तापीय चालकता संसूचक: Difference between revisions
No edit summary |
No edit summary |
||
(7 intermediate revisions by 3 users not shown) | |||
Line 1: | Line 1: | ||
'''तापीय चालकता संसूचक''' (टीसीडी), जिसे कैथारोमीटर के रूप में भी जाना जाता है, यह एक संसूचक और गैस वर्णलेखन में सामान्यतः उपयोग होने वाला एक रासायनिक विशिष्ट संसूचक है।<ref>Grob, Robert L. Ed.; "Modern Practice of Gas Chromatography", John Wiley & Sons, C1977, pg. 228,</ref> यह संसूचक स्तंभ [[ eluent |एलुएंट]] की तापीय चालकता में परिवर्तन को महसूस करता है और इसकी तुलना वाहक गैस के संदर्भ प्रवाह से करता है। चूंकि अधिकांश यौगिकों में हीलियम या हाइड्रोजन के सामान्य वाहक गैसों की तुलना में एक तापीय चालकता बहुत कम होती है, जब स्तंभ से विश्लेषण किया जाता है तो प्रवाह तापीय चालकता कम हो जाती है, और एक पता लगाने योग्य संकेत उत्पन्न होता है। | |||
== ऑपरेशन == | == ऑपरेशन == | ||
टीसीडी में तापमान नियंत्रित सेल में विद्युत रूप से गर्म फिलामेंट होता है। सामान्य परिस्थितियों में फिलामेंट से | टीसीडी में तापमान नियंत्रित सेल में विद्युत रूप से गर्म फिलामेंट होता है। सामान्य परिस्थितियों में फिलामेंट से संसूचक तक एक स्थिर गर्मी प्रवाह होती है। तब एक विश्लेषण एलूटेस और स्तंभ प्रवाह की तापीय चालकता कम हो जाती है, तो फिलामेंट गर्म हो जाता है और प्रतिरोध को बदल देता है। यह प्रतिरोध परिवर्तन अधिकांशतः एक [[ व्हीटस्टोन पुल |व्हीटस्टोन ब्रिज]] परिपथ द्वारा महसूस किया जाता है जो एक मापने योग्य वोल्टेज परिवर्तन उत्पन्न करता है। चार-प्रतिरोधक परिपथ में संदर्भ प्रवाह एक दूसरे प्रतिरोधक के ऊपर होता है, जबकि स्तंभ बहिस्राव प्रतिरोधों में से एक पर प्रवाहित होता है। | ||
[[Image:Thermal Conductivity Detector 1.svg|thumb|left|टीसीडी योजनाबद्ध]]व्हीटस्टोन ब्रिज | [[Image:Thermal Conductivity Detector 1.svg|thumb|left|टीसीडी योजनाबद्ध]]व्हीटस्टोन ब्रिज परिपथ का उपयोग करते हुए क्लासिक तापीय चालकता संसूचक नमूने का एक योजनाबद्ध दिखाया गया है। परिपथ के प्रतिरोधक 4 में संदर्भ प्रवाह या तापमान में उतार-चढ़ाव के कारण बहाव की भरपाई करता है। प्रतिरोध 3 में स्तंभ प्रवाह की तापीय चालकता में परिवर्तन के परिणामस्वरूप प्रतिरोधक का तापमान परिवर्तित होता है और इसलिए एक प्रतिरोध परिवर्तन को एक संकेत के रूप में मापा जा सकता है। | ||
चूँकि सभी यौगिकों, कार्बनिक और अकार्बनिक, में हीलियम या हाइड्रोजन से भिन्न तापीय चालकता होती है, वस्तुतः सभी यौगिकों का पता लगाया जा सकता है। इसलिए टीसीडी को अधिकांशतः यूनिवर्सल | चूँकि सभी यौगिकों, कार्बनिक और अकार्बनिक, में हीलियम या हाइड्रोजन से भिन्न तापीय चालकता होती है, वस्तुतः सभी यौगिकों का पता लगाया जा सकता है। इसलिए टीसीडी को अधिकांशतः यूनिवर्सल संसूचक कहा जाता है। | ||
एक टीसीडी नमूने में निहित प्रत्येक यौगिक की सांद्रता को मापता है। दरअसल, टीसीडी | एक टीसीडी नमूने में निहित प्रत्येक यौगिक की सांद्रता को मापता है। दरअसल, टीसीडी संकेत तब बदलता है जब कोई मिश्रण इसके माध्यम से गुजरता है, आधारभूत पर चोटी को आकार देता है। आधारभूत पर चोटी की स्थिति मिश्रित प्रकार को दर्शाती है। शिखर क्षेत्र (समय के साथ टीसीडी संकेत को एकीकृत करके गणना की गई) यौगिक एकाग्रता का प्रतिनिधि है। एक नमूना जिसकी यौगिकों की सांद्रता ज्ञात है, उसका उपयोग टीसीडी को जाँच करने के लिए किया जाता है: एक अंशांकन वक्र के माध्यम से सांद्रता चरम क्षेत्रों पर प्रभावित होता है। | ||
एफआईडी की तुलना में अज्ञात नमूने के साथ प्रारंभिक जांच के लिए टीसीडी एक अच्छा सामान्य प्रयोजन | एफआईडी की तुलना में अज्ञात नमूने के साथ प्रारंभिक जांच के लिए टीसीडी एक अच्छा सामान्य प्रयोजन संसूचक है जो केवल दहनशील यौगिकों (उदा: हाइड्रोकार्बन) पर प्रतिक्रिया करता है। इसके अतिरिक्त, टीसीडी एक गैर-विशिष्ट और गैर-विनाशकारी तकनीक है। टीसीडी का उपयोग स्थायी गैसों (आर्गन, ऑक्सीजन, नाइट्रोजन, कार्बन डाइऑक्साइड) के विश्लेषण में भी किया जाता है क्योंकि यह एफआईडी के विपरीत इन सभी पदार्थों पर प्रतिक्रिया करता है जो उन यौगिकों का पता नहीं लगा सकते है जिनमें कार्बन-हाइड्रोजन बांड नही होते है। | ||
पता लगाने की सीमा को ध्यान में रखते हुए, टीसीडी और एफआईडी दोनों कम सांद्रता स्तर (पीपीएम या पीपीबी से कम) तक पहुँचते | पता लगाने की सीमा को ध्यान में रखते हुए, टीसीडी और एफआईडी दोनों कम सांद्रता स्तर (पीपीएम या पीपीबी से कम) तक पहुँचते है।<ref>{{cite journal |last1=Budiman |first1=Harry |last2=Zuas |first2=Oman |title=गैस मिश्रण में प्रोपेन के निर्धारण के लिए GC-TCD और GC-FID के बीच तुलना|journal=Procedia Chemistry |date=1 January 2015 |volume=16 |pages=465–472 |doi=10.1016/j.proche.2015.12.080 |doi-access=free }}</ref> | ||
उन दोनों को दबाव वाहक गैस की आवश्यकता होती है (सामान्यतः: एफआईडी के लिए H<sub>2</sub>, टीसीडी के लिए He) लेकिन H<sub>2</sub> (उच्च ज्वलनशीलता, [[हाइड्रोजन सुरक्षा]] देखें) के भंडारण से जुड़े जोखिम के कारण, टीसीडी के साथ He को उन स्थानों पर माना जाना चाहिए जहाँ सुरक्षा महत्वपूर्ण होती है। | उन दोनों को दबाव वाहक गैस की आवश्यकता होती है (सामान्यतः: एफआईडी के लिए H<sub>2</sub>, टीसीडी के लिए He) लेकिन H<sub>2</sub> (उच्च ज्वलनशीलता, [[हाइड्रोजन सुरक्षा]] देखें) के भंडारण से जुड़े जोखिम के कारण, टीसीडी के साथ He को उन स्थानों पर माना जाना चाहिए जहाँ सुरक्षा महत्वपूर्ण होती है। | ||
Line 19: | Line 19: | ||
टीसीडी का संचालन करते समय एक बात का ध्यान रखना चाहिए कि फिलामेंट के गर्म होने पर गैस का प्रवाह कभी बाधित नहीं होना चाहिए, क्योंकि ऐसा करने से फिलामेंट जल सकता है। जबकि एक टीसीडी के फिलामेंट को सामान्यतः ऑक्सीजन के साथ प्रतिक्रिया करने से रोकने के लिए रासायनिक रूप से [[निष्क्रियता (रसायन विज्ञान)|निष्क्रिय]] किया जाता है, निष्क्रियता परत पर हैलोजेनेटेड यौगिकों द्वारा हमला किया जा सकता है, इसलिए जहां तक संभव हो इनसे बचा जाना चाहिए।<ref>http://ipes.us/used/58904.pdf {{Bare URL PDF|date=March 2022}}</ref> | टीसीडी का संचालन करते समय एक बात का ध्यान रखना चाहिए कि फिलामेंट के गर्म होने पर गैस का प्रवाह कभी बाधित नहीं होना चाहिए, क्योंकि ऐसा करने से फिलामेंट जल सकता है। जबकि एक टीसीडी के फिलामेंट को सामान्यतः ऑक्सीजन के साथ प्रतिक्रिया करने से रोकने के लिए रासायनिक रूप से [[निष्क्रियता (रसायन विज्ञान)|निष्क्रिय]] किया जाता है, निष्क्रियता परत पर हैलोजेनेटेड यौगिकों द्वारा हमला किया जा सकता है, इसलिए जहां तक संभव हो इनसे बचा जाना चाहिए।<ref>http://ipes.us/used/58904.pdf {{Bare URL PDF|date=March 2022}}</ref> | ||
यदि हाइड्रोजन के लिए विश्लेषण किया जाता है, तो जब संदर्भ गैस के रूप में हीलियम का उपयोग किया जाता है तो चोटी नकारात्मक दिखाई देती है। इस समस्या से बचा जा सकता है यदि अन्य संदर्भ गैस का उपयोग किया जाता है, उदाहरण के लिए [[आर्गन]] या [[नाइट्रोजन]], चूंकि यह हाइड्रोजन के अतिरिक्त किसी भी यौगिक के प्रति | यदि हाइड्रोजन के लिए विश्लेषण किया जाता है, तो जब संदर्भ गैस के रूप में हीलियम का उपयोग किया जाता है तो चोटी नकारात्मक दिखाई देती है। इस समस्या से बचा जा सकता है यदि अन्य संदर्भ गैस का उपयोग किया जाता है, उदाहरण के लिए [[आर्गन]] या [[नाइट्रोजन]], चूंकि यह हाइड्रोजन के अतिरिक्त किसी भी यौगिक के प्रति संसूचक की संवेदनशीलता को कम कर देता है। | ||
== प्रक्रिया विवरण == | == प्रक्रिया विवरण == | ||
यह गैस और गर्म कॉइल दोनों युक्त दो समांतर ट्यूबों के द्वारा कार्य करता है। गर्म कॉइल से गैस में गर्मी के नुकसान की दर की तुलना करके गैसों की जांच की जाती है। | यह गैस और गर्म कॉइल दोनों युक्त दो समांतर ट्यूबों के द्वारा कार्य करता है। गर्म कॉइल से गैस में गर्मी के नुकसान की दर की तुलना करके गैसों की जांच की जाती है। कॉइल को [[ब्रिज सर्किट|ब्रिज परिपथ]] में व्यवस्थित किया जाता है जिससे कि असमान कूलिंग के कारण प्रतिरोध परिवर्तन को मापा जा सकता है। एक चैनल में सामान्य रूप से एक संदर्भ गैस होती है और परीक्षण किए जाने वाले मिश्रण को दूसरे चैनल से गुजारा जाता है। | ||
== अनुप्रयोग == | == अनुप्रयोग == | ||
फेफड़े के कार्य परीक्षण उपकरण और [[गैस वर्णलेखन]] में कैथरोमीटर का चिकित्सकीय उपयोग किया जाता है। द्रव्यमान [[मास स्पेक्ट्रोमीटर|स्पेक्ट्रोमीटर]] की तुलना में परिणाम प्राप्त करने में धीमे होते | फेफड़े के कार्य परीक्षण उपकरण और [[गैस वर्णलेखन]] में कैथरोमीटर का चिकित्सकीय उपयोग किया जाता है। द्रव्यमान [[मास स्पेक्ट्रोमीटर|स्पेक्ट्रोमीटर]] की तुलना में परिणाम प्राप्त करने में धीमे होते है, लेकिन उपकरण सस्ता है, और उसकी अच्छी त्रुटिहीनता है जब प्रश्न में गैसों को जाना जाता है, और यह केवल अनुपात है जिसे निर्धारित किया जाता है। | ||
[[हाइड्रोजन-कूल्ड टर्बोजेनरेटर|हाइड्रोजन-कूल्ड टर्बोजेनरेटर्स]] में [[हाइड्रोजन शुद्धता]] की निगरानी। | [[हाइड्रोजन-कूल्ड टर्बोजेनरेटर|हाइड्रोजन-कूल्ड टर्बोजेनरेटर्स]] में [[हाइड्रोजन शुद्धता]] की निगरानी। | ||
Line 42: | Line 42: | ||
==संदर्भ== | ==संदर्भ== | ||
{{reflist}} | {{reflist}} | ||
[[Category:All articles with bare URLs for citations]] | |||
[[Category:Articles with PDF format bare URLs for citations]] | |||
[[Category: | [[Category:Articles with bare URLs for citations from March 2022]] | ||
[[Category:Created On 05/04/2023]] | [[Category:Created On 05/04/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:गैस वर्णलेखन]] | |||
[[Category:मापन उपकरण]] |
Latest revision as of 17:50, 1 May 2023
तापीय चालकता संसूचक (टीसीडी), जिसे कैथारोमीटर के रूप में भी जाना जाता है, यह एक संसूचक और गैस वर्णलेखन में सामान्यतः उपयोग होने वाला एक रासायनिक विशिष्ट संसूचक है।[1] यह संसूचक स्तंभ एलुएंट की तापीय चालकता में परिवर्तन को महसूस करता है और इसकी तुलना वाहक गैस के संदर्भ प्रवाह से करता है। चूंकि अधिकांश यौगिकों में हीलियम या हाइड्रोजन के सामान्य वाहक गैसों की तुलना में एक तापीय चालकता बहुत कम होती है, जब स्तंभ से विश्लेषण किया जाता है तो प्रवाह तापीय चालकता कम हो जाती है, और एक पता लगाने योग्य संकेत उत्पन्न होता है।
ऑपरेशन
टीसीडी में तापमान नियंत्रित सेल में विद्युत रूप से गर्म फिलामेंट होता है। सामान्य परिस्थितियों में फिलामेंट से संसूचक तक एक स्थिर गर्मी प्रवाह होती है। तब एक विश्लेषण एलूटेस और स्तंभ प्रवाह की तापीय चालकता कम हो जाती है, तो फिलामेंट गर्म हो जाता है और प्रतिरोध को बदल देता है। यह प्रतिरोध परिवर्तन अधिकांशतः एक व्हीटस्टोन ब्रिज परिपथ द्वारा महसूस किया जाता है जो एक मापने योग्य वोल्टेज परिवर्तन उत्पन्न करता है। चार-प्रतिरोधक परिपथ में संदर्भ प्रवाह एक दूसरे प्रतिरोधक के ऊपर होता है, जबकि स्तंभ बहिस्राव प्रतिरोधों में से एक पर प्रवाहित होता है।
व्हीटस्टोन ब्रिज परिपथ का उपयोग करते हुए क्लासिक तापीय चालकता संसूचक नमूने का एक योजनाबद्ध दिखाया गया है। परिपथ के प्रतिरोधक 4 में संदर्भ प्रवाह या तापमान में उतार-चढ़ाव के कारण बहाव की भरपाई करता है। प्रतिरोध 3 में स्तंभ प्रवाह की तापीय चालकता में परिवर्तन के परिणामस्वरूप प्रतिरोधक का तापमान परिवर्तित होता है और इसलिए एक प्रतिरोध परिवर्तन को एक संकेत के रूप में मापा जा सकता है।
चूँकि सभी यौगिकों, कार्बनिक और अकार्बनिक, में हीलियम या हाइड्रोजन से भिन्न तापीय चालकता होती है, वस्तुतः सभी यौगिकों का पता लगाया जा सकता है। इसलिए टीसीडी को अधिकांशतः यूनिवर्सल संसूचक कहा जाता है।
एक टीसीडी नमूने में निहित प्रत्येक यौगिक की सांद्रता को मापता है। दरअसल, टीसीडी संकेत तब बदलता है जब कोई मिश्रण इसके माध्यम से गुजरता है, आधारभूत पर चोटी को आकार देता है। आधारभूत पर चोटी की स्थिति मिश्रित प्रकार को दर्शाती है। शिखर क्षेत्र (समय के साथ टीसीडी संकेत को एकीकृत करके गणना की गई) यौगिक एकाग्रता का प्रतिनिधि है। एक नमूना जिसकी यौगिकों की सांद्रता ज्ञात है, उसका उपयोग टीसीडी को जाँच करने के लिए किया जाता है: एक अंशांकन वक्र के माध्यम से सांद्रता चरम क्षेत्रों पर प्रभावित होता है।
एफआईडी की तुलना में अज्ञात नमूने के साथ प्रारंभिक जांच के लिए टीसीडी एक अच्छा सामान्य प्रयोजन संसूचक है जो केवल दहनशील यौगिकों (उदा: हाइड्रोकार्बन) पर प्रतिक्रिया करता है। इसके अतिरिक्त, टीसीडी एक गैर-विशिष्ट और गैर-विनाशकारी तकनीक है। टीसीडी का उपयोग स्थायी गैसों (आर्गन, ऑक्सीजन, नाइट्रोजन, कार्बन डाइऑक्साइड) के विश्लेषण में भी किया जाता है क्योंकि यह एफआईडी के विपरीत इन सभी पदार्थों पर प्रतिक्रिया करता है जो उन यौगिकों का पता नहीं लगा सकते है जिनमें कार्बन-हाइड्रोजन बांड नही होते है।
पता लगाने की सीमा को ध्यान में रखते हुए, टीसीडी और एफआईडी दोनों कम सांद्रता स्तर (पीपीएम या पीपीबी से कम) तक पहुँचते है।[2]
उन दोनों को दबाव वाहक गैस की आवश्यकता होती है (सामान्यतः: एफआईडी के लिए H2, टीसीडी के लिए He) लेकिन H2 (उच्च ज्वलनशीलता, हाइड्रोजन सुरक्षा देखें) के भंडारण से जुड़े जोखिम के कारण, टीसीडी के साथ He को उन स्थानों पर माना जाना चाहिए जहाँ सुरक्षा महत्वपूर्ण होती है।
विचार
टीसीडी का संचालन करते समय एक बात का ध्यान रखना चाहिए कि फिलामेंट के गर्म होने पर गैस का प्रवाह कभी बाधित नहीं होना चाहिए, क्योंकि ऐसा करने से फिलामेंट जल सकता है। जबकि एक टीसीडी के फिलामेंट को सामान्यतः ऑक्सीजन के साथ प्रतिक्रिया करने से रोकने के लिए रासायनिक रूप से निष्क्रिय किया जाता है, निष्क्रियता परत पर हैलोजेनेटेड यौगिकों द्वारा हमला किया जा सकता है, इसलिए जहां तक संभव हो इनसे बचा जाना चाहिए।[3]
यदि हाइड्रोजन के लिए विश्लेषण किया जाता है, तो जब संदर्भ गैस के रूप में हीलियम का उपयोग किया जाता है तो चोटी नकारात्मक दिखाई देती है। इस समस्या से बचा जा सकता है यदि अन्य संदर्भ गैस का उपयोग किया जाता है, उदाहरण के लिए आर्गन या नाइट्रोजन, चूंकि यह हाइड्रोजन के अतिरिक्त किसी भी यौगिक के प्रति संसूचक की संवेदनशीलता को कम कर देता है।
प्रक्रिया विवरण
यह गैस और गर्म कॉइल दोनों युक्त दो समांतर ट्यूबों के द्वारा कार्य करता है। गर्म कॉइल से गैस में गर्मी के नुकसान की दर की तुलना करके गैसों की जांच की जाती है। कॉइल को ब्रिज परिपथ में व्यवस्थित किया जाता है जिससे कि असमान कूलिंग के कारण प्रतिरोध परिवर्तन को मापा जा सकता है। एक चैनल में सामान्य रूप से एक संदर्भ गैस होती है और परीक्षण किए जाने वाले मिश्रण को दूसरे चैनल से गुजारा जाता है।
अनुप्रयोग
फेफड़े के कार्य परीक्षण उपकरण और गैस वर्णलेखन में कैथरोमीटर का चिकित्सकीय उपयोग किया जाता है। द्रव्यमान स्पेक्ट्रोमीटर की तुलना में परिणाम प्राप्त करने में धीमे होते है, लेकिन उपकरण सस्ता है, और उसकी अच्छी त्रुटिहीनता है जब प्रश्न में गैसों को जाना जाता है, और यह केवल अनुपात है जिसे निर्धारित किया जाता है।
हाइड्रोजन-कूल्ड टर्बोजेनरेटर्स में हाइड्रोजन शुद्धता की निगरानी।
एमआरआई सुपरकंडक्टिंग चुंबक के हीलियम पोत से हीलियम हानि का पता लगाना।
बीयर के नमूनों के भीतर कार्बन डाइऑक्साइड की मात्रा निर्धारित करने के लिए ब्रूइंग उद्योग में भी उपयोग किया जाता है।
बायोगैस नमूनों के भीतर मीथेन की मात्रा (कैलोरीफिक वैल्यू) को मापने के लिए ऊर्जा उद्योग के भीतर प्रयोग किया जाता है
खाद्य पैकेजिंग गैसों की मात्रा निर्धारित करने और / या मान्य करने के लिए खाद्य और पेय उद्योग के भीतर उपयोग किया जाता है।
किसी निर्माण में ड्रिलिंग करते समय एचसी के प्रतिशत को निर्धारित करने के लिए तेल और गैस उद्योग के भीतर उपयोग किया जाता है।
संदर्भ
- ↑ Grob, Robert L. Ed.; "Modern Practice of Gas Chromatography", John Wiley & Sons, C1977, pg. 228,
- ↑ Budiman, Harry; Zuas, Oman (1 January 2015). "गैस मिश्रण में प्रोपेन के निर्धारण के लिए GC-TCD और GC-FID के बीच तुलना". Procedia Chemistry. 16: 465–472. doi:10.1016/j.proche.2015.12.080.
- ↑ http://ipes.us/used/58904.pdf[bare URL PDF]