आयामी नियमितीकरण: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
{{Renormalization and regularization}} | {{Renormalization and regularization}} | ||
[[सैद्धांतिक भौतिकी]] में '''आयामी नियमितीकरण''' एक विधि है जिसे गियामबैगी और बोलिनी के साथ स्वतंत्र रूप से और अधिक व्यापक रूप से 'टी हूफ्ट और मार्टिनस जे.जी. वेल्टमैन<ref>{{Citation | last1=Hooft | first1=G. 't | last2=Veltman | first2=M. | title=Regularization and renormalization of gauge fields | doi= 10.1016/0550-3213(72)90279-9 | year=1972 | journal=Nuclear Physics B | issn=0550-3213 | volume=44 | issue=1 | pages=189–213 |bibcode = 1972NuPhB..44..189T | hdl=1874/4845 | url=https://repositorio.unal.edu.co/handle/unal/81144 | hdl-access=free }}</ref> द्वारा फेनमैन आरेखों के मूल्यांकन में | [[सैद्धांतिक भौतिकी]] में '''आयामी नियमितीकरण''' एक विधि है जिसे गियामबैगी और बोलिनी के साथ स्वतंत्र रूप से और अधिक व्यापक रूप से 'टी हूफ्ट और मार्टिनस जे.जी. वेल्टमैन<ref>{{Citation | last1=Hooft | first1=G. 't | last2=Veltman | first2=M. | title=Regularization and renormalization of gauge fields | doi= 10.1016/0550-3213(72)90279-9 | year=1972 | journal=Nuclear Physics B | issn=0550-3213 | volume=44 | issue=1 | pages=189–213 |bibcode = 1972NuPhB..44..189T | hdl=1874/4845 | url=https://repositorio.unal.edu.co/handle/unal/81144 | hdl-access=free }}</ref> द्वारा फेनमैन आरेखों के मूल्यांकन में समाकल को नियमित करने के लिए प्रस्तुत किया गया है दूसरे शब्दों में उनके मान निर्दिष्ट करना जो पैरामीटर d के [[मेरोमॉर्फिक फ़ंक्शन|मध्य फलन]] हैं और स्पेसटाइम आयामों की संख्या की विश्लेषणात्मक निरंतरता है। | ||
आयामी नियमितीकरण स्पेसटाइम आयाम d और स्पेसटाइम बिन्दु xi, ... की वर्ग दूरी (x<sub>i</sub>−x<sub>j</sub>)<sup>2</sup> के आधार पर समाकल के रूप में [[ फेनमैन अभिन्न |फेनमैन समाकल]] | आयामी नियमितीकरण स्पेसटाइम आयाम d और स्पेसटाइम बिन्दु xi, ... की वर्ग दूरी (x<sub>i</sub>−x<sub>j</sub>)<sup>2</sup> के आधार पर समाकल के रूप में [[ फेनमैन अभिन्न |फेनमैन समाकल]] है [[यूक्लिडियन अंतरिक्ष|यूक्लिडियन समष्टि]] में समाकल प्रायः d के लिए पर्याप्त रूप से बड़े होते हैं और विश्लेषणात्मक रूप से इस क्षेत्र के सभी समिश्र फलन d के लिए परिभाषित मध्य फलन तक प्रारम्भ रखा जा सकता है सामान्यतः d के भौतिक मान (सामान्य रूप से 4) पर एक ध्रुव होता है जिसे भौतिक राशि प्राप्त करने के लिए पुनर्संरचना द्वारा नष्ट करने की आवश्यकता होती है ईटिंगोफ (1999) ने दिखाया कि विश्लेषणात्मक निरंतरता को पूरा करने के लिए बर्नस्टीन-साटो बहुपद का उपयोग करके कम से कम बड़े पैमाने पर यूक्लिडियन क्षेत्रों की स्थिति में आयामी नियमितीकरण गणितीय रूप मे अपेक्षाकृत परिभाषित है। | ||
यद्यपि यह विधि अपेक्षाकृत रुप से तब समझी जाती है जब ध्रुवों को घटाया जाता है और d को एक बार | यद्यपि यह विधि अपेक्षाकृत रुप से तब समझी जाती है जब ध्रुवों को घटाया जाता है और d को एक बार पुनः मान 4 से परिवर्तित कर दिया जाता है इसने कुछ सफलताओं का भी नेतृत्व किया है जब d को एक अन्य पूर्णांक मान तक ले जाया जाता है जहाँ सिद्धांत दृढ़ता से युग्मित प्रतीत होता है जैसा कि उपरोक्त स्थितियों में है विल्सन-फिशर निश्चित बिंदु आंशिक आयामों के माध्यम से प्रक्षेप को गंभीरता से लेना एक और सुझाव है इसने कुछ लेखकों को यह सुझाव देने के लिए प्रेरित किया है कि आयामी नियमितीकरण का उपयोग क्रिस्टल के भौतिकी का अध्ययन करने के लिए किया जा सकता है जो स्थूलदर्शीयतः रूप से आशिक प्रतीत होते हैं।<ref>{{cite journal|title=गैर-पूर्णांक आयामों में आइसिंग जैसी प्रणालियों के लिए सटीक महत्वपूर्ण घातांक|journal=Journal de Physique|year=1987|volume=48|first1=J.C.|last1=Le Guillo|first2=J.|last2=Zinn-Justin|url=https://hal.archives-ouvertes.fr/jpa-00210418/document}}</ref> | ||
यह तर्क दिया गया है कि जीटा नियमितीकरण और आयामी नियमितीकरण समतुल्य हैं क्योंकि वे एक श्रृंखला या अभिसरण के समाकल भाग के लिए विश्लेषणात्मक निरंतरता का उपयोग | यह तर्क दिया गया है कि जीटा नियमितीकरण और आयामी नियमितीकरण समतुल्य हैं क्योंकि वे एक श्रृंखला या अभिसरण के समाकल भाग के लिए विश्लेषणात्मक निरंतरता का उपयोग करके समान सिद्धांत का उपयोग करते हैं।<ref>A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, ''Analytic Aspects of Quantum Field'' , World Scientific Publishing, 2003, {{ISBN|981-238-364-6}}</ref> | ||
[[Category:Created On 18/04/2023]] | [[Category:Created On 18/04/2023]] | ||
[[Category:Lua-based templates]] | |||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Translated in Hindi]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:Templates that add a tracking category]] | |||
[[Category:Templates that generate short descriptions]] | |||
[[Category:Templates using TemplateData]] |
Latest revision as of 16:56, 1 May 2023
Renormalization and regularization |
---|
सैद्धांतिक भौतिकी में आयामी नियमितीकरण एक विधि है जिसे गियामबैगी और बोलिनी के साथ स्वतंत्र रूप से और अधिक व्यापक रूप से 'टी हूफ्ट और मार्टिनस जे.जी. वेल्टमैन[1] द्वारा फेनमैन आरेखों के मूल्यांकन में समाकल को नियमित करने के लिए प्रस्तुत किया गया है दूसरे शब्दों में उनके मान निर्दिष्ट करना जो पैरामीटर d के मध्य फलन हैं और स्पेसटाइम आयामों की संख्या की विश्लेषणात्मक निरंतरता है।
आयामी नियमितीकरण स्पेसटाइम आयाम d और स्पेसटाइम बिन्दु xi, ... की वर्ग दूरी (xi−xj)2 के आधार पर समाकल के रूप में फेनमैन समाकल है यूक्लिडियन समष्टि में समाकल प्रायः d के लिए पर्याप्त रूप से बड़े होते हैं और विश्लेषणात्मक रूप से इस क्षेत्र के सभी समिश्र फलन d के लिए परिभाषित मध्य फलन तक प्रारम्भ रखा जा सकता है सामान्यतः d के भौतिक मान (सामान्य रूप से 4) पर एक ध्रुव होता है जिसे भौतिक राशि प्राप्त करने के लिए पुनर्संरचना द्वारा नष्ट करने की आवश्यकता होती है ईटिंगोफ (1999) ने दिखाया कि विश्लेषणात्मक निरंतरता को पूरा करने के लिए बर्नस्टीन-साटो बहुपद का उपयोग करके कम से कम बड़े पैमाने पर यूक्लिडियन क्षेत्रों की स्थिति में आयामी नियमितीकरण गणितीय रूप मे अपेक्षाकृत परिभाषित है।
यद्यपि यह विधि अपेक्षाकृत रुप से तब समझी जाती है जब ध्रुवों को घटाया जाता है और d को एक बार पुनः मान 4 से परिवर्तित कर दिया जाता है इसने कुछ सफलताओं का भी नेतृत्व किया है जब d को एक अन्य पूर्णांक मान तक ले जाया जाता है जहाँ सिद्धांत दृढ़ता से युग्मित प्रतीत होता है जैसा कि उपरोक्त स्थितियों में है विल्सन-फिशर निश्चित बिंदु आंशिक आयामों के माध्यम से प्रक्षेप को गंभीरता से लेना एक और सुझाव है इसने कुछ लेखकों को यह सुझाव देने के लिए प्रेरित किया है कि आयामी नियमितीकरण का उपयोग क्रिस्टल के भौतिकी का अध्ययन करने के लिए किया जा सकता है जो स्थूलदर्शीयतः रूप से आशिक प्रतीत होते हैं।[2]
यह तर्क दिया गया है कि जीटा नियमितीकरण और आयामी नियमितीकरण समतुल्य हैं क्योंकि वे एक श्रृंखला या अभिसरण के समाकल भाग के लिए विश्लेषणात्मक निरंतरता का उपयोग करके समान सिद्धांत का उपयोग करते हैं।[3]
- ↑ Hooft, G. 't; Veltman, M. (1972), "Regularization and renormalization of gauge fields", Nuclear Physics B, 44 (1): 189–213, Bibcode:1972NuPhB..44..189T, doi:10.1016/0550-3213(72)90279-9, hdl:1874/4845, ISSN 0550-3213
- ↑ Le Guillo, J.C.; Zinn-Justin, J. (1987). "गैर-पूर्णांक आयामों में आइसिंग जैसी प्रणालियों के लिए सटीक महत्वपूर्ण घातांक". Journal de Physique. 48.
- ↑ A. Bytsenko, G. Cognola, E. Elizalde, V. Moretti and S. Zerbini, Analytic Aspects of Quantum Field , World Scientific Publishing, 2003, ISBN 981-238-364-6