जियोडेसिक मैनिफोल्ड: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
m (3 revisions imported from alpha:जियोडेसिक_मैनिफोल्ड) |
(No difference)
|
Revision as of 09:14, 3 May 2023
गणित में, पूर्ण कई गुना (भौगोलिक रूप से पूर्ण कई गुना) M (स्यूडो)-रीमैनियन कई गुना रिमेंनियन मैनिफोल्ड है, जिसके लिए किसी भी बिंदु p से प्रारंभ होता है , आप किसी भी दिशा में अनिश्चित काल तक सीधी रेखा का अनुसरण कर सकते हैं। औपचारिक रूप से, बिंदु p पर घातीय नक्शा, TpM पर परिभाषित किया गया है, p पर संपूर्ण स्पर्शरेखा स्थान है।
समतुल्य रूप से, अधिकतम जियोडेसिक पर विचार करें . यहाँ का स्वतंत्र अंतराल है , और, क्योंकि जियोडेसिक्स को निरंतर गति के साथ परिचालित किया जाता है, इसे विशिष्ट रूप से ट्रांसवर्सलिटी तक परिभाषित किया जाता है। क्योंकि अधिकतम है, के अंत (टोपोलॉजी) को मैप करता है के बिंदुओं के लिए ∂M, और की लंबाई उन बिंदुओं के मध्य की दूरी को मापता है। यदि किसी ऐसे जियोडेसिक के लिए मैनिफोल्ड जियोडेसिक रूप से पूर्ण है , हमारे निकट वह है .
उदाहरण और गैर उदाहरण
यूक्लिडियन अंतरिक्ष , गोले , और टोरस्र्स (उनके प्राकृतिक रिमेंनियन मेट्रिक्स के साथ) सभी पूर्ण कई गुना हैं।
सभी कॉम्पैक्ट रीमैनियन मैनिफोल्ड्स और सभी सजातीय मैनिफोल्ड्स जियोडेसिक रूप से पूर्ण हैं। सभी सममित स्थान भौगोलिक रूप से पूर्ण हैं।
प्रत्येक परिमित-आयामी पथ से जुड़ा हुआ रिमेंनियन मैनिफोल्ड जो कि पूर्ण मीट्रिक स्थान भी है (रिमेंनियन दूरी के संबंध में) भौगोलिक रूप से पूर्ण है। वास्तव में, जियोडेसिक पूर्णता और मीट्रिक पूर्णता इन स्थानों के लिए समान हैं। यह हॉफ-रिनो प्रमेय का द्रव्य है।
गैर-उदाहरण
पंचर विमान द्वारा गैर-पूर्ण कई गुना का सरल उदाहरण दिया गया है (इसकी प्रेरित मीट्रिक के साथ)। उत्पत्ति तक जाने वाले जियोडेसिक्स को संपूर्ण वास्तविक रेखा पर परिभाषित नहीं किया जा सकता है। हॉफ-रिनो प्रमेय द्वारा, हम वैकल्पिक रूप से यह देख सकते हैं कि यह पूर्ण मीट्रिक स्थान नहीं है: विमान में किसी भी क्रम को मूल रूप से परिवर्तित करने के लिए पंचर विमान में गैर-अभिसरण कॉची अनुक्रम है।
गैर-भौगोलिक रूप से पूर्ण कॉम्पैक्ट छद्म-रीमैनियन (लेकिन रिमेंनियन नहीं) कई गुना उपस्थित हैं। इसका उदाहरण क्लिफ्टन-पोहल टोरस है।
सामान्य सापेक्षता के सिद्धांत में, जो छद्म-रीमैनियन ज्यामिति के संदर्भ में गुरुत्वाकर्षण का वर्णन करता है, भौगोलिक रूप से अपूर्ण रिक्त स्थान के कई महत्वपूर्ण उदाहरण उत्पन्न होते हैं। श्वार्जस्चिल्ड मीट्रिक|बिग बैंग के साथ गैर-घूर्णन अपरिवर्तित ब्लैक-होल या कॉस्मोलॉजी। तथ्य यह है कि इस प्रकार की अपूर्णता सामान्य सापेक्षता में अधिक सामान्य है, पेनरोज़-हॉकिंग विलक्षणता प्रमेय में दिखाया गया है।
संदर्भ
- O'Neill, Barrett (1983). Semi-Riemannian Geometry. Academic Press. Chapter 3. ISBN 0-12-526740-1.