दो कान प्रमेय: Difference between revisions
No edit summary |
No edit summary |
||
Line 3: | Line 3: | ||
== प्रमेय का कथन == | == प्रमेय का कथन == | ||
बहुभुज के एअर को शीर्ष (ज्यामिति) {{mvar|v}} के रूप में परिभाषित किया गया है जैसे कि {{mvar|v}} के दो पड़ोसियों के बीच का रेखा खंड पूरी तरह से बहुभुज के आंतरिक भाग में स्थित है। दो एअर प्रमेय कहता है कि प्रत्येक साधारण बहुभुज में कम से कम दो एअर होते हैं। | |||
बहुभुज के एअर को शीर्ष (ज्यामिति) {{mvar|v}} के रूप में परिभाषित किया गया है जैसे कि {{mvar|v}} के दो पड़ोसियों के बीच का रेखा खंड पूरी तरह से बहुभुज के आंतरिक भाग में स्थित है। दो एअर प्रमेय कहता है कि प्रत्येक साधारण बहुभुज में कम से कम दो एअर होते हैं। | बहुभुज के एअर को शीर्ष (ज्यामिति) {{mvar|v}} के रूप में परिभाषित किया गया है जैसे कि {{mvar|v}} के दो पड़ोसियों के बीच का रेखा खंड पूरी तरह से बहुभुज के आंतरिक भाग में स्थित है। दो एअर प्रमेय कहता है कि प्रत्येक साधारण बहुभुज में कम से कम दो एअर होते हैं। | ||
Revision as of 19:44, 26 April 2023
ज्यामिति में, दो एअर्स का प्रमेय कहता है कि तीन से अधिक शीर्ष वाले प्रत्येक सरल बहुभुज में कम से कम दो कर्ण (गणित) होते हैं, ऐसे शीर्ष जिन्हें बिना किसी क्रॉसिंग के बहुभुज से हटाया जा सकता है। दो एअर प्रमेय बहुभुज त्रिभुजों के अस्तित्व के बराबर है। इसका श्रेय अधिकांश गैरी एच. मीस्टर्स को दिया जाता है, किन्तु मैक्स डेहन द्वारा इसे पहले ही सिद्ध कर दिया गया था।
प्रमेय का कथन
बहुभुज के एअर को शीर्ष (ज्यामिति) v के रूप में परिभाषित किया गया है जैसे कि v के दो पड़ोसियों के बीच का रेखा खंड पूरी तरह से बहुभुज के आंतरिक भाग में स्थित है। दो एअर प्रमेय कहता है कि प्रत्येक साधारण बहुभुज में कम से कम दो एअर होते हैं।
बहुभुज के एअर को शीर्ष (ज्यामिति) v के रूप में परिभाषित किया गया है जैसे कि v के दो पड़ोसियों के बीच का रेखा खंड पूरी तरह से बहुभुज के आंतरिक भाग में स्थित है। दो एअर प्रमेय कहता है कि प्रत्येक साधारण बहुभुज में कम से कम दो एअर होते हैं।
त्रिकोण से एअर
एक एअर और उसके दो पड़ोसी बहुभुज के अंदर एक त्रिभुज बनाते हैं जो बहुभुज के किसी अन्य भाग से पार नहीं होता है। इस प्रकार के त्रिभुज को हटाने से कम भुजाओं वाला बहुभुज बनता है, और एअर्स को बार-बार हटाने से कोई भी साधारण बहुभुज बहुभुज त्रिभुज बन जाता है।
इसके विपरीत, यदि एक बहुभुज त्रिकोणीय है, तो त्रिभुज का दोहरा ग्राफ (एक त्रिकोण प्रति एक शीर्ष और आसन्न त्रिकोणों की एक जोड़ी के साथ एक ग्राफ) एक पेड़ (ग्राफ सिद्धांत) होगा और पेड़ का प्रत्येक पत्ता एक एअर का निर्माण करेगा। चूँकि एक से अधिक शीर्ष वाले प्रत्येक वृक्ष में कम से कम दो पत्तियाँ होती हैं, एक से अधिक त्रिभुज वाले प्रत्येक त्रिभुजित बहुभुज में कम से कम दो एअर होते हैं। इस प्रकार, दो एअर प्रमेय इस तथ्य के समतुल्य है कि प्रत्येक साधारण बहुभुज में त्रिभुज होता है।[1]
संबंधित प्रकार के वर्टेक्स
एक एअर को प्रकाशित कहा जाता है जब यह बहुभुज के उत्तल पतवार का शीर्ष बनाता है। चूँकि, यह संभव है कि बहुभुज के एअर खुले न हों।[2]
एअर एक प्रमुख शीर्ष का एक विशेष मामला है, एक शीर्ष ऐसा है कि शीर्ष के पड़ोसियों को जोड़ने वाला रेखा खंड बहुभुज को पार नहीं करता है या इसके किसी अन्य शीर्ष को स्पर्श नहीं करता है। एक प्रमुख शीर्ष जिसके लिए यह रेखा खंड बहुभुज के बाहर स्थित होता है, मुख कहलाता है। दो एअर प्रमेय के अनुरूप, प्रत्येक गैर-उत्तल सरल बहुभुज में कम से कम एक फलक होता है। दोनों प्रकार, दो एअर और एक फलक के प्रमुख शीर्षों की न्यूनतम संख्या वाले बहुभुजों को एंथ्रोपोमोर्फिक बहुभुज कहा जाता है।[3]
इतिहास और प्रमाण
दो एअर प्रमेय को अधिकांश गैरी एच. मीस्टर्स द्वारा 1975 के पेपर के लिए जिम्मेदार ठहराया जाता है, जिससे एअर की शब्दावली उत्पन्न हुई थी।[4] चूंकि, जॉर्डन वक्र प्रमेय के प्रमाण के भाग के रूप में प्रमेय पहले मैक्स डेह्न (लगभग 1899) द्वारा सिद्ध किया गया था। प्रमेय को सिद्ध करने के लिए, डेह्न देखता है कि प्रत्येक बहुभुज में कम से कम तीन उत्तल शीर्ष होते हैं। यदि इन शीर्षों में से एक, v, एक एअर नहीं है, तो इसे एक विकर्ण द्वारा दूसरे शीर्ष x से जोड़ा जा सकता है v द्वारा गठित त्रिकोण uvw के अंदर और इसके दो पड़ोसियों; x को इस त्रिभुज के अंदर शीर्ष के रूप में चुना जा सकता है जो रेखा uw से सबसे दूर है। यह विकर्ण बहुभुज को दो छोटे बहुभुजों में विघटित कर देता है, और एअर्स और विकर्णों द्वारा बार-बार अपघटन अंततः पूरे बहुभुज का एक त्रिभुज बनाता है, जिससे एक एअर को दोहरे वृक्ष के पत्ते के रूप में पाया जा सकता है।[5]
संदर्भ
- ↑ O'Rourke, Joseph (1987), Art Gallery Theorems and Algorithms, International Series of Monographs on Computer Science, Oxford University Press, ISBN 0-19-503965-3, MR 0921437.
- ↑ Meisters, G. H. (1980), "Principal vertices, exposed points, and ears", American Mathematical Monthly, 87 (4): 284–285, doi:10.2307/2321563, JSTOR 2321563, MR 0567710.
- ↑ Toussaint, Godfried (1991), "Anthropomorphic polygons", American Mathematical Monthly, 98 (1): 31–35, doi:10.2307/2324033, JSTOR 2324033, MR 1083611.
- ↑ Meisters, G. H. (1975), "Polygons have ears", American Mathematical Monthly, 82 (6): 648–651, doi:10.2307/2319703, JSTOR 2319703, MR 0367792.
- ↑ Guggenheimer, H. (1977), "The Jordan curve theorem and an unpublished manuscript by Max Dehn" (PDF), Archive for History of Exact Sciences, 17 (2): 193–200, doi:10.1007/BF02464980, JSTOR 41133486, MR 0532231.