हाइड्रोमेटलर्जी: Difference between revisions
mNo edit summary |
mNo edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Ore extraction process}} | {{Short description|Ore extraction process}} | ||
{{Use American English|date = April 2019}} | {{Use American English|date = April 2019}} | ||
जलधातु विज्ञान [[निष्कर्षण धातु विज्ञान]] के क्षेत्र में एक तकनीक है, धातुओं को उनके अयस्कों से प्राप्त करना। जलधातु विज्ञान में अयस्कों, सांद्रों, और पुनर्चक्रित या अवशिष्ट सामग्री से धातुओं की पुनर्प्राप्ति के लिए [[जलीय]] घोल का उपयोग सम्मलित है।<ref name="KO">Brent Hiskey "Metallurgy, Survey" in Kirk-Othmer Encyclopedia of Chemical Technology, 2000, Wiley-VCH, Weinheim. {{doi|10.1002/0471238961.1921182208091911.a01}}</ref><ref>{{cite journal | last1 = Habashi | first1 = F. | year = 2009 | title = एक्सट्रैक्टिव मेटलर्जी में हालिया रुझान| url = | journal = Journal of Mining and Metallurgy, Section B: Metallurgy | volume = 45 | issue = | pages = 1–13 | doi = 10.2298/JMMB0901001H | doi-access = free }}</ref> प्रसंस्करण तकनीकें जो जलधातु विज्ञान को पूरक करती हैं, वे हैं [[पाइरोमेटलर्जी|पाइरोमेटलर्जी(आतिशबाज़ी)]], वाष्प धातु विज्ञान और पिघला हुआ नमक इलेक्ट्रोमेटालर्जी(विद्युत धातु विज्ञान)। जलधातु विज्ञान को समान्यता तीन सामान्य क्षेत्रों में विभाजित किया जाता है: | |||
* लीचिंग(निक्षालन) | * लीचिंग(निक्षालन) | ||
* विलयन एकाग्रता और शोधन | * विलयन एकाग्रता और शोधन | ||
* धातु या धातु यौगिक पुनर्प्राप्ति | * धातु या धातु यौगिक पुनर्प्राप्ति | ||
== | == निक्षालन == | ||
[[लीचिंग (धातु विज्ञान)| | [[लीचिंग (धातु विज्ञान)|निक्षालन (धातु विज्ञान)]] में धातु के असर वाली सामग्री से धातु निकालने के लिए जलीय घोल का उपयोग सम्मलित होता है, जिसे मूल्यवान धातु वाली सामग्री के संपर्क में लाया जाता है।<ref>{{cite book|last1=Um|first1=Namil|title=Hydrometallurgical recovery process of rare earth elements from waste: main application of acid leaching with devised diagram|date=July 2017|publisher=INTECH|isbn=978-953-51-3402-2|pages=41–60}}</ref> पहला उदाहरण 11-12वीं शताब्दी के चीन से आता है जहां इसे तांबे के निष्कर्षण के लिए लागू किया गया था और कुल तांबे के उत्पादन का एक महत्वपूर्ण हिस्सा था।<ref>{{cite journal |last1=Golas |first1=Peter J. |title=A Copper Production Breakthrough in the Song: The Copper Precipitation Process |journal=Journal of Song-Yuan Studies |date=1995 |volume=25 |page=153}}</ref> 17 वीं शताब्दी में जर्मनी और स्पेन में इसी उद्देश्य के लिए इसका उपयोग किया गया था।<ref name=Habashi>{{cite journal|doi=10.1016/j.hydromet.2004.01.008|title=हाइड्रोमेटालर्जी का एक संक्षिप्त इतिहास|year=2005|last1=Habashi|first1=Fathi|journal=Hydrometallurgy|volume=79|issue=1–2|pages=15–22}}</ref> | ||
जलीय चरण में वांछित धातु घटक के विघटन की दर, सीमा और चयनात्मकता को अनुकूलित करने के लिए पीएच, ऑक्सीकरण-कमी क्षमता, [[ कीलेटिंग एजेंट | कीलेटिंग अभिकर्मक]] | |||
पांच बुनियादी लीचिंग(निक्षालन) रिएक्टर | जलीय चरण में वांछित धातु घटक के विघटन की दर, सीमा और चयनात्मकता को अनुकूलित करने के लिए पीएच, ऑक्सीकरण-कमी क्षमता,[[ कीलेटिंग एजेंट | कीलेटिंग अभिकर्मक]] और तापमान की उपस्थिति के संदर्भ में [[नशीला]] विलयन की स्थिति भिन्न होती है। कीलेट अभिकर्मकों के उपयोग के माध्यम से, कुछ धातुओं को चुनिंदा रूप से निकाला जा सकता है। इस तरह के कीलेट अभिकर्मक समान्यता [[शिफ आधार]] के एमाइन होते हैं।<ref>{{cite journal|doi=10.1016/j.ccr.2007.03.014|title=बेस मेटल रिकवरी में कटियन और आयनों का सह-निष्कर्षण|year=2007|last1=Tasker|first1=Peter A.|last2=Tong|first2=Christine C.|last3=Westra|first3=Arjan N.|journal=Coordination Chemistry Reviews|volume=251|issue=13–14|pages=1868–1877}}</ref> | ||
पांच बुनियादी लीचिंग(निक्षालन) रिएक्टर विन्यास [[इन-सीटू लीचिंग|यथास्थान]], ढेर , वैट, टैंक और ऑटोक्लेव हैं। | |||
=== [[इन-सीटू लीचिंग| | === [[इन-सीटू लीचिंग|यथास्थान निक्षालन]] === | ||
यथास्थान निक्षालन को "समाधान(घोल) खनन" भी कहा जाता है। इस प्रक्रिया में शुरू में अयस्क जमा में छेदों की ड्रिलिंग सम्मलित है। विस्फोटक या [[हाइड्रोलिक फ्रेक्चरिंग|हाइड्रोलिक विखंडन]] का उपयोग जमा के भीतर खुले रास्ते बनाने के लिए किया जाता है ताकि घोल अंदर प्रवेश कर सके। निक्षालन विलयन को निक्षेप में पम्प किया जाता है जहाँ यह अयस्क के साथ संपर्क स्थापित करता है। इसके बाद घोल को एकत्र कर संसाधित किया जाता है। [[बेवर्ली यूरेनियम खदान]] ज़िम्बाब्वे में [[इन-सीटू लीचिंग|यथास्थान]] निक्षालन और ट्रोजन खदान का एक उदाहरण है।<sup>[उद्धरण वांछित]</sup> | |||
=== हीप | === हीप निक्षालन === | ||
ढेर लीचिंग(निक्षालन) प्रक्रियाओं में, कुचल (और कभी-कभी ढेर) अयस्क को | ढेर लीचिंग(निक्षालन) प्रक्रियाओं में, कुचल (और कभी-कभी ढेर) अयस्क को पंक्तिबद्ध किया जाता है जो एक अभेद्य परत के साथ खड़ा होता है। लीच के घोल को ढेर के ऊपर छिड़का जाता है, और ढेर(पंक्ति) के माध्यम से नीचे की ओर रिसने दिया जाता है। ढेर डिजाइन में समान्यता संग्रह सम्प सम्मलित होते हैं, जो आगे की प्रक्रिया के लिए गर्भवती लीच विलयन (अर्थात् भंग मूल्यवान धातुओं के साथ विलयन) को पंप करने की अनुमति देते हैं। एक उदाहरण सोने का सायनाइडेशन है, जहां चूर्णित अयस्कों को [[सोडियम साइनाइड]] के घोल के साथ निकाला जाता है, जो हवा की उपस्थिति में सोने को घोल देता है, जिससे गैर-कीमती अवशेषों को पीछे छोड़ दिया जाता है। | ||
:[[Image:Dicyanoaurate(I)-3D-balls.png|thumb|right|300px|ऑरोसायनाइड या डाइसायनौरेट (I) जटिल ऋणायन का [[बॉल और स्टिक मॉडल|गेंद और छड़ी मॉडल]], [Au(CN)<sub>2</sub>]<sup>-</सुप>.<ref>Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. {{ISBN|0-7506-3365-4}}.</ref>]] | :[[Image:Dicyanoaurate(I)-3D-balls.png|thumb|right|300px|ऑरोसायनाइड या डाइसायनौरेट (I) जटिल ऋणायन का [[बॉल और स्टिक मॉडल|गेंद और छड़ी मॉडल]], [Au(CN)<sub>2</sub>]<sup>-</सुप>.<ref>Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. {{ISBN|0-7506-3365-4}}.</ref>]] | ||
=== [[वैट लीचिंग|वैट | === [[वैट लीचिंग|वैट निक्षालन]] === | ||
वैट लीचिंग(निक्षालन) में संपर्क सामग्री सम्मलित होती है, जो समान्यता बड़े वैट में लीच विलयन के साथ आकार में कमी और वर्गीकरण से गुजरती है। | वैट लीचिंग(निक्षालन) में संपर्क सामग्री सम्मलित होती है, जो समान्यता बड़े वैट में लीच विलयन के साथ आकार में कमी और वर्गीकरण से गुजरती है। | ||
=== टैंक | === टैंक निक्षालन === | ||
उत्तेजित टैंक, जिसे आंदोलन/उत्तेजना | उत्तेजित टैंक, जिसे आंदोलन/उत्तेजना निक्षालन भी कहा जाता है, इसमें संपर्क सामग्री सम्मलित होती है, जो समान्यता उत्तेजित टैंकों में लीच विलयन के साथ आकार में कमी और वर्गीकरण से गुजरती है। बड़े पैमाने पर स्थानांतरण को बढ़ाकर आंदोलन/उत्तेजना अभिक्रिया गति को बढ़ा सकता है। टैंकों को प्रायः श्रृंखला में रिएक्टरों के रूप में विन्यस्त किया जाता है। | ||
=== [[आटोक्लेव]] | === [[आटोक्लेव]] निक्षालन === | ||
आटोक्लेव रिएक्टरों का उपयोग उच्च तापमान पर अभिक्रियाओं के लिए किया जाता है, जो अभिक्रिया की दर को बढ़ा सकता है।इसी तरह, आटोक्लेव प्रणाली में गैसीय अभिकर्मकों के उपयोग को सक्षम बनाता है। | आटोक्लेव रिएक्टरों का उपयोग उच्च तापमान पर अभिक्रियाओं के लिए किया जाता है, जो अभिक्रिया की दर को बढ़ा सकता है।इसी तरह, आटोक्लेव प्रणाली में गैसीय अभिकर्मकों के उपयोग को सक्षम बनाता है। | ||
Line 45: | Line 48: | ||
== धातु पुनर्प्राप्ति == | == धातु पुनर्प्राप्ति == | ||
हाइड्रोमेटालर्जिकल प्रक्रिया में धातु की पुनर्प्राप्ति अंतिम चरण है। कच्चे माल के रूप में बिक्री के लिए उपयुक्त धातु प्रायः धातु पुनर्प्राप्ति चरण में सीधे उत्पादित होते हैं। यद्यपि, कभी-कभी, अति-उच्च शुद्धता वाली धातुओं का उत्पादन करने के लिए और अधिक शोधन की आवश्यकता होती है। प्राथमिक प्रकार की धातु पुनर्प्राप्ति प्रक्रियाएं विद्युत अपघटन, गैसीय कमी और अवक्षेपण हैं। उदाहरण के लिए, | हाइड्रोमेटालर्जिकल प्रक्रिया में धातु की पुनर्प्राप्ति अंतिम चरण है। कच्चे माल के रूप में बिक्री के लिए उपयुक्त धातु प्रायः धातु पुनर्प्राप्ति चरण में सीधे उत्पादित होते हैं। यद्यपि, कभी-कभी, अति-उच्च शुद्धता वाली धातुओं का उत्पादन करने के लिए और अधिक शोधन की आवश्यकता होती है। प्राथमिक प्रकार की धातु पुनर्प्राप्ति प्रक्रियाएं विद्युत अपघटन, गैसीय कमी और अवक्षेपण हैं। उदाहरण के लिए, जलधातु विज्ञान का एक प्रमुख लक्ष्य तांबा है, जो आसानी से विद्युत अपघटन द्वारा प्राप्त किया जाता है। Fe<sup>2+</sup> और Zn<sup>2+</sup> जैसी अन्य संदूषक धातुओं को पीछे छोड़ते हुए Cu<sup>2+</sup> आयन हल्की क्षमता पर कम हो जाते हैं। | ||
=== विद्युत अपघटन === | === विद्युत अपघटन === | ||
Line 51: | Line 54: | ||
===अवक्षेपण === | ===अवक्षेपण === | ||
जलधातु विज्ञान में अवक्षेपण में धातुओं और उनके यौगिकों या जलीय घोलों से दूषित पदार्थों की रासायनिक अवक्षेपण सम्मलित होती है। अवक्षेपण (रसायन विज्ञान) तब आगे बढ़ेगा, जब [[अभिकर्मक]] योग , [[वाष्पीकरण]], ph परिवर्तन या तापमान में हेरफेर के माध्यम से, कोई भी प्रजाति घुलनशीलता की अपनी सीमा से अधिक हो जाती है। | |||
==संदर्भ== | ==संदर्भ== |
Revision as of 12:09, 23 April 2023
जलधातु विज्ञान निष्कर्षण धातु विज्ञान के क्षेत्र में एक तकनीक है, धातुओं को उनके अयस्कों से प्राप्त करना। जलधातु विज्ञान में अयस्कों, सांद्रों, और पुनर्चक्रित या अवशिष्ट सामग्री से धातुओं की पुनर्प्राप्ति के लिए जलीय घोल का उपयोग सम्मलित है।[1][2] प्रसंस्करण तकनीकें जो जलधातु विज्ञान को पूरक करती हैं, वे हैं पाइरोमेटलर्जी(आतिशबाज़ी), वाष्प धातु विज्ञान और पिघला हुआ नमक इलेक्ट्रोमेटालर्जी(विद्युत धातु विज्ञान)। जलधातु विज्ञान को समान्यता तीन सामान्य क्षेत्रों में विभाजित किया जाता है:
- लीचिंग(निक्षालन)
- विलयन एकाग्रता और शोधन
- धातु या धातु यौगिक पुनर्प्राप्ति
निक्षालन
निक्षालन (धातु विज्ञान) में धातु के असर वाली सामग्री से धातु निकालने के लिए जलीय घोल का उपयोग सम्मलित होता है, जिसे मूल्यवान धातु वाली सामग्री के संपर्क में लाया जाता है।[3] पहला उदाहरण 11-12वीं शताब्दी के चीन से आता है जहां इसे तांबे के निष्कर्षण के लिए लागू किया गया था और कुल तांबे के उत्पादन का एक महत्वपूर्ण हिस्सा था।[4] 17 वीं शताब्दी में जर्मनी और स्पेन में इसी उद्देश्य के लिए इसका उपयोग किया गया था।[5]
जलीय चरण में वांछित धातु घटक के विघटन की दर, सीमा और चयनात्मकता को अनुकूलित करने के लिए पीएच, ऑक्सीकरण-कमी क्षमता, कीलेटिंग अभिकर्मक और तापमान की उपस्थिति के संदर्भ में नशीला विलयन की स्थिति भिन्न होती है। कीलेट अभिकर्मकों के उपयोग के माध्यम से, कुछ धातुओं को चुनिंदा रूप से निकाला जा सकता है। इस तरह के कीलेट अभिकर्मक समान्यता शिफ आधार के एमाइन होते हैं।[6]
पांच बुनियादी लीचिंग(निक्षालन) रिएक्टर विन्यास यथास्थान, ढेर , वैट, टैंक और ऑटोक्लेव हैं।
यथास्थान निक्षालन
यथास्थान निक्षालन को "समाधान(घोल) खनन" भी कहा जाता है। इस प्रक्रिया में शुरू में अयस्क जमा में छेदों की ड्रिलिंग सम्मलित है। विस्फोटक या हाइड्रोलिक विखंडन का उपयोग जमा के भीतर खुले रास्ते बनाने के लिए किया जाता है ताकि घोल अंदर प्रवेश कर सके। निक्षालन विलयन को निक्षेप में पम्प किया जाता है जहाँ यह अयस्क के साथ संपर्क स्थापित करता है। इसके बाद घोल को एकत्र कर संसाधित किया जाता है। बेवर्ली यूरेनियम खदान ज़िम्बाब्वे में यथास्थान निक्षालन और ट्रोजन खदान का एक उदाहरण है।[उद्धरण वांछित]
हीप निक्षालन
ढेर लीचिंग(निक्षालन) प्रक्रियाओं में, कुचल (और कभी-कभी ढेर) अयस्क को पंक्तिबद्ध किया जाता है जो एक अभेद्य परत के साथ खड़ा होता है। लीच के घोल को ढेर के ऊपर छिड़का जाता है, और ढेर(पंक्ति) के माध्यम से नीचे की ओर रिसने दिया जाता है। ढेर डिजाइन में समान्यता संग्रह सम्प सम्मलित होते हैं, जो आगे की प्रक्रिया के लिए गर्भवती लीच विलयन (अर्थात् भंग मूल्यवान धातुओं के साथ विलयन) को पंप करने की अनुमति देते हैं। एक उदाहरण सोने का सायनाइडेशन है, जहां चूर्णित अयस्कों को सोडियम साइनाइड के घोल के साथ निकाला जाता है, जो हवा की उपस्थिति में सोने को घोल देता है, जिससे गैर-कीमती अवशेषों को पीछे छोड़ दिया जाता है।
वैट निक्षालन
वैट लीचिंग(निक्षालन) में संपर्क सामग्री सम्मलित होती है, जो समान्यता बड़े वैट में लीच विलयन के साथ आकार में कमी और वर्गीकरण से गुजरती है।
टैंक निक्षालन
उत्तेजित टैंक, जिसे आंदोलन/उत्तेजना निक्षालन भी कहा जाता है, इसमें संपर्क सामग्री सम्मलित होती है, जो समान्यता उत्तेजित टैंकों में लीच विलयन के साथ आकार में कमी और वर्गीकरण से गुजरती है। बड़े पैमाने पर स्थानांतरण को बढ़ाकर आंदोलन/उत्तेजना अभिक्रिया गति को बढ़ा सकता है। टैंकों को प्रायः श्रृंखला में रिएक्टरों के रूप में विन्यस्त किया जाता है।
आटोक्लेव निक्षालन
आटोक्लेव रिएक्टरों का उपयोग उच्च तापमान पर अभिक्रियाओं के लिए किया जाता है, जो अभिक्रिया की दर को बढ़ा सकता है।इसी तरह, आटोक्लेव प्रणाली में गैसीय अभिकर्मकों के उपयोग को सक्षम बनाता है।
विलयन एकाग्रता और शोधन
लीचिंग(निक्षालन) के बाद, लीच शराब को सामान्य रूप से पुनर्प्राप्त किए जाने वाले धातु आयनों की एकाग्रता से गुजरना चाहिए। इसके अतिरिक्त, अवांछित धातु आयनों को कभी-कभी हटाने की आवश्यकता होती है।[1]
- अवक्षेपण (रसायन विज्ञान) लक्षित धातु के एक यौगिक का चयनात्मक निष्कासन है या इसके यौगिकों में से एक की अवक्षेपण द्वारा एक बड़ी अशुद्धता को हटाना है। निकेल लीचिंग(निक्षालन) को शुद्ध करने के साधन के रूप में कॉपर(ताँबा) को इसके सल्फाइड के रूप में अवक्षेपित किया जाता है।
- सीमेंटेशन (धातुकर्म) एक रेडॉक्स अभिक्रिया द्वारा धातु आयन का धातु में रूपांतरण है। एक विशिष्ट अनुप्रयोग में तांबे के आयनों के घोल में रद्दी लोहा को सम्मलित करना सम्मलित है। लोहा घुल जाता है और ताँबा धातु निक्षेपित(जमा) हो जाती है।
- विलायक निष्कर्षण
- आयन विनिमय
- गैस में कमी। हाइड्रोजन के साथ निकेल और अमोनिया के घोल का उपचार करने से निकेल धातु को इसके पाउडर के रूप में प्राप्त होता है।
- कीमती धातुओं के अलगाव के लिए महंगी विद्युत अपघटन प्रक्रिया लागू होने पर इलेक्ट्रोविनिंग एक विशेष रूप से चयनात्मक है। इसके विलयनों से स्वर्ण पर विद्युत लेपन किया जा सकता है।
विलायक निष्कर्षण
विलायक निष्कर्षण में एक धातु को एक चरण से दूसरे चरण में निकालने के लिए तनु में एक अर्क का मिश्रण उपयोग किया जाता है। विलायक निष्कर्षण में इस मिश्रण को प्रायः कार्बनिक कहा जाता है क्योंकि मुख्य घटक (मंदक) कुछ प्रकार का तेल होता है।
PLS (गर्भवती लीच विलयन) को छीले हुए कार्बनिक के साथ पायसीकरण के लिए मिलाया जाता है और अलग करने की अनुमति दी जाती है।[उद्धरण वांछित] धातु को PLS से संशोधित किए गए कार्बनिक में बदल दिया जाएगा जिसे वे संशोधित कर रहे हैं।[स्पष्टीकरण की आवश्यकता] परिणामी प्रवाह एक भारित कार्बनिक और एक रैफिनेट(परिशोधित) होंगी। इलेक्ट्रोविनिंग के साथ काम करते समय, भारित किए गए कार्बनिक को एक दुर्बल इलेक्ट्रोलाइट के साथ पायसीकरण में मिलाया जाता है और अलग करने की अनुमति दी जाती है। धातु का कार्बनिक से इलेक्ट्रोलाइट में आदान-प्रदान किया जाएगा। परिणामी प्रवाह एक नग्न(स्ट्रिप्ड) कार्बनिक और एक समृद्ध इलेक्ट्रोलाइट होंगी। कार्बनिक प्रवाह को विलायक निष्कर्षण के माध्यम से पुनर्नवीनीकरण किया जाता है जबकि जलीय प्रवाह क्रमशः लीचिंग(निक्षालन) और इलेक्ट्रोविनिंग[स्पष्टीकरण की आवश्यकता] प्रक्रियाओं के माध्यम से चक्रित होती हैं।[उद्धरण वांछित]
आयन एक्सचेंज
कीलेट अभिकर्मक, प्राकृतिक जियोलाइट, सक्रिय कार्बन, रेजिन, और तरल कार्बनिक को कीलेट अभिकर्मकों के साथ संसेचित किया जाता है, सभी का उपयोग विलयन के साथ धनायन या आयनों का आदान-प्रदान करने के लिए किया जाता है।[उद्धरण वांछित] चयनात्मकता और पुनर्प्राप्ति उपयोग किए गए अभिकर्मकों और मौजूद संदूषकों का एक कार्य है।
धातु पुनर्प्राप्ति
हाइड्रोमेटालर्जिकल प्रक्रिया में धातु की पुनर्प्राप्ति अंतिम चरण है। कच्चे माल के रूप में बिक्री के लिए उपयुक्त धातु प्रायः धातु पुनर्प्राप्ति चरण में सीधे उत्पादित होते हैं। यद्यपि, कभी-कभी, अति-उच्च शुद्धता वाली धातुओं का उत्पादन करने के लिए और अधिक शोधन की आवश्यकता होती है। प्राथमिक प्रकार की धातु पुनर्प्राप्ति प्रक्रियाएं विद्युत अपघटन, गैसीय कमी और अवक्षेपण हैं। उदाहरण के लिए, जलधातु विज्ञान का एक प्रमुख लक्ष्य तांबा है, जो आसानी से विद्युत अपघटन द्वारा प्राप्त किया जाता है। Fe2+ और Zn2+ जैसी अन्य संदूषक धातुओं को पीछे छोड़ते हुए Cu2+ आयन हल्की क्षमता पर कम हो जाते हैं।
विद्युत अपघटन
इलेक्ट्रोविनिंग और विद्युत शोधन में क्रमशः कैथोड पर धातुओं केविद्युत का उपयोग करके धातुओं की पुनर्प्राप्ति और शोधनकरण सम्मलित है, और या तो धातु विघटन या एनोड पर एक प्रतिस्पर्धी ऑक्सीकरण अभिक्रिया होती है।
अवक्षेपण
जलधातु विज्ञान में अवक्षेपण में धातुओं और उनके यौगिकों या जलीय घोलों से दूषित पदार्थों की रासायनिक अवक्षेपण सम्मलित होती है। अवक्षेपण (रसायन विज्ञान) तब आगे बढ़ेगा, जब अभिकर्मक योग , वाष्पीकरण, ph परिवर्तन या तापमान में हेरफेर के माध्यम से, कोई भी प्रजाति घुलनशीलता की अपनी सीमा से अधिक हो जाती है।
संदर्भ
- ↑ 1.0 1.1 Brent Hiskey "Metallurgy, Survey" in Kirk-Othmer Encyclopedia of Chemical Technology, 2000, Wiley-VCH, Weinheim. doi:10.1002/0471238961.1921182208091911.a01
- ↑ Habashi, F. (2009). "एक्सट्रैक्टिव मेटलर्जी में हालिया रुझान". Journal of Mining and Metallurgy, Section B: Metallurgy. 45: 1–13. doi:10.2298/JMMB0901001H.
- ↑ Um, Namil (July 2017). Hydrometallurgical recovery process of rare earth elements from waste: main application of acid leaching with devised diagram. INTECH. pp. 41–60. ISBN 978-953-51-3402-2.
- ↑ Golas, Peter J. (1995). "A Copper Production Breakthrough in the Song: The Copper Precipitation Process". Journal of Song-Yuan Studies. 25: 153.
- ↑ Habashi, Fathi (2005). "हाइड्रोमेटालर्जी का एक संक्षिप्त इतिहास". Hydrometallurgy. 79 (1–2): 15–22. doi:10.1016/j.hydromet.2004.01.008.
- ↑ Tasker, Peter A.; Tong, Christine C.; Westra, Arjan N. (2007). "बेस मेटल रिकवरी में कटियन और आयनों का सह-निष्कर्षण". Coordination Chemistry Reviews. 251 (13–14): 1868–1877. doi:10.1016/j.ccr.2007.03.014.
- ↑ Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
बाहरी संबंध
- Hydrometallurgy, BioMineWiki Archived 2017-12-22 at the Wayback Machine