिवर्तन के लिए आम तौर पर स्वीकृत कोई संकेत नहीं है;
अस्तित्व दो तरफा परिवर्तन के लिए सामान्यतः  स्वीकृत संकेतन प्रतीत नहीं होता है यहाँ <math>B</math> का उपयोग द्विपक्षीय रूप में करते हैं। कुछ लेखकों द्वारा उपयोग किया जाने वाला दो तरफा परिवर्तन है
<math>\mathcal{B}</math> यहाँ प्रयुक्त द्विपक्षीय याद करते हैं। दो तरफा परिवर्तन
कुछ लेखकों द्वारा प्रयोग किया जाता है
:<math>\mathcal{T}\{f\}(s) = s\mathcal{B}\{f\}(s) = sF(s) = s \int_{-\infty}^\infty  e^{-st} f(t)\, dt.</math>
:<math>\mathcal{T}\{f\}(s) = s\mathcal{B}\{f\}(s) = sF(s) = s \int_{-\infty}^\infty  e^{-st} f(t)\, dt.</math>
शुद्ध गणित में तर्क t कोई भी चर हो सकता है, और लाप्लास रूपांतरण का उपयोग यह अध्ययन करने के लिए किया जाता है कि [[अंतर ऑपरेटर]] फ़ंक्शन को कैसे बदल सकते हैं।
शुद्ध गणित में तर्क t कोई भी चर हो सकता है, और लाप्लास रूपांतरण का उपयोग यह अध्ययन करने के लिए किया जाता है कि [[अंतर ऑपरेटर]] फलन को कैसे बदल सकते हैं।


[[विज्ञान]] और         [[ अभियांत्रिकी |अभियांत्रिकी]]         अनुप्रयोगों में, तर्क t अक्सर समय (सेकंड में) का प्रतिनिधित्व किया करता है, और फ़ंक्शन f(t) अक्सर एक [[संकेत (सूचना सिद्धांत)]] या तरंग का प्रतिनिधित्व किया करता है जो समय के साथ बदलता रहता है। इन मामलों में, सिग्नल [[फ़िल्टर (सिग्नल प्रोसेसिंग)]] द्वारा रूपांतरित किया जाता हैं, जो एक गणितीय ऑपरेटर की तरह काम करता हैं, लेकिन एक प्रतिबंध के साथ। उन्हें कारण होना चाहिए, जिसका अर्थ है कि किसी दिए गए समय टी में आउटपुट उस आउटपुट पर निर्भर नहीं हो सकता है जो टी का उच्च मूल्य होता है।
[[विज्ञान]] और [[ अभियांत्रिकी |अभियांत्रिकी]] अनुप्रयोगों में, तर्क सदैव समय t सेकंड मे प्रतिनिधित्व करता है, और फलन f(t) अधिकांशतः एक [[संकेत (सूचना सिद्धांत)]] या तरंग का प्रतिनिधित्व किया करता है जो समय के साथ बदलता रहता है। इन स्थितियों  में, सिग्नल [[फ़िल्टर (सिग्नल प्रोसेसिंग)]] द्वारा रूपांतरित किया जाता हैं, जो एक गणितीय ऑपरेटर की तरह काम करता हैं, लेकिन एक प्रतिबंध के रूप में कारण होना चाहिए, जिसका अर्थ है कि किसी दिए गए समय टी में आउटपुट उस आउटपुट पर निर्भर नहीं हो सकता है जो t का उच्च मूल्य होता है। जनसंख्या पारिस्थितिकी में, तर्क t अधिकांशतः फैलाव कर्नेल में स्थानिक विस्थापन का प्रतिनिधित्व किया करता है।
जनसंख्या पारिस्थितिकी में, तर्क टी अक्सर फैलाव कर्नेल में स्थानिक विस्थापन का प्रतिनिधित्व किया करता है।


समय के कार्यों के साथ काम करते समय, f(t) को सिग्नल का 'टाइम डोमेन' प्रतिनिधित्व कहा जाता है, जबकि F(s) को 'एस-डोमेन' (या लाप्लास डोमेन) प्रतिनिधित्व कहा जाता है। व्युत्क्रम परिवर्तन तब संकेत के संश्लेषण का प्रतिनिधित्व करता है क्योंकि इसके आवृत्ति घटकों का योग सभी आवृत्तियों पर लिया जाता है, जबकि आगे का परिवर्तन संकेत के आवृत्ति घटकों में विश्लेषण का प्रतिनिधित्व किया करता है।       
समय के फलन  के साथ काम करते समय, f(t) को सिग्नल का 'टाइम डोमेन' प्रतिनिधित्व कहा जाता है, जबकि F(s) को 'एस-डोमेन' या लाप्लास डोमेन का प्रतिनिधित्व कहा जाता है। और इस प्रकार व्युत्क्रम परिवर्तन तब संकेत के संश्लेषण का प्रतिनिधित्व करता है क्योंकि इसके आवृत्ति घटकों का योग सभी आवृत्तियों पर लिया जाता है, जबकि आगे का परिवर्तन संकेत के आवृत्ति घटकों में विश्लेषण का प्रतिनिधित्व किया करता है।       


== फूरियर ट्रांसफॉर्म से संबंध ==
== फूरियर ट्रांसफॉर्म से संबंध ==
फूरियर रूपांतरण को दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है:
फूरियर रूपांतरण को दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है


:<math>\mathcal{F}\{f(t)\} = F(s = i\omega) = F(\omega).</math>
:<math>\mathcal{F}\{f(t)\} = F(s = i\omega) = F(\omega).</math>
ध्यान दें कि फूरियर रूपांतरण की परिभाषाएँ भिन्न हैं, और विशेष रूप से
ध्यान दें कि फूरियर रूपांतरण की परिभाषाएँ भिन्न रूप में होती है, और विशेष रूप से इस प्रकार दिखाया गया है
:<math>\mathcal{F}\{f(t)\} = F(s = i\omega) = \frac{1}{\sqrt{2\pi}} \mathcal{B}\{f(t)\}(s)</math>
:<math>\mathcal{F}\{f(t)\} = F(s = i\omega) = \frac{1}{\sqrt{2\pi}} \mathcal{B}\{f(t)\}(s)</math>
इसके बजाय अक्सर प्रयोग किया जाता है। फूरियर रूपांतरण के संदर्भ में, हम दो तरफा लाप्लास रूपांतरण भी प्राप्त कर सकते हैं, जैसा कि
इसके अतिरिक्त अधिकांशतः प्रयोग किया जाता है। फूरियर रूपांतरण के संदर्भ में, हम दो तरफा लाप्लास रूपांतरण भी प्राप्त कर सकते हैं, जैसा कि
:<math>\mathcal{B}\{f(t)\}(s) = \mathcal{F}\{f(t)\}(-is).</math>
:<math>\mathcal{B}\{f(t)\}(s) = \mathcal{F}\{f(t)\}(-is).</math>
फूरियर रूपांतरण को सामान्य रूप से परिभाषित किया जा सकता है ताकि यह वास्तविक मूल्यों के लिए मौजूद रहे; उपरोक्त परिभाषा छवि को एक पट्टी में परिभाषित करती है <math>a < \Im(s) < b</math> जिसमें वास्तविक धुरी शामिल नहीं हो सकती है जहां फूरियर ट्रांसफॉर्म को अभिसरण माना जाता है।
फूरियर रूपांतरण को सामान्य रूप से परिभाषित किया जा सकता है जिससे कि यह वास्तविक मूल्यों के लिए उपस्थित  रहे; उपरोक्त परिभाषा छवि को एक पट्टी में परिभाषित करती है <math>a < \Im(s) < b</math> जिसमें वास्तविक धुरी सम्मलित  नहीं हो सकती है जहां फूरियर ट्रांसफॉर्म को अभिसरण माना जाता है।


यही कारण है कि लाप्लास रूपांतरण नियंत्रण सिद्धांत और सिग्नल प्रोसेसिंग में अपने मूल्य को बनाए रखता है: एक फूरियर ट्रांसफॉर्म इंटीग्रल के अपने डोमेन के भीतर अभिसरण का मतलब केवल यह है कि इसके द्वारा वर्णित एक रैखिक, शिफ्ट-इनवेरिएंट सिस्टम स्थिर या महत्वपूर्ण होता है। दूसरी ओर लाप्लास हर आवेग प्रतिक्रिया के लिए अभिसरण करेगा जो सबसे अधिक तेजी से बढ़ रहा होता है, क्योंकि इसमें एक अतिरिक्त शब्द शामिल होता है जिसे एक घातीय नियामक के रूप में लिया जा सकता है। चूंकि सुपरएक्सपोनेंशियल रूप से बढ़ते रैखिक प्रतिक्रिया नेटवर्क नहीं होता हैं, लाप्लास ट्रांसफॉर्म आधारित विश्लेषण और रैखिक, शिफ्ट-इनवेरिएंट सिस्टम का समाधान, लाप्लास के संदर्भ में अपना सबसे सामान्य रूप लेता है, फूरियर नहीं, ट्रांसफॉर्म करता है।
यही कारण है कि लाप्लास रूपांतरण नियंत्रण सिद्धांत और सिग्नल प्रोसेसिंग में अपने मूल्य को बनाए रखता है: एक फूरियर ट्रांसफॉर्म समाकलन के अपने डोमेन के भीतर अभिसरण का मतलब केवल यह है कि इसके द्वारा वर्णित एक रैखिक, शिफ्ट-इनवेरिएंट सिस्टम स्थिर या महत्वपूर्ण होता है। दूसरी ओर लाप्लास हर आवेग प्रतिक्रिया के लिए अभिसरण करेगा जो सबसे अधिक तेजी से बढ़ रहा होता है, क्योंकि इसमें एक अतिरिक्त शब्द सम्मलित  होता है जिसे एक घातीय नियामक के रूप में लिया जा सकता है। चूंकि सुपरएक्सपोनेंशियल रूप से बढ़ते रैखिक प्रतिक्रिया नेटवर्क नहीं होता हैं, लाप्लास ट्रांसफॉर्म आधारित विश्लेषण और रैखिक, शिफ्ट-इनवेरिएंट सिस्टम का समाधान, लाप्लास के संदर्भ में अपना सबसे सामान्य रूप लेता है, फूरियर नहीं, ट्रांसफॉर्म करता है।


ठीक उसी समय, आजकल लाप्लास रूपांतरण सिद्धांत अधिक सामान्य अभिन्न रूपांतरण, या यहां तक ​​कि सामान्य हार्मोनिकल विश्लेषण के दायरे में आता है। उस ढांचे और नामकरण में, लाप्लास रूपांतरण फूरियर विश्लेषण का एक और रूप है, भले ही दृष्टि में अधिक सामान्य हो सकता है।     
ठीक उसी समय, आजकल लाप्लास रूपांतरण सिद्धांत अधिक सामान्य अभिन्न रूपांतरण, या यहां तक ​​कि सामान्य हार्मोनिकल विश्लेषण के दायरे में आता है। उस ढांचे और नामकरण में, लाप्लास रूपांतरण फूरियर विश्लेषण का एक और रूप है, भले ही दृष्टि में अधिक सामान्य हो सकता है।     


== अन्य अभिन्न रूपांतरणों से संबंध ==
== अन्य अभिन्न रूपांतरणों से संबंध ==
यदि यू हीविसाइड चरण फ़ंक्शन है, शून्य के बराबर जब इसका तर्क शून्य से कम होता है, एक-आधा जब इसका तर्क शून्य के बराबर होता है, और एक जब इसका तर्क शून्य से अधिक होता है, तो लाप्लास रूपांतरण <math>\mathcal{L}</math> द्वारा दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है
यदि यू हीविसाइड चरण फलन है, शून्य के बराबर जब इसका तर्क शून्य से कम होता है, एक-आधा जब इसका तर्क शून्य के बराबर होता है, और एक जब इसका तर्क शून्य से अधिक होता है, तो लाप्लास रूपांतरण <math>\mathcal{L}</math> द्वारा दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है
:<math>\mathcal{L}\{f\} = \mathcal{B}\{f u\}.</math>
:<math>\mathcal{L}\{f\} = \mathcal{B}\{f u\}.</math>
दूसरी ओर, हमारे पास भी है
दूसरी ओर, हमारे पास भी है
:<math>\mathcal{B}\{f\} = \mathcal{L}\{f\} + \mathcal{L}\{f\circ m\}\circ m,</math>
:<math>\mathcal{B}\{f\} = \mathcal{L}\{f\} + \mathcal{L}\{f\circ m\}\circ m,</math>
कहाँ <math>m:\mathbb{R}\to\mathbb{R}</math> वह कार्य है जो ऋण एक से गुणा करता है (<math>m(x) = -x</math>), इसलिए लाप्लास रूपांतरण के किसी भी संस्करण को दूसरे के संदर्भ में परिभाषित किया जा सकता है।
कहाँ <math>m:\mathbb{R}\to\mathbb{R}</math> वह फलन  है जो ऋण एक से गुणा करता है (<math>m(x) = -x</math>), इसलिए लाप्लास रूपांतरण के किसी भी संस्करण को दूसरे के संदर्भ में परिभाषित किया जा सकता है।


मेलिन परिवर्तन को दो तरफा लाप्लास परिवर्तन द्वारा परिभाषित किया जा सकता है
मेलिन परिवर्तन को दो तरफा लाप्लास परिवर्तन द्वारा परिभाषित किया जा सकता है
Line 41: Line 38:
साथ <math>m</math> ऊपर के रूप में, और इसके विपरीत हम मेलिन परिवर्तन से दो तरफा परिवर्तन प्राप्त कर सकते हैं
साथ <math>m</math> ऊपर के रूप में, और इसके विपरीत हम मेलिन परिवर्तन से दो तरफा परिवर्तन प्राप्त कर सकते हैं
:<math>\mathcal{B}\{f\} = \mathcal{M}\{f\circ m \circ \log \}.</math>
:<math>\mathcal{B}\{f\} = \mathcal{M}\{f\circ m \circ \log \}.</math>
एक सतत संभाव्यता घनत्व फ़ंक्शन ƒ(x) के क्षण-उत्पन्न करने वाले फ़ंक्शन को व्यक्त किया जा सकता है <math>\mathcal{B}\{f\}(-s)</math>.
एक सतत संभाव्यता घनत्व फलन ƒ(x) के क्षण-उत्पन्न करने वाले फलन को व्यक्त किया जा सकता है <math>\mathcal{B}\{f\}(-s)</math>.


== गुण ==
== गुण ==
Line 67: Line 64:
|-
|-
| उलट
| उलट
|  
| {| class="wikitable"
गणित> एफ (-टी) </गणित>
|
|
|}
|  
|  
गणित> एफ (-एस) </ गणित>
गणित> एफ (-एस) </ गणित>
Line 117: Line 116:
गणित> \int_s^\infty F(\sigma)\, d\sigma </math>
गणित> \int_s^\infty F(\sigma)\, d\sigma </math>
|
|
| केवल तभी मान्य है जब अभिन्न मौजूद हो
| केवल तभी मान्य है जब अभिन्न उपस्थित  हो
|-
|-
| टाइम-डोमेन इंटीग्रल
| टाइम-डोमेन इंटीग्रल
Line 245: Line 244:
===पारसेवल का प्रमेय और प्लांकरेल का प्रमेय===
===पारसेवल का प्रमेय और प्लांकरेल का प्रमेय===


होने देना <math>f_1(t)</math> और <math>f_2(t)</math> द्विपक्षीय लाप्लास परिवर्तन के साथ कार्य करें
होने देना <math>f_1(t)</math> और <math>f_2(t)</math> द्विपक्षीय लाप्लास परिवर्तन के साथ फलन  करें
<math>F_1(s)</math> और <math>F_2(s)</math> अभिसरण की पट्टियों में
<math>F_1(s)</math> और <math>F_2(s)</math> अभिसरण की पट्टियों में
  <math>\alpha_{1,2}<\real s<\beta_{1,2}</math>.
  <math>\alpha_{1,2}<\real s<\beta_{1,2}</math>.
Line 256: Line 255:
क्रॉस-सहसंबंध के रूप में कनवल्शन प्रमेय पर व्युत्क्रम लाप्लास परिवर्तन को लागू करने से यह प्रमेय सिद्ध होता है।
क्रॉस-सहसंबंध के रूप में कनवल्शन प्रमेय पर व्युत्क्रम लाप्लास परिवर्तन को लागू करने से यह प्रमेय सिद्ध होता है।


होने देना <math>f(t)</math> द्विपक्षीय लाप्लास परिवर्तन के साथ एक कार्य हो <math>F(s)</math>
होने देना <math>f(t)</math> द्विपक्षीय लाप्लास परिवर्तन के साथ एक फलन  हो <math>F(s)</math>
अभिसरण की पट्टी में <math>\alpha<\Re s<\beta</math>.
अभिसरण की पट्टी में <math>\alpha<\Re s<\beta</math>.
होने देना <math>c\in\mathbb{R}</math> साथ <math> \alpha<c<\beta </math>.
होने देना <math>c\in\mathbb{R}</math> साथ <math> \alpha<c<\beta </math>.
Line 268: Line 267:
=== विशिष्टता ===
=== विशिष्टता ===


किन्हीं दो कार्यों के लिए <math display="inline"> f,g </math> जिसके लिए दो तरफा लाप्लास रूपांतरित होता है <math display="inline"> \mathcal{T} \{f\}, \mathcal{T} \{g\} </math> मौजूद हैं, अगर <math display="inline"> \mathcal{T}\{f\} = \mathcal{T} \{g\}, </math> अर्थात। <math display="inline"> \mathcal{T}\{f\}(s) = \mathcal{T}\{g\}(s) </math> के प्रत्येक मूल्य के लिए <math display="inline"> s\in\mathbb R, </math> तब <math display="inline"> f=g </math> [[लगभग हर जगह]]।
किन्हीं दो फलन  के लिए <math display="inline"> f,g </math> जिसके लिए दो तरफा लाप्लास रूपांतरित होता है <math display="inline"> \mathcal{T} \{f\}, \mathcal{T} \{g\} </math> उपस्थित  हैं, यदि  <math display="inline"> \mathcal{T}\{f\} = \mathcal{T} \{g\}, </math> अर्थात। <math display="inline"> \mathcal{T}\{f\}(s) = \mathcal{T}\{g\}(s) </math> के प्रत्येक मूल्य के लिए <math display="inline"> s\in\mathbb R, </math> तब <math display="inline"> f=g </math> [[लगभग हर जगह]]।


== अभिसरण का क्षेत्र ==
== अभिसरण का क्षेत्र ==
अभिसरण के लिए द्विपक्षीय परिवर्तन की आवश्यकताएं एकतरफा परिवर्तनों की तुलना में अधिक कठिन हैं। अभिसरण का क्षेत्र सामान्य रूप से छोटा होगा।
अभिसरण के लिए द्विपक्षीय परिवर्तन की आवश्यकताएं एकतरफा परिवर्तनों की तुलना में अधिक कठिन हैं। अभिसरण का क्षेत्र सामान्य रूप से छोटा होगा।


यदि f एक स्थानीय रूप से समाकलित फलन है (या अधिक आम तौर पर स्थानीय रूप से परिबद्ध भिन्नता का एक बोरेल उपाय है), तो f का लाप्लास रूपांतरण F(s) अभिसरण करता है बशर्ते कि सीमा
यदि f एक स्थानीय रूप से समाकलित फलन है (या अधिक सामान्यतः  स्थानीय रूप से परिबद्ध भिन्नता का एक बोरेल उपाय है), तो f का लाप्लास रूपांतरण F(s) अभिसरण करता है बशर्ते कि सीमा
: <math>\lim_{R\to\infty}\int_0^R f(t)e^{-st}\, dt</math>
: <math>\lim_{R\to\infty}\int_0^R f(t)e^{-st}\, dt</math>
मौजूद। लाप्लास रूपांतरण पूरी तरह से अभिन्न अंग को अभिसरण करता है
उपस्थित । लाप्लास रूपांतरण पूरी तरह से अभिन्न अंग को अभिसरण करता है
: <math>\int_0^\infty \left|f(t)e^{-st}\right|\, dt</math>
: <math>\int_0^\infty \left|f(t)e^{-st}\right|\, dt</math>
मौजूद है (एक उचित Lebesgue अभिन्न के रूप में)। लाप्लास परिवर्तन को आमतौर पर सशर्त रूप से अभिसरण के रूप में समझा जाता है, जिसका अर्थ है कि यह बाद के भाव के बजाय पूर्व में अभिसरण करता है।
उपस्थित  है (एक उचित Lebesgue अभिन्न के रूप में)। लाप्लास परिवर्तन को सामान्यतः  सशर्त रूप से अभिसरण के रूप में समझा जाता है, जिसका अर्थ है कि यह बाद के भाव के अतिरिक्त पूर्व में अभिसरण करता है।


मानों मूल्यों का वह सेट जिसके लिए F(s) पूरी तरह से अभिसरित होता है या तो Re(s) > a या फिर Re(s) ≥ a के रूप में होता है, जहां a एक [[विस्तारित वास्तविक संख्या]] है, −∞ ≤ a ≤ ∞। (यह [[प्रभुत्व अभिसरण प्रमेय]] से अनुसरण   
मानों मूल्यों का वह सेट जिसके लिए F(s) पूरी तरह से अभिसरित होता है या तो Re(s) > a या फिर Re(s) ≥ a के रूप में होता है, जहां a एक [[विस्तारित वास्तविक संख्या]] है, −∞ ≤ a ≤ ∞। (यह [[प्रभुत्व अभिसरण प्रमेय]] से अनुसरण   


किया करता है।) निरंतर a को पूर्ण अभिसरण के भुज के रूप में जाना जाता है, और यह f(t) के विकास व्यवहार पर निर्भर किया करता है।<ref>{{harvnb|Widder|1941|loc=Chapter II, §1}}</ref> अनुरूप रूप से, दो तरफा परिवर्तन a <Re(s) <b के रूप की एक पट्टी में पूरी तरह से अभिसरण किया करता है, और संभवतः Re(s) = a या Re(s) = b लाइनों सहित।<ref>{{harvnb|Widder|1941|loc=Chapter VI, §2}}</ref> एस के मूल्यों का सबसेट जिसके लिए लाप्लास पूरी तरह से परिवर्तित हो जाता है उसे पूर्ण [[अभिसरण का क्षेत्र]] या पूर्ण अभिसरण का डोमेन कहा जाता है। दो तरफा मामले में, इसे कभी-कभी निरपेक्ष अभिसरण की पट्टी कहा जाता है। लाप्लास परिवर्तन पूर्ण अभिसरण के क्षेत्र में [[विश्लेषणात्मक कार्य]] है।
किया करता है।) निरंतर a को पूर्ण अभिसरण के भुज के रूप में जाना जाता है, और यह f(t) के विकास व्यवहार पर निर्भर किया करता है।<ref>{{harvnb|Widder|1941|loc=Chapter II, §1}}</ref> अनुरूप रूप से, दो तरफा परिवर्तन a <Re(s) <b के रूप की एक पट्टी में पूरी तरह से अभिसरण किया करता है, और संभवतः Re(s) = a या Re(s) = b लाइनों सहित।<ref>{{harvnb|Widder|1941|loc=Chapter VI, §2}}</ref> एस के मूल्यों का सबसेट जिसके लिए लाप्लास पूरी तरह से परिवर्तित हो जाता है उसे पूर्ण [[अभिसरण का क्षेत्र]] या पूर्ण अभिसरण का डोमेन कहा जाता है। दो तरफा स्थिति  में, इसे कभी-कभी निरपेक्ष अभिसरण की पट्टी कहा जाता है। लाप्लास परिवर्तन पूर्ण अभिसरण के क्षेत्र में [[विश्लेषणात्मक कार्य|विश्लेषणात्मक फलन]] है।


इसी तरह, मूल्यों का वह सेट जिसके लिए F(s) अभिसरण (सशर्त या पूर्ण रूप से) को सशर्त अभिसरण के क्षेत्र के रूप में जाना जाता है, या केवल 'अभिसरण का क्षेत्र' (ROC) के रूप में जाना जाता है। यदि लाप्लास रूपांतरण (सशर्त रूप से) s = s पर अभिसरित होता है<sub>0</sub>, तो यह स्वचालित रूप से Re(s) > Re(s) के साथ सभी s के लिए अभिसरित हो जाता है<sub>0</sub>). इसलिए, अभिसरण का क्षेत्र Re(s) > a के रूप का आधा-तल है, संभवतः सीमा रेखा Re(s) = a के कुछ बिंदुओं सहित। अभिसरण के क्षेत्र में Re(s) > Re(s<sub>0</sub>), एफ के लाप्लास परिवर्तन को अभिन्न के रूप में [[भागों द्वारा एकीकरण]] द्वारा व्यक्त किया जा सकता है   
इसी तरह, मूल्यों का वह सेट जिसके लिए F(s) अभिसरण (सशर्त या पूर्ण रूप से) को सशर्त अभिसरण के क्षेत्र के रूप में जाना जाता है, या केवल 'अभिसरण का क्षेत्र' (ROC) के रूप में जाना जाता है। यदि लाप्लास रूपांतरण (सशर्त रूप से) s = s पर अभिसरित होता है<sub>0</sub>, तो यह स्वचालित रूप से Re(s) > Re(s) के साथ सभी s के लिए अभिसरित हो जाता है<sub>0</sub>). इसलिए, अभिसरण का क्षेत्र Re(s) > a के रूप का आधा-तल है, संभवतः सीमा रेखा Re(s) = a के कुछ बिंदुओं सहित। अभिसरण के क्षेत्र में Re(s) > Re(s<sub>0</sub>), एफ के लाप्लास परिवर्तन को अभिन्न के रूप में [[भागों द्वारा एकीकरण]] द्वारा व्यक्त किया जा सकता है   
:<math>F(s) = (s-s_0)\int_0^\infty e^{-(s-s_0)t}\beta(t)\, dt,\quad \beta(u) = \int_0^u e^{-s_0t}f(t)\, dt.</math>
:<math>F(s) = (s-s_0)\int_0^\infty e^{-(s-s_0)t}\beta(t)\, dt,\quad \beta(u) = \int_0^u e^{-s_0t}f(t)\, dt.</math>
अर्थात्, अभिसरण के क्षेत्र में F(s) को प्रभावी रूप से किसी अन्य कार्य के बिल्कुल अभिसारी लाप्लास रूपांतरण के रूप में व्यक्त किया जा सकता है। विशेष रूप से, यह विश्लेषणात्मक है।
अर्थात्, अभिसरण के क्षेत्र में F(s) को प्रभावी रूप से किसी अन्य फलन  के बिल्कुल अभिसारी लाप्लास रूपांतरण के रूप में व्यक्त किया जा सकता है। विशेष रूप से, यह विश्लेषणात्मक है।


अभिसरण के क्षेत्र के भीतर एफ के क्षय गुणों और लाप्लास के गुणों के बीच संबंध के संबंध में कई पाले-वीनर प्रमेय हैं।
अभिसरण के क्षेत्र के भीतर एफ के क्षय गुणों और लाप्लास के गुणों के बीच संबंध के संबंध में कई पाले-वीनर प्रमेय हैं।


इंजीनियरिंग अनुप्रयोगों में, एक रैखिक समय-अपरिवर्तनीय एक [[एलटीआई प्रणाली]] से संबंधित एक फ़ंक्शन स्थिर होता हैं। रैखिक समय-अपरिवर्तनीय (एलटीआई) प्रणाली स्थिर है यदि प्रत्येक बाध्य इनपुट एक बाध्य आउटपुट उत्पन्न करता है।   
इंजीनियरिंग अनुप्रयोगों में, एक रैखिक समय-अपरिवर्तनीय एक [[एलटीआई प्रणाली]] से संबंधित एक फलन स्थिर होता हैं। रैखिक समय-अपरिवर्तनीय (एलटीआई) प्रणाली स्थिर है यदि प्रत्येक बाध्य इनपुट एक बाध्य आउटपुट उत्पन्न करता है।   


== करणीयता ==
== करणीयता ==
द्विपक्षीय परिवर्तन कार्य-कारण का सम्मान नहीं करते हैं। सामान्य कार्यों पर लागू होने पर वे समझ में आते हैं लेकिन समय के कार्यों (संकेतों) के साथ काम करते समय एकतरफा परिवर्तन को प्राथमिकता दी जाती है।
द्विपक्षीय परिवर्तन फलन -कारण का सम्मान नहीं करते हैं। सामान्य फलन  पर लागू होने पर वे समझ में आते हैं लेकिन समय के फलन  (संकेतों) के साथ काम करते समय एकतरफा परिवर्तन को प्राथमिकता दी जाती है।


== चयनित द्विपक्षीय लाप्लास रूपांतरणों की तालिका ==
== चयनित द्विपक्षीय लाप्लास रूपांतरणों की तालिका ==

Revision as of 01:39, 24 April 2023

गणित में, दो तरफा लाप्लास परिवर्तन या द्विपक्षीय लाप्लास परिवर्तन संभाव्यता के क्षण उत्पन्न करने वाले फलन के समतुल्य एक अभिन्न परिवर्तन होता है। दो तरफा लाप्लास रूपांतरण फूरियर रूपांतरण, मेलिन रूपांतरण, जेड-रूपांतरण और साधारण या एक तरफा लाप्लास रूपांतर से निकटता से संबंधित होता हैं। यदि f(t) सभी वास्तविक संख्याओं के लिए परिभाषित वास्तविक चर t का एक वास्तविक-या जटिल-मूल्यवान फलन होता है, तो दो तरफा लाप्लास परिवर्तन को अभिन्न द्वारा परिभाषित किया जा सकता है

समाकलन को सामान्यतः एक अनुचित समाकलन के रूप में समझा जाता है, जो दोनों समाकलन होने पर केवल अभिसरण करता है

अस्तित्व दो तरफा परिवर्तन के लिए सामान्यतः स्वीकृत संकेतन प्रतीत नहीं होता है यहाँ का उपयोग द्विपक्षीय रूप में करते हैं। कुछ लेखकों द्वारा उपयोग किया जाने वाला दो तरफा परिवर्तन है

शुद्ध गणित में तर्क t कोई भी चर हो सकता है, और लाप्लास रूपांतरण का उपयोग यह अध्ययन करने के लिए किया जाता है कि अंतर ऑपरेटर फलन को कैसे बदल सकते हैं।

विज्ञान और अभियांत्रिकी अनुप्रयोगों में, तर्क सदैव समय t सेकंड मे प्रतिनिधित्व करता है, और फलन f(t) अधिकांशतः एक संकेत (सूचना सिद्धांत) या तरंग का प्रतिनिधित्व किया करता है जो समय के साथ बदलता रहता है। इन स्थितियों में, सिग्नल फ़िल्टर (सिग्नल प्रोसेसिंग) द्वारा रूपांतरित किया जाता हैं, जो एक गणितीय ऑपरेटर की तरह काम करता हैं, लेकिन एक प्रतिबंध के रूप में कारण होना चाहिए, जिसका अर्थ है कि किसी दिए गए समय टी में आउटपुट उस आउटपुट पर निर्भर नहीं हो सकता है जो t का उच्च मूल्य होता है। जनसंख्या पारिस्थितिकी में, तर्क t अधिकांशतः फैलाव कर्नेल में स्थानिक विस्थापन का प्रतिनिधित्व किया करता है।

समय के फलन के साथ काम करते समय, f(t) को सिग्नल का 'टाइम डोमेन' प्रतिनिधित्व कहा जाता है, जबकि F(s) को 'एस-डोमेन' या लाप्लास डोमेन का प्रतिनिधित्व कहा जाता है। और इस प्रकार व्युत्क्रम परिवर्तन तब संकेत के संश्लेषण का प्रतिनिधित्व करता है क्योंकि इसके आवृत्ति घटकों का योग सभी आवृत्तियों पर लिया जाता है, जबकि आगे का परिवर्तन संकेत के आवृत्ति घटकों में विश्लेषण का प्रतिनिधित्व किया करता है।

फूरियर ट्रांसफॉर्म से संबंध

फूरियर रूपांतरण को दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है

ध्यान दें कि फूरियर रूपांतरण की परिभाषाएँ भिन्न रूप में होती है, और विशेष रूप से इस प्रकार दिखाया गया है

इसके अतिरिक्त अधिकांशतः प्रयोग किया जाता है। फूरियर रूपांतरण के संदर्भ में, हम दो तरफा लाप्लास रूपांतरण भी प्राप्त कर सकते हैं, जैसा कि

फूरियर रूपांतरण को सामान्य रूप से परिभाषित किया जा सकता है जिससे कि यह वास्तविक मूल्यों के लिए उपस्थित रहे; उपरोक्त परिभाषा छवि को एक पट्टी में परिभाषित करती है जिसमें वास्तविक धुरी सम्मलित नहीं हो सकती है जहां फूरियर ट्रांसफॉर्म को अभिसरण माना जाता है।

यही कारण है कि लाप्लास रूपांतरण नियंत्रण सिद्धांत और सिग्नल प्रोसेसिंग में अपने मूल्य को बनाए रखता है: एक फूरियर ट्रांसफॉर्म समाकलन के अपने डोमेन के भीतर अभिसरण का मतलब केवल यह है कि इसके द्वारा वर्णित एक रैखिक, शिफ्ट-इनवेरिएंट सिस्टम स्थिर या महत्वपूर्ण होता है। दूसरी ओर लाप्लास हर आवेग प्रतिक्रिया के लिए अभिसरण करेगा जो सबसे अधिक तेजी से बढ़ रहा होता है, क्योंकि इसमें एक अतिरिक्त शब्द सम्मलित होता है जिसे एक घातीय नियामक के रूप में लिया जा सकता है। चूंकि सुपरएक्सपोनेंशियल रूप से बढ़ते रैखिक प्रतिक्रिया नेटवर्क नहीं होता हैं, लाप्लास ट्रांसफॉर्म आधारित विश्लेषण और रैखिक, शिफ्ट-इनवेरिएंट सिस्टम का समाधान, लाप्लास के संदर्भ में अपना सबसे सामान्य रूप लेता है, फूरियर नहीं, ट्रांसफॉर्म करता है।

ठीक उसी समय, आजकल लाप्लास रूपांतरण सिद्धांत अधिक सामान्य अभिन्न रूपांतरण, या यहां तक ​​कि सामान्य हार्मोनिकल विश्लेषण के दायरे में आता है। उस ढांचे और नामकरण में, लाप्लास रूपांतरण फूरियर विश्लेषण का एक और रूप है, भले ही दृष्टि में अधिक सामान्य हो सकता है।

अन्य अभिन्न रूपांतरणों से संबंध

यदि यू हीविसाइड चरण फलन है, शून्य के बराबर जब इसका तर्क शून्य से कम होता है, एक-आधा जब इसका तर्क शून्य के बराबर होता है, और एक जब इसका तर्क शून्य से अधिक होता है, तो लाप्लास रूपांतरण द्वारा दो तरफा लाप्लास परिवर्तन के संदर्भ में परिभाषित किया जा सकता है

दूसरी ओर, हमारे पास भी है

कहाँ वह फलन है जो ऋण एक से गुणा करता है (), इसलिए लाप्लास रूपांतरण के किसी भी संस्करण को दूसरे के संदर्भ में परिभाषित किया जा सकता है।

मेलिन परिवर्तन को दो तरफा लाप्लास परिवर्तन द्वारा परिभाषित किया जा सकता है

साथ ऊपर के रूप में, और इसके विपरीत हम मेलिन परिवर्तन से दो तरफा परिवर्तन प्राप्त कर सकते हैं

एक सतत संभाव्यता घनत्व फलन ƒ(x) के क्षण-उत्पन्न करने वाले फलन को व्यक्त किया जा सकता है .

गुण

में निम्न गुण पाये जाते हैं Bracewell (2000) और Oppenheim (1997)

Properties of the bilateral Laplace transform
Property Time domain s domain Strip of convergence Comment
Definition
Time scaling Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected [, ;!_#%$&], [a-zA-Z], or [{}|] but "ब" found.in 1:34"): {\displaystyle \frac{1}{|a|} F \बाएं ({s \over a} \दाएं)}

गणित> \alpha <a^{-1} \, \Re s < \beta </math>

गणित> एक \in\mathbb{आर} </गणित>

उलट class="wikitable"

| गणित> एफ (-एस) </ गणित> | गणित> - \ बीटा < \ रे एस < - \ अल्फा </ गणित> | |- | फ़्रीक्वेंसी-डोमेन व्युत्पन्न | गणित> टी एफ (टी) </ गणित> | गणित> -F'(s) </गणित> | गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित> | |- | फ़्रीक्वेंसी-डोमेन सामान्य व्युत्पन्न | गणित> टी ^ {एन} एफ (टी) </ गणित> | गणित> (-1)^{n} \, F^{(n)}(s) </math> | गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित> | |- | यौगिक | गणित> एफ'(टी) </ गणित> | गणित> एस एफ (एस) </ गणित> | गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित> | |- | सामान्य व्युत्पन्न | गणित> एफ^{(एन)}(टी) </गणित> | गणित> s^n \, F(s) </गणित> | गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित> | |- | फ़्रीक्वेंसी-डोमेन एकीकरण | गणित> \frac{1}{t}\,f(t) </math> | गणित> \int_s^\infty F(\sigma)\, d\sigma </math> | | केवल तभी मान्य है जब अभिन्न उपस्थित हो |- | टाइम-डोमेन इंटीग्रल | गणित> \int_{-\infty}^t f(\tau)\, d\tau </math> | गणित> {1 \over s} F(s) </math> | गणित> \max(\alpha,0) < \real s < \beta </math> | |- | टाइम-डोमेन इंटीग्रल | गणित> \int_{t}^{\infty} f(\tau)\, d\tau </math> | गणित> {1 \over s} F(s) </math> | गणित> \alpha < \real s < \min(\beta,0) </math> | |- | फ्रीक्वेंसी शिफ्टिंग | गणित> ई ^ {पर} \, एफ (टी) </ गणित> | गणित> एफ (एस - ए) </ गणित> | गणित> \alpha + \Re a < \Re s < \beta + \Re a </math> | |- | समय बदलता है | गणित> एफ (टी - ए) </ गणित> | गणित> e^{-as} \, F(s) </math> | गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित> | गणित> a\in\mathbb{R} </math> |- | मॉडुलन | गणित> \cos(at)\,f(t) </math> | गणित> \frac{1}{2} F(s-ias frac{1}{2} F(s+ia) </math> | गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित> | गणित> a\in\mathbb{R} </math> |- | परिमित अंतर | गणित> f(t+\frac{1}{2}a)-f(t-\t frac{1}{2}a) </math> | गणित> 2 \sinh(\tfrac{1}{2} a s) \, F(s) </math> | गणित> \ अल्फा < \ रे एस < \ बीटा </ गणित> | गणित> a\in\mathbb{R} </math> |- | गुणा | गणित> एफ (टी) \, जी (टी) </गणित> | गणित> \frac{1}{2\pi i} \int_{c - i\infty}^{c + i\infty}F(\sigma)G(s - \sigma)\,d\sigma \ </ गणित> | गणित> \alpha_f+\alpha_g < \Re s < \beta_f+\beta_g </math> | गणित> \alpha_f <c <\beta_f</math>. एकीकरण ऊर्ध्वाधर रेखा के साथ किया जाता है Re(σ) = c अभिसरण के क्षेत्र के अंदर। |- | जटिल संयुग्मन | | | | |-

| | | | |- | पार सहसंबंध | | | | |}

द्विपक्षीय लाप्लास परिवर्तन के अधिकांश गुण एकतरफा लाप्लास परिवर्तन के गुणों के समान हैं, लेकिन कुछ महत्वपूर्ण अंतर हैं:

| वर्ग = विकिटेबल

|+ एकतरफा परिवर्तन के गुण बनाम द्विपक्षीय परिवर्तन के गुण
!
! एकतरफा समय डोमेन
! द्विपक्षीय समय डोमेन

! एकतरफा-'एस' डोमेन

! द्विपक्षीय-'एस' डोमेन
|-
! यौगिक

| | | | |-

! द्वितीय क्रम व्युत्पन्न

| | | | |-

! कनवल्शन

| | | | |-

! पार सहसंबंध

| | | | |- |}

पारसेवल का प्रमेय और प्लांकरेल का प्रमेय

होने देना और द्विपक्षीय लाप्लास परिवर्तन के साथ फलन करें और अभिसरण की पट्टियों में

.

होने देना साथ . तब पारसेवल का प्रमेय धारण करता है: [1]

क्रॉस-सहसंबंध के रूप में कनवल्शन प्रमेय पर व्युत्क्रम लाप्लास परिवर्तन को लागू करने से यह प्रमेय सिद्ध होता है।

होने देना द्विपक्षीय लाप्लास परिवर्तन के साथ एक फलन हो अभिसरण की पट्टी में . होने देना साथ . फिर प्लैंकेरल प्रमेय धारण करता है: [2]


विशिष्टता

किन्हीं दो फलन के लिए जिसके लिए दो तरफा लाप्लास रूपांतरित होता है उपस्थित हैं, यदि अर्थात। के प्रत्येक मूल्य के लिए तब लगभग हर जगह

अभिसरण का क्षेत्र

अभिसरण के लिए द्विपक्षीय परिवर्तन की आवश्यकताएं एकतरफा परिवर्तनों की तुलना में अधिक कठिन हैं। अभिसरण का क्षेत्र सामान्य रूप से छोटा होगा।

यदि f एक स्थानीय रूप से समाकलित फलन है (या अधिक सामान्यतः स्थानीय रूप से परिबद्ध भिन्नता का एक बोरेल उपाय है), तो f का लाप्लास रूपांतरण F(s) अभिसरण करता है बशर्ते कि सीमा

उपस्थित । लाप्लास रूपांतरण पूरी तरह से अभिन्न अंग को अभिसरण करता है

उपस्थित है (एक उचित Lebesgue अभिन्न के रूप में)। लाप्लास परिवर्तन को सामान्यतः सशर्त रूप से अभिसरण के रूप में समझा जाता है, जिसका अर्थ है कि यह बाद के भाव के अतिरिक्त पूर्व में अभिसरण करता है।

मानों मूल्यों का वह सेट जिसके लिए F(s) पूरी तरह से अभिसरित होता है या तो Re(s) > a या फिर Re(s) ≥ a के रूप में होता है, जहां a एक विस्तारित वास्तविक संख्या है, −∞ ≤ a ≤ ∞। (यह प्रभुत्व अभिसरण प्रमेय से अनुसरण

किया करता है।) निरंतर a को पूर्ण अभिसरण के भुज के रूप में जाना जाता है, और यह f(t) के विकास व्यवहार पर निर्भर किया करता है।[3] अनुरूप रूप से, दो तरफा परिवर्तन a <Re(s) <b के रूप की एक पट्टी में पूरी तरह से अभिसरण किया करता है, और संभवतः Re(s) = a या Re(s) = b लाइनों सहित।[4] एस के मूल्यों का सबसेट जिसके लिए लाप्लास पूरी तरह से परिवर्तित हो जाता है उसे पूर्ण अभिसरण का क्षेत्र या पूर्ण अभिसरण का डोमेन कहा जाता है। दो तरफा स्थिति में, इसे कभी-कभी निरपेक्ष अभिसरण की पट्टी कहा जाता है। लाप्लास परिवर्तन पूर्ण अभिसरण के क्षेत्र में विश्लेषणात्मक फलन है।

इसी तरह, मूल्यों का वह सेट जिसके लिए F(s) अभिसरण (सशर्त या पूर्ण रूप से) को सशर्त अभिसरण के क्षेत्र के रूप में जाना जाता है, या केवल 'अभिसरण का क्षेत्र' (ROC) के रूप में जाना जाता है। यदि लाप्लास रूपांतरण (सशर्त रूप से) s = s पर अभिसरित होता है0, तो यह स्वचालित रूप से Re(s) > Re(s) के साथ सभी s के लिए अभिसरित हो जाता है0). इसलिए, अभिसरण का क्षेत्र Re(s) > a के रूप का आधा-तल है, संभवतः सीमा रेखा Re(s) = a के कुछ बिंदुओं सहित। अभिसरण के क्षेत्र में Re(s) > Re(s0), एफ के लाप्लास परिवर्तन को अभिन्न के रूप में भागों द्वारा एकीकरण द्वारा व्यक्त किया जा सकता है

अर्थात्, अभिसरण के क्षेत्र में F(s) को प्रभावी रूप से किसी अन्य फलन के बिल्कुल अभिसारी लाप्लास रूपांतरण के रूप में व्यक्त किया जा सकता है। विशेष रूप से, यह विश्लेषणात्मक है।

अभिसरण के क्षेत्र के भीतर एफ के क्षय गुणों और लाप्लास के गुणों के बीच संबंध के संबंध में कई पाले-वीनर प्रमेय हैं।

इंजीनियरिंग अनुप्रयोगों में, एक रैखिक समय-अपरिवर्तनीय एक एलटीआई प्रणाली से संबंधित एक फलन स्थिर होता हैं। रैखिक समय-अपरिवर्तनीय (एलटीआई) प्रणाली स्थिर है यदि प्रत्येक बाध्य इनपुट एक बाध्य आउटपुट उत्पन्न करता है।

करणीयता

द्विपक्षीय परिवर्तन फलन -कारण का सम्मान नहीं करते हैं। सामान्य फलन पर लागू होने पर वे समझ में आते हैं लेकिन समय के फलन (संकेतों) के साथ काम करते समय एकतरफा परिवर्तन को प्राथमिकता दी जाती है।

चयनित द्विपक्षीय लाप्लास रूपांतरणों की तालिका

द्विपक्षीय लाप्लास परिवर्तन के लिए दिलचस्प उदाहरणों की निम्नलिखित सूची को इसी फूरियर या से घटाया जा सकता है एकतरफा लाप्लास परिवर्तन (यह सभी देखें Bracewell (2000)):

Selected bilateral Laplace transforms
Function Time domain
Laplace s-domain
Region of convergence Comment
Rectangular impulse
Triangular impulse
Gaussian impulse
Exponential decay is the Heaviside step function
Exponential growth
Failed to parse (Conversion error. Server ("cli") reported: "SyntaxError: Expected "-", "[", "\\", "\\begin", "\\begin{", "]", "^", "_", "{", "}", [ \t\n\r], [%$], [().], [,:;?!'], [/|], [0-9], [><~], [\-+*=], or [a-zA-Z] but "ग" found.in 1:29"): {\displaystyle e^{-|t|} </ गणित> | गणित> \frac{2}{1-s^2} } गणित> -1 <\Re s <1 </गणित>
टी|} </गणित> गणित> \frac{2a}{a^2-s^2} </math> गणित> -\Re a < \Re s < \Re a </math> गणित> \ रे ए> 0 </ गणित>

गणित> \frac{1}{\cosh t} </math>

गणित> \frac{\pi}{\cos(\pi s/2)} </math> गणित> -1 <\Re s <1 </गणित>
गणित> \frac{1}{1+e^{-t}} </math> गणित> \frac{\pi}{\sin(\pi s)} </math> गणित> 0 <\Re s <1 </गणित>

यह भी देखें

संदर्भ

  1. LePage, Chapter 11-3, p.340
  2. Widder 1941, Chapter VI, §8, p.246
  3. Widder 1941, Chapter II, §1
  4. Widder 1941, Chapter VI, §2
  • LePage, Wilbur R. (1980). Complex Variables and the Laplace Transform for Engineers. Dover Publications.
  • Van der Pol, Balthasar, and Bremmer, H., Operational Calculus Based on the Two-Sided Laplace Integral, Chelsea Pub. Co., 3rd ed., 1987.
  • Widder, David Vernon (1941), The Laplace Transform, Princeton Mathematical Series, v. 6, Princeton University Press, MR 0005923.
  • Bracewell, Ronald N. (2000). The Fourier Transform and Its Applications (3rd ed.).
  • Oppenheim, Alan V.; Willsky, Alan S. (1997). Signals & Systems (2nd ed.).