अतिमिश्र विश्लेषण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{More footnotes needed|date=February 2023}}
गणित में, अतिमिश्र विश्लेषण फलन (गणित) के अध्ययन के लिए [[वास्तविक विश्लेषण]] और [[जटिल विश्लेषण]] का मूल विस्तार है जहां एक फलन का तर्क एक [[हाइपरकॉम्प्लेक्स संख्या|अतिमिश्र संख्या]] है। पहला उदाहरण एक चतुष्कोणीय चर का कार्य है, जहां तर्क एक चतुर्धातुक है (इस स्तिथि में, अतिमिश्र विश्लेषण के उप-क्षेत्र को [[चतुष्कोणीय विश्लेषण]] कहा जाता है)। एक दूसरे उदाहरण में एक [[मोटर चर|प्रेरक चर]] के कार्य सम्मिलित हैं जहाँ तर्क [[विभाजित-जटिल संख्या]]एँ हैं।
गणित में, अतिमिश्र विश्लेषण फलन (गणित) के अध्ययन के लिए [[वास्तविक विश्लेषण]] और [[जटिल विश्लेषण]] का मूल विस्तार है जहां एक फलन का तर्क एक [[हाइपरकॉम्प्लेक्स संख्या|अतिमिश्र संख्या]] है। पहला उदाहरण एक चतुष्कोणीय चर का कार्य है, जहां तर्क एक चतुर्धातुक है (इस स्तिथि में, अतिमिश्र विश्लेषण के उप-क्षेत्र को [[चतुष्कोणीय विश्लेषण]] कहा जाता है)। एक दूसरे उदाहरण में एक [[मोटर चर|प्रेरक चर]] के कार्य सम्मिलित हैं जहाँ तर्क [[विभाजित-जटिल संख्या]]एँ हैं।



Revision as of 02:09, 26 April 2023

गणित में, अतिमिश्र विश्लेषण फलन (गणित) के अध्ययन के लिए वास्तविक विश्लेषण और जटिल विश्लेषण का मूल विस्तार है जहां एक फलन का तर्क एक अतिमिश्र संख्या है। पहला उदाहरण एक चतुष्कोणीय चर का कार्य है, जहां तर्क एक चतुर्धातुक है (इस स्तिथि में, अतिमिश्र विश्लेषण के उप-क्षेत्र को चतुष्कोणीय विश्लेषण कहा जाता है)। एक दूसरे उदाहरण में एक प्रेरक चर के कार्य सम्मिलित हैं जहाँ तर्क विभाजित-जटिल संख्याएँ हैं।

गणितीय भौतिकी में, क्लिफोर्ड बीजगणित नामक अतिमिश्र प्रणाली हैं। क्लिफर्ड बीजगणित से तर्कों के साथ कार्यों के अध्ययन को क्लिफर्ड विश्लेषण कहा जाता है।

एक आव्यूह (गणित) को अतिमिश्र संख्या माना जा सकता है। उदाहरण के लिए, 2 × 2 वास्तविक संख्या आव्यूह के कार्यों के अध्ययन से पता चलता है कि अतिमिश्र संख्याओं के स्थल (गणित) का स्थलीय स्थान फलन सिद्धांत को निर्धारित करता है। आव्यूह का वर्गमूल, आव्यूह घातीय और आव्यूह का लघुगणक जैसे कार्य अतिमिश्र विश्लेषण के मूल उदाहरण हैं।[1] विकर्णीय आव्यूह का कार्य सिद्धांत विशेष रूप से पारदर्शी है क्योंकि उनके पास एजंडेकोम्पोसिशन हैं।[2] मान लीजिये है जहां ईi प्रक्षेपण (रैखिक बीजगणित) हैं। फिर किसी बहुपद के लिए ,

अतिमिश्र संख्याओं की एक प्रणाली के लिए आधुनिक शब्दावली वास्तविक संख्याओं पर एक क्षेत्र पर एक बीजगणित है, और अनुप्रयोगों में उपयोग किए जाने वाले बीजगणित प्रायः बानाच बीजगणित होते हैं क्योंकि कॉची अनुक्रमों को अभिसरण अनुक्रम के रूप में लिया जा सकता है। तब कार्य सिद्धांत अनुक्रम और श्रृंखला (गणित) द्वारा समृद्ध होता है। इस संदर्भ में जटिल संख्या चर के पूर्णसममितिक फलन का विस्तार पूर्णसममितिक कार्यात्मक कलन के रूप में विकसित किया गया है। बनच बीजगणित पर अतिमिश्र विश्लेषण को कार्यात्मक विश्लेषण कहा जाता है।

यह भी देखें

संदर्भ

  1. Felix Gantmacher (1959) The Theory of Matrices, two volumes, translator: Kurt Hirsch, Chelsea Publishing, chapter 5: functions of matrices, chapter 8: roots and logarithms of matrices
  2. Shaw, Ronald (1982) Linear Algebra and Group Representations, v. 1, § 2.3, Diagonalizable linear operators, pages 78–81, Academic Press ISBN 0-12-639201-3.



स्रोत

श्रेणी:कार्य और मानचित्रण श्रेणी:अतिमिश्र नंबर श्रेणी:गणितीय विश्लेषण