बटालिन-विलकोविस्की औपचारिकता: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Generalization of the BRST formalism}}
{{Short description|Generalization of the BRST formalism}}
[[सैद्धांतिक भौतिकी]] में, बटालिन-विल्कोविस्की (बीवी) औपचारिकता (इगोर बटलिन और ग्रिगोरी विलकोविस्की के नाम पर) को गुरुत्वाकर्षण और [[अतिगुरुत्वाकर्षण]] जैसे लैग्रैंगियन [[गेज सिद्धांत]]ों के लिए फैडीव-पोपोव भूत संरचना का निर्धारण करने के लिए विधि के रूप में विकसित किया गया था, जिसका संबंधित [[हैमिल्टनियन औपचारिकता]] है [[झूठ बीजगणित]] से संबंधित बाधाएं नहीं हैं (यानी, झूठ बीजगणित संरचना स्थिरांक की भूमिका अधिक सामान्य संरचना कार्यों द्वारा निभाई जाती है)। [[क्रिया (भौतिकी)]] पर आधारित बीवी औपचारिकता, जिसमें फील्ड (भौतिकी) और एंटीफिल्ड दोनों शामिल हैं, को यांग-मिल्स सिद्धांत के लिए मूल बीआरएसटी औपचारिकता के विशाल सामान्यीकरण के रूप में माना जा सकता है। लिखित। बटालिन-विलकोविस्की औपचारिकता के लिए अन्य नाम फ़ील्ड-एंटीफिल्ड औपचारिकता, लाग्रैंगियन बीआरएसटी औपचारिकता, या बीवी-बीआरएसटी औपचारिकता हैं। इसे बटालिन-फ्राडकिन-विलकोविस्की औपचारिकता के साथ भ्रमित नहीं होना चाहिए। बटालिन-फ्राडकिन-विलकोविस्की (बीएफवी) औपचारिकता, जो हैमिल्टनियन समकक्ष है।
[[सैद्धांतिक भौतिकी]] में, रद्द-वेलिकोवस्की (बीवी) औपचारिकता (इगोर रद्द और ग्रिगोरी वेलिकोवस्की के नाम पर) को गुरुत्वाकर्षण और [[अतिगुरुत्वाकर्षण]] जैसे लैग्रैंगियन [[गेज सिद्धांत|गेज सिद्धांतों]] के लिए भूत संरचना का निर्धारण करने के लिए एक विधि के रूप में विकसित किया गया था, जिसका संबंधित [[हैमिल्टनियन सूत्रीकरण]] में बाधाएं संबंधित नहीं हैं एक [[झूठ बीजगणित|अभिसंधि बीजगणित]] (यानी, अभिसंधि बीजगणित संरचना स्थिरांक की भूमिका अधिक सामान्य संरचना कार्यों द्वारा निभाई जाती है)। बीवी औपचारिकता, एक ऐसी [[क्रिया (भौतिकी)]] पर आधारित है जिसमें दोनों क्षेत्रों और "एंटीफिल्ड्स" शामिल हैं, को शुद्ध यांग-मिल्स सिद्धांत के लिए मूल बीआरएसटी औपचारिकता के एक विशाल सामान्यीकरण के रूप में माना जा सकता है, जो एक मनमाना लैग्रेंजियन गेज सिद्धांत है। रद्द-वेलिकोवस्की औपचारिकता के लिए अन्य नाम फ़ील्ड-एंटीफिल्ड औपचारिकता, लाग्रैंगियन बीआरएसटी औपचारिकता, या बीवी-बीआरएसटी औपचारिकता हैं। इसे रद्द-फ्राडकिन-वेलिकोवस्की (बीएफवी) औपचारिकता के साथ भ्रमित नहीं होना चाहिए, जो हैमिल्टनियन समकक्ष है।


== बटालिन-विलकोविस्की बीजगणित ==
== रद्द-वेलिकोवस्की बीजगणित ==
गणित में, बटालिन-विलकोविस्की बीजगणित ग्रेडेड बीजगणित सुपरकॉम्यूटेटिव बीजगणित है (एक इकाई 1 के साथ) दूसरे क्रम के निलपोटेंट ऑपरेटर Δ की डिग्री -1 के साथ। अधिक सटीक रूप से, यह पहचानों को संतुष्ट करता है
गणित में, बटालिन-विलकोविस्की बीजगणित डिग्री -1 के दूसरे क्रम के नीलपोटेंट ऑपरेटर Δ के साथ, एक ग्रेडेड सुपरकम्यूटेटिव (इकाई 1 के साथ) बीजगणित है। अधिक सटीक रूप से, यह पहचानों को संतुष्ट करता है
*<math>|ab| = |a| + |b| </math> (उत्पाद की डिग्री 0 है)
*<math>|ab| = |a| + |b| </math> (उत्पाद की डिग्री 0 है।)
*<math>|\Delta(a)| = |a| - 1    </math> (Δ के पास डिग्री -1 है)
*<math>|\Delta(a)| = |a| - 1    </math> (Δ की डिग्री -1 है।)
*<math>(ab)c = a(bc)    </math> (उत्पाद साहचर्य है)
*<math>(ab)c = a(bc)    </math> (उत्पाद साहचर्य है।)
*<math>ab = (-1)^{|a||b|}ba  </math> (उत्पाद (सुपर-) क्रमविनिमेय है)
*<math>ab = (-1)^{|a||b|}ba  </math> (उत्पाद (सुपर-) क्रमविनिमेय है।)
*<math>\Delta^2 = 0      </math> (निर्बलता (क्रम 2 का))
*<math>\Delta^2 = 0      </math> (निलपोटेंसी (का क्रम 2 है।))
*<math>\Delta(abc)-\Delta(ab)c+\Delta(a)bc-(-1)^{|a|}a\Delta(bc)-(-1)^{(|a|+1)|b|}b\Delta(ac)+(-1)^{|a|}a\Delta(b)c+(-1)^{|a|+|b|}ab\Delta(c)-\Delta(1)abc=0  </math>(Δ ऑपरेटर दूसरे क्रम का है)
*<math>\Delta(abc)-\Delta(ab)c+\Delta(a)bc-(-1)^{|a|}a\Delta(bc)-(-1)^{(|a|+1)|b|}b\Delta(ac)+(-1)^{|a|}a\Delta(b)c+(-1)^{|a|+|b|}ab\Delta(c)-\Delta(1)abc=0  </math> (Δ ऑपरेटर दूसरे क्रम का है।)


एक को अक्सर सामान्यीकरण की भी आवश्यकता होती है:
एक को अक्सर सामान्यीकरण की भी आवश्यकता होती है:
Line 16: Line 16:


== एंटीब्रैकेट ==
== एंटीब्रैकेट ==
एक बटालिन-विलकोविस्की बीजगणित गेरस्टेनहेबर बीजगणित बन जाता है यदि कोई [[गेरस्टेनहैबर बीजगणित]] को परिभाषित करता है
रद्द-वेलिकोवस्की बीजगणित एक गेरस्टेनहेबर बीजगणित बन जाता है यदि कोई [[गेरस्टेनहैबर ब्रैकेट]] को परिभाषित करता है।
:<math>(a,b) := (-1)^{\left|a\right|}\Delta(ab) - (-1)^{\left|a\right|}\Delta(a)b - a\Delta(b)+a\Delta(1)b .</math>
:<math>(a,b) := (-1)^{\left|a\right|}\Delta(ab) - (-1)^{\left|a\right|}\Delta(a)b - a\Delta(b)+a\Delta(1)b </math>
जेरस्टेनहैबर ब्रैकेट के अन्य नाम बटिन ब्रैकेट, एंटीब्रैकेट, या अजीब पॉसॉन ब्रैकेट हैं। एंटीब्रैकेट संतुष्ट करता है
जेरस्टेनहैबर ब्रैकेट के अन्य नाम बटिन ब्रैकेट, एंटीब्रैकेट, या अजीब पॉसॉन ब्रैकेट हैं, एंटीब्रैकेट संतुष्ट करता है।
* <math>|(a,b)| = |a|+|b| - 1 </math> (प्रतिकोष्ठक (,) की डिग्री -1 है)
* <math>|(a,b)| = |a|+|b| - 1 </math> (प्रतिकोष्ठक (,) की डिग्री -1 होती है।)
* <math> (a,b) = -(-1)^{(|a|+1)(|b|+1)}(b,a) </math> (तिरछा सममित)
* <math> (a,b) = -(-1)^{(|a|+1)(|b|+1)}(b,a) </math> (विषम सममित)
* <math> (-1)^{(|a|+1)(|c|+1)}(a,(b,c)) +  (-1)^{(|b|+1)(|a|+1)}(b,(c,a)) +  (-1)^{(|c|+1)(|b|+1)}(c,(a,b)) = 0 </math> (जैकोबी पहचान)
* <math> (-1)^{(|a|+1)(|c|+1)}(a,(b,c)) +  (-1)^{(|b|+1)(|a|+1)}(b,(c,a)) +  (-1)^{(|c|+1)(|b|+1)}(c,(a,b)) = 0 </math> (जैकोबी पहचान)
* <math> (ab,c) = a(b,c) + (-1)^{|a||b|}b(a,c)</math> (पोइसन संपत्ति; लीबनिज नियम)
* <math> (ab,c) = a(b,c) + (-1)^{|a||b|}b(a,c)</math> (पॉसों की संपत्ति; लीबनिज नियम)


== विषम लाप्लासियन ==
== विषम लाप्लासियन ==
सामान्यीकृत ऑपरेटर के रूप में परिभाषित किया गया है
सामान्यीकृत ऑपरेटर के रूप में परिभाषित किया गया है।
:<math> {\Delta}_{\rho} := \Delta-\Delta(1) . </math>
:<math> {\Delta}_{\rho} := \Delta-\Delta(1) </math>
इसे अक्सर विषम लाप्लासियन कहा जाता है, विशेष रूप से विषम पॉसों ज्यामिति के संदर्भ में। यह एंटीब्रैकेट को अलग करता है
विशेष रूप से विषम पॉसों ज्यामिति के संदर्भ में इसे अक्सर विषम लाप्लासियन कहा जाता है। यह एंटीब्रैकेट को "अलग" करता है।
* <math>  {\Delta}_{\rho}(a,b) = ({\Delta}_{\rho}(a),b) - (-1)^{\left|a\right|}(a,{\Delta}_{\rho}(b)) </math> ( <math>{\Delta}_{\rho}</math> h> ऑपरेटर अंतर करता है (,))
* <math>  {\Delta}_{\rho}(a,b) = ({\Delta}_{\rho}(a),b) - (-1)^{\left|a\right|}(a,{\Delta}_{\rho}(b)) </math> ( <math>{\Delta}_{\rho}</math> h> ऑपरेटर अंतर करता है (,))
चौराहा <math>{\Delta}_{\rho}^{2}=(\Delta(1),\cdot)</math> सामान्यीकृत की <math>{\Delta}_{\rho}</math> ऑपरेटर विषम हैमिल्टनियन Δ(1) के साथ हैमिल्टनियन वेक्टर फ़ील्ड है
चौराहा <math>{\Delta}_{\rho}^{2}=(\Delta(1),\cdot)</math> सामान्यीकृत की <math>{\Delta}_{\rho}</math> ऑपरेटर विषम हैमिल्टनियन Δ(1) के साथ हैमिल्टनियन वेक्टर फ़ील्ड है
Line 36: Line 36:
यदि कोई बाएं गुणन संकारक का परिचय देता है <math>L_{a}</math> जैसा
यदि कोई बाएं गुणन संकारक का परिचय देता है <math>L_{a}</math> जैसा
:<math> L_{a}(b) := ab  ,  </math>
:<math> L_{a}(b) := ab  ,  </math>
और [[ supercommutator ]] [,] के रूप में
और [[ supercommutator |supercommutator]] [,] के रूप में
:<math>[S,T]:=ST - (-1)^{\left|S\right|\left|T\right|}TS </math>
:<math>[S,T]:=ST - (-1)^{\left|S\right|\left|T\right|}TS </math>
दो मनमानी ऑपरेटरों एस और टी के लिए, फिर एंटीब्रैकेट की परिभाषा को संक्षिप्त रूप से लिखा जा सकता है
दो मनमानी ऑपरेटरों एस और टी के लिए, फिर एंटीब्रैकेट की परिभाषा को संक्षिप्त रूप से लिखा जा सकता है
Line 45: Line 45:


== मास्टर समीकरण ==
== मास्टर समीकरण ==
बटालिन-विलकोविस्की बीजगणित के समान डिग्री तत्व ''एस'' (जिसे क्रिया (भौतिकी) कहा जाता है) के लिए शास्त्रीय मास्टर समीकरण समीकरण है
रद्द-वेलिकोवस्की बीजगणित के समान डिग्री तत्व ''एस'' (जिसे क्रिया (भौतिकी) कहा जाता है) के लिए शास्त्रीय मास्टर समीकरण समीकरण है
:<math>(S,S) = 0  . </math>
:<math>(S,S) = 0  . </math>
बैटलिन-विलकोविस्की बीजगणित के सम अंश तत्व ''W'' के लिए क्वांटम मास्टर समीकरण समीकरण है
रद्द-वेलिकोवस्की बीजगणित के सम अंश तत्व ''W'' के लिए क्वांटम मास्टर समीकरण समीकरण है
:<math> \Delta\exp \left[\frac{i}{\hbar}W\right] = 0 ,</math>
:<math> \Delta\exp \left[\frac{i}{\hbar}W\right] = 0 ,</math>
या समकक्ष,
या समकक्ष,
Line 76: Line 76:
* <math> \Phi^{4}(\Phi^{0},a,b,c) + {\rm Jac}(a,b,c)+ \Phi^{1}\left(\Phi^{3}(a,b,c)\right) + \Phi^{3}\left(\Phi^{1}(a),b,c\right) + (-1)^{\left|a\right|}\Phi^{3}\left(a,\Phi^{1}(b),c\right) +(-1)^{\left|a\right|+\left|b\right|}\Phi^{3}\left(a,b,\Phi^{1}(c)\right) = 0 </math> (सामान्यीकृत जैकोबी पहचान)
* <math> \Phi^{4}(\Phi^{0},a,b,c) + {\rm Jac}(a,b,c)+ \Phi^{1}\left(\Phi^{3}(a,b,c)\right) + \Phi^{3}\left(\Phi^{1}(a),b,c\right) + (-1)^{\left|a\right|}\Phi^{3}\left(a,\Phi^{1}(b),c\right) +(-1)^{\left|a\right|+\left|b\right|}\Phi^{3}\left(a,b,\Phi^{1}(c)\right) = 0 </math> (सामान्यीकृत जैकोबी पहचान)
* <math> \vdots </math>
* <math> \vdots </math>
जहां [[ जैकबिएटर ]] दो-कोष्ठक के लिए है <math>\Phi^{2}</math> परिभाषित किया जाता है
जहां [[ जैकबिएटर |जैकबिएटर]] दो-कोष्ठक के लिए है <math>\Phi^{2}</math> परिभाषित किया जाता है
:<math> {\rm Jac}(a_{1},a_{2},a_{3}) :=  
:<math> {\rm Jac}(a_{1},a_{2},a_{3}) :=  
\frac{1}{2} \sum_{\pi\in S_{3}}(-1)^{\left|a_{\pi}\right|}
\frac{1}{2} \sum_{\pi\in S_{3}}(-1)^{\left|a_{\pi}\right|}
Line 108: Line 108:


== विषम सहानुभूति बहुगुण ==
== विषम सहानुभूति बहुगुण ==
यदि विषम प्वासों द्वि-वेक्टर <math> \pi^{ij}</math> व्युत्क्रमणीय है, किसी के पास विषम [[ सहानुभूतिपूर्ण ज्यामिति ]] मैनिफोल्ड है। उस स्थिति में, विषम डार्बौक्स प्रमेय मौजूद है। यही है, वहां स्थानीय डार्बौक्स निर्देशांक मौजूद हैं, यानी निर्देशांक <math> q^{1}, \ldots, q^{n} </math>, और क्षण <math> p_{1},\ldots, p_{n} </math>, डिग्री का
यदि विषम प्वासों द्वि-वेक्टर <math> \pi^{ij}</math> व्युत्क्रमणीय है, किसी के पास विषम [[ सहानुभूतिपूर्ण ज्यामिति |सहानुभूतिपूर्ण ज्यामिति]] मैनिफोल्ड है। उस स्थिति में, विषम डार्बौक्स प्रमेय मौजूद है। यही है, वहां स्थानीय डार्बौक्स निर्देशांक मौजूद हैं, यानी निर्देशांक <math> q^{1}, \ldots, q^{n} </math>, और क्षण <math> p_{1},\ldots, p_{n} </math>, डिग्री का
:<math> \left|q^{i}\right|+\left|p_{i}\right|=1, </math>
:<math> \left|q^{i}\right|+\left|p_{i}\right|=1, </math>
जैसे कि विषम पोइसन ब्रैकेट डार्बौक्स फॉर्म पर है
जैसे कि विषम पोइसन ब्रैकेट डार्बौक्स फॉर्म पर है
Line 120: Line 120:
== उदाहरण ==
== उदाहरण ==
* मल्टी-वेक्टर फ़ील्ड्स के लिए स्काउटन-निजेनहुइस ब्रैकेट एंटीब्रैकेट का उदाहरण है।
* मल्टी-वेक्टर फ़ील्ड्स के लिए स्काउटन-निजेनहुइस ब्रैकेट एंटीब्रैकेट का उदाहरण है।
* यदि L लाइ सुपरएलजेब्रा है, और Π सुपर स्पेस के सम और विषम भागों का आदान-प्रदान करने वाला ऑपरेटर है, तो Π (L) (L का [[बाहरी बीजगणित]]) का [[सममित बीजगणित]] बैटलिन-विलकोविस्की बीजगणित है जिसमें Δ दिया गया है लाई बीजगणित [[सह-समरूपता]] की गणना करने के लिए इस्तेमाल किया जाने वाला सामान्य अंतर।
* यदि L लाइ सुपरएलजेब्रा है, और Π सुपर स्पेस के सम और विषम भागों का आदान-प्रदान करने वाला ऑपरेटर है, तो Π (L) (L का [[बाहरी बीजगणित]]) का [[सममित बीजगणित]] रद्द-वेलिकोवस्की बीजगणित है जिसमें Δ दिया गया है लाई बीजगणित [[सह-समरूपता]] की गणना करने के लिए इस्तेमाल किया जाने वाला सामान्य अंतर।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 22:20, 25 April 2023

सैद्धांतिक भौतिकी में, रद्द-वेलिकोवस्की (बीवी) औपचारिकता (इगोर रद्द और ग्रिगोरी वेलिकोवस्की के नाम पर) को गुरुत्वाकर्षण और अतिगुरुत्वाकर्षण जैसे लैग्रैंगियन गेज सिद्धांतों के लिए भूत संरचना का निर्धारण करने के लिए एक विधि के रूप में विकसित किया गया था, जिसका संबंधित हैमिल्टनियन सूत्रीकरण में बाधाएं संबंधित नहीं हैं एक अभिसंधि बीजगणित (यानी, अभिसंधि बीजगणित संरचना स्थिरांक की भूमिका अधिक सामान्य संरचना कार्यों द्वारा निभाई जाती है)। बीवी औपचारिकता, एक ऐसी क्रिया (भौतिकी) पर आधारित है जिसमें दोनों क्षेत्रों और "एंटीफिल्ड्स" शामिल हैं, को शुद्ध यांग-मिल्स सिद्धांत के लिए मूल बीआरएसटी औपचारिकता के एक विशाल सामान्यीकरण के रूप में माना जा सकता है, जो एक मनमाना लैग्रेंजियन गेज सिद्धांत है। रद्द-वेलिकोवस्की औपचारिकता के लिए अन्य नाम फ़ील्ड-एंटीफिल्ड औपचारिकता, लाग्रैंगियन बीआरएसटी औपचारिकता, या बीवी-बीआरएसटी औपचारिकता हैं। इसे रद्द-फ्राडकिन-वेलिकोवस्की (बीएफवी) औपचारिकता के साथ भ्रमित नहीं होना चाहिए, जो हैमिल्टनियन समकक्ष है।

रद्द-वेलिकोवस्की बीजगणित

गणित में, बटालिन-विलकोविस्की बीजगणित डिग्री -1 के दूसरे क्रम के नीलपोटेंट ऑपरेटर Δ के साथ, एक ग्रेडेड सुपरकम्यूटेटिव (इकाई 1 के साथ) बीजगणित है। अधिक सटीक रूप से, यह पहचानों को संतुष्ट करता है

  • (उत्पाद की डिग्री 0 है।)
  • (Δ की डिग्री -1 है।)
  • (उत्पाद साहचर्य है।)
  • (उत्पाद (सुपर-) क्रमविनिमेय है।)
  • (निलपोटेंसी (का क्रम 2 है।))
  • (Δ ऑपरेटर दूसरे क्रम का है।)

एक को अक्सर सामान्यीकरण की भी आवश्यकता होती है:

  • (सामान्यीकरण)

एंटीब्रैकेट

रद्द-वेलिकोवस्की बीजगणित एक गेरस्टेनहेबर बीजगणित बन जाता है यदि कोई गेरस्टेनहैबर ब्रैकेट को परिभाषित करता है।

जेरस्टेनहैबर ब्रैकेट के अन्य नाम बटिन ब्रैकेट, एंटीब्रैकेट, या अजीब पॉसॉन ब्रैकेट हैं, एंटीब्रैकेट संतुष्ट करता है।

  • (प्रतिकोष्ठक (,) की डिग्री -1 होती है।)
  • (विषम सममित)
  • (जैकोबी पहचान)
  • (पॉसों की संपत्ति; लीबनिज नियम)

विषम लाप्लासियन

सामान्यीकृत ऑपरेटर के रूप में परिभाषित किया गया है।

विशेष रूप से विषम पॉसों ज्यामिति के संदर्भ में इसे अक्सर विषम लाप्लासियन कहा जाता है। यह एंटीब्रैकेट को "अलग" करता है।

  • ( h> ऑपरेटर अंतर करता है (,))

चौराहा सामान्यीकृत की ऑपरेटर विषम हैमिल्टनियन Δ(1) के साथ हैमिल्टनियन वेक्टर फ़ील्ड है

  • (लीबनिज नियम)

जिसे मॉड्यूलर वेक्टर फील्ड के रूप में भी जाना जाता है। सामान्यीकरण मानकर Δ(1)=0, विषम लाप्लासियन केवल Δ संचालिका है, और मॉड्यूलर सदिश क्षेत्र है गायब हो जाता है।

== नेस्टेड कम्यूटेटर == के संदर्भ में कॉम्पैक्ट फॉर्मूलेशन यदि कोई बाएं गुणन संकारक का परिचय देता है जैसा

और supercommutator [,] के रूप में

दो मनमानी ऑपरेटरों एस और टी के लिए, फिर एंटीब्रैकेट की परिभाषा को संक्षिप्त रूप से लिखा जा सकता है

और Δ के लिए दूसरे क्रम की स्थिति को संक्षेप में लिखा जा सकता है

(Δ ऑपरेटर दूसरे क्रम का है)

जहां यह समझा जाता है कि प्रासंगिक ऑपरेटर इकाई तत्व 1 पर कार्य करता है। दूसरे शब्दों में, प्रथम-क्रम (affine) ऑपरेटर है, और शून्य-क्रम ऑपरेटर है।

मास्टर समीकरण

रद्द-वेलिकोवस्की बीजगणित के समान डिग्री तत्व एस (जिसे क्रिया (भौतिकी) कहा जाता है) के लिए शास्त्रीय मास्टर समीकरण समीकरण है

रद्द-वेलिकोवस्की बीजगणित के सम अंश तत्व W के लिए क्वांटम मास्टर समीकरण समीकरण है

या समकक्ष,

सामान्यीकरण मानकर Δ(1) = 0, क्वांटम मास्टर समीकरण पढ़ता है


सामान्यीकृत बीवी बीजगणित

सामान्यीकृत बीवी बीजगणित की परिभाषा में, Δ के लिए दूसरे क्रम की धारणा को हटा दिया जाता है। इसके बाद डिग्री -1 के उच्च कोष्ठकों के अनंत पदानुक्रम को परिभाषित किया जा सकता है

कोष्ठक (वर्गीकृत) सममित हैं

(सममित कोष्ठक)

कहाँ क्रमचय है, और क्रमपरिवर्तन का कोज़ुल चिह्न है

.

कोष्ठक होमोटॉपी लाइ बीजगणित का गठन करते हैं, जिसे के रूप में भी जाना जाता है बीजगणित, जो सामान्यीकृत जैकोबी सर्वसमिकाओं को संतुष्ट करता है

(सामान्यीकृत जैकोबी पहचान)

पहले कुछ कोष्ठक हैं:

  • (शून्य-कोष्ठक)
  • (एक-कोष्ठक)
  • (दो कोष्ठक)
  • (तीन कोष्ठक)

विशेष रूप से, एक-कोष्ठक विषम लाप्लासियन है, और दो-कोष्ठक है चिह्न तक का प्रतिकोष्ठक है। पहली कुछ सामान्यीकृत जैकोबी पहचानें हैं:

  • ( है -बंद किया हुआ)
  • ( मॉड्यूलर वेक्टर क्षेत्र के लिए हैमिल्टनियन है )
  • ( h> ऑपरेटर अंतर करता है (,) सामान्यीकृत)
  • (सामान्यीकृत जैकोबी पहचान)

जहां जैकबिएटर दो-कोष्ठक के लिए है परिभाषित किया जाता है


बी.वी. n-बीजगणित

Δ संचालिका 'n'वें क्रम' की परिभाषा के अनुसार है यदि और केवल यदि (n + 1)-कोष्ठक गायब हो जाता है। उस स्थिति में, कोई BV n-बीजगणित की बात करता है। इस प्रकार BV 2-बीजगणित परिभाषा के अनुसार केवल BV बीजगणित है। जैकबिएटर बीवी बीजगणित के भीतर गायब हो जाता है, जिसका अर्थ है कि यहां एंटीब्रैकेट जैकोबी पहचान को संतुष्ट करता है। BV 1-बीजगणित जो सामान्यीकरण Δ(1) = 0 को संतुष्ट करता हैअंतर वर्गीकृत बीजगणित बीजगणित के समान है। डिफरेंशियल ग्रेडेड बीजगणित (DGA) डिफरेंशियल Δ के साथ। बीवी 1-बीजगणित में लुप्त एंटीब्रैकेट है।

मात्रा घनत्व के साथ विषम पोइसन कई गुना

एक विषम पोइसन द्वि-वेक्टर के साथ (n | n) supermanifold दिया जाए और बेरेज़िन आयतन घनत्व , जिसे क्रमशः पी-संरचना और एस-संरचना के रूप में भी जाना जाता है। स्थानीय निर्देशांक कहलाने दें . डेरिवेटिव चलो और

फ़ंक्शन f wrt के सही व्युत्पन्न और दाएँ डेरिवेटिव को निरूपित करें। , क्रमश। विषम प्वासों द्वि-वेक्टर अधिक सटीक रूप से संतुष्ट करता है

  • (विषम पोइसन संरचना की डिग्री -1 है)
  • (तिरछा सममित)
  • (जैकोबी पहचान)

निर्देशांक के परिवर्तन के तहत विषम पोइसन द्वि-वेक्टर और बेरेज़िन आयतन घनत्व के रूप में रूपांतरित करें

जहां sdet overdetermine को दर्शाता है, जिसे बेरेज़िनियन भी कहा जाता है। तब 'विषम प्वासों कोष्ठक' के रूप में परिभाषित किया गया है

एक हैमिल्टनियन वेक्टर क्षेत्र हैमिल्टनियन एफ के रूप में परिभाषित किया जा सकता है

सदिश क्षेत्र का (सुपर-) विचलन परिभाषित किया जाता है

याद रखें कि लिउविले के प्रमेय के कारण हैमिल्टनियन वेक्टर फ़ील्ड भी पॉइसन ज्यामिति में विचलन मुक्त हैं। विषम प्वासों ज्यामिति में संगत कथन सही नहीं है। अजीब लाप्लासियन लिउविल के प्रमेय की विफलता को मापता है। साइन फैक्टर तक, इसे संबंधित हैमिल्टन वेक्टर क्षेत्र के आधे विचलन के रूप में परिभाषित किया गया है,

विषम पोइसन संरचना और बेरेज़िन आयतन घनत्व मॉड्यूलर वेक्टर फ़ील्ड होने पर संगत कहा जाता है गायब हो जाता है। उस स्थिति में विषम लाप्लासियन सामान्यीकरण के साथ बीवी Δ ऑपरेटर है Δ(1)=0। संबंधित बीवी बीजगणित कार्यों का बीजगणित है।

विषम सहानुभूति बहुगुण

यदि विषम प्वासों द्वि-वेक्टर व्युत्क्रमणीय है, किसी के पास विषम सहानुभूतिपूर्ण ज्यामिति मैनिफोल्ड है। उस स्थिति में, विषम डार्बौक्स प्रमेय मौजूद है। यही है, वहां स्थानीय डार्बौक्स निर्देशांक मौजूद हैं, यानी निर्देशांक , और क्षण , डिग्री का

जैसे कि विषम पोइसन ब्रैकेट डार्बौक्स फॉर्म पर है

सैद्धांतिक भौतिकी में, निर्देशांक और क्षण फ़ील्ड्स और एंटीफ़िल्ड्स कहलाते हैं, और आमतौर पर निरूपित होते हैं और , क्रमश।

अर्ध-घनत्व के वेक्टर स्थान पर कार्य करता है, और डार्बौक्स पड़ोस के एटलस पर विश्व स्तर पर अच्छी तरह से परिभाषित ऑपरेटर है। खुदावेरडियन का ऑपरेटर केवल पी-संरचना पर निर्भर करता है। यह स्पष्ट रूप से शून्य है , और डिग्री −1. फिर भी, यह तकनीकी रूप से बीवी Δ संचालिका नहीं है क्योंकि अर्द्धघनत्व के सदिश स्थान में कोई गुणन नहीं है। (दो अर्ध-घनत्वों का गुणनफल अर्ध-घनत्व के बजाय घनत्व है।) निश्चित घनत्व दिया गया है , निलपोटेंट बीवी Δ ऑपरेटर का निर्माण कर सकता है

जिसका संबंधित बीवी बीजगणित कार्यों का बीजगणित है, या समकक्ष, स्केलर (भौतिकी) है। विषम सहानुभूतिपूर्ण संरचना और घनत्व संगत हैं यदि और केवल यदि Δ(1) विषम स्थिरांक है।

उदाहरण

  • मल्टी-वेक्टर फ़ील्ड्स के लिए स्काउटन-निजेनहुइस ब्रैकेट एंटीब्रैकेट का उदाहरण है।
  • यदि L लाइ सुपरएलजेब्रा है, और Π सुपर स्पेस के सम और विषम भागों का आदान-प्रदान करने वाला ऑपरेटर है, तो Π (L) (L का बाहरी बीजगणित) का सममित बीजगणित रद्द-वेलिकोवस्की बीजगणित है जिसमें Δ दिया गया है लाई बीजगणित सह-समरूपता की गणना करने के लिए इस्तेमाल किया जाने वाला सामान्य अंतर।

यह भी देखें

संदर्भ

शैक्षणिक

  • कॉस्टेलो, के. (2011)। पुनर्सामान्यीकरण और प्रभावी क्षेत्र सिद्धांतISBN 978-0-8218-5288-0 (परेशान करने वाले क्वांटम क्षेत्र सिद्धांत और कठोर पहलुओं की व्याख्या करता है, जैसे कि चेर्न-सीमन्स सिद्धांत को परिमाणित करना | चेर्न-सिमंस सिद्धांत और यांग-मिल्स सिद्धांत | बीवी-औपचारिकता का उपयोग करते हुए यांग-मिल्स सिद्धांत)

संदर्भ