रेगे सिद्धांत: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 28: Line 28:
जहाँ <math>l(E^2)</math> ऊर्जा <math>E</math> के साथ बाध्य होने वाली स्थिति के कोणीय गति का गैर-पूर्णांक मान हैं। यह रेडियल श्रोडिंगर समीकरण को हल करके निर्धारित किया जाता है और यह अलग-अलग कोणीय गति के साथ लेकिन समान [[रेडियल उत्तेजना संख्या]] के साथ वेवफंक्शन की ऊर्जा को सुचारू रूप से प्रक्षेपित करता है। प्रक्षेपवक्र कार्य सापेक्षवादी सामान्यीकरण के लिए <math>s=E^2</math> का एक कार्य है। अभिव्यक्ति <math>l(s)</math> रेगे प्रक्षेपवक्र फ़ंक्शन के रूप में जाना जाता है और जब यह एक पूर्णांक होता है, तो कण इस कोणीय गति के साथ एक वास्तविक बाध्य अवस्था बनाते हैं। स्पर्शोन्मुख रूप तब लागू होता है जब <math>z</math> एक से बहुत अधिक होता है, जो गैर-सापेक्षिक प्रकीर्णन में भौतिक सीमा नहीं है।
जहाँ <math>l(E^2)</math> ऊर्जा <math>E</math> के साथ बाध्य होने वाली स्थिति के कोणीय गति का गैर-पूर्णांक मान हैं। यह रेडियल श्रोडिंगर समीकरण को हल करके निर्धारित किया जाता है और यह अलग-अलग कोणीय गति के साथ लेकिन समान [[रेडियल उत्तेजना संख्या]] के साथ वेवफंक्शन की ऊर्जा को सुचारू रूप से प्रक्षेपित करता है। प्रक्षेपवक्र कार्य सापेक्षवादी सामान्यीकरण के लिए <math>s=E^2</math> का एक कार्य है। अभिव्यक्ति <math>l(s)</math> रेगे प्रक्षेपवक्र फ़ंक्शन के रूप में जाना जाता है और जब यह एक पूर्णांक होता है, तो कण इस कोणीय गति के साथ एक वास्तविक बाध्य अवस्था बनाते हैं। स्पर्शोन्मुख रूप तब लागू होता है जब <math>z</math> एक से बहुत अधिक होता है, जो गैर-सापेक्षिक प्रकीर्णन में भौतिक सीमा नहीं है।


कुछ ही समय बाद, [[स्टेनली मैंडेलस्टम]] ने सुनिश्चित किया कि सापेक्षता  में <math>z</math> बड़े की विशुद्ध रूप से औपचारिक सीमा एक भौतिक सीमा के निकट है - बड़े <math>t</math> की सीमा। बड़े <math>t</math> का अर्थ है पार किए गए चैनल में बड़ी ऊर्जा, जहां आने वाले कणों में से एक में एक ऊर्जा गति होती है जो इसे एक ऊर्जावान आउटगोइंग एंटीपार्टिकल बनाती है। इस अवलोकन ने रेगे सिद्धांत को एक गणितीय जिज्ञासा से एक भौतिक सिद्धांत में बदल दिया: यह कहा जाता है कि बड़ी ऊर्जा पर कण-कण बिखरने के लिए बिखरने वाले आयाम की गिरावट दर निर्धारित करने वाला कार्य उस फ़ंक्शन के समान है जो एक के लिए बाध्य राज्य ऊर्जा निर्धारित करता है। कोणीय संवेग के फलन के रूप में कण-प्रतिकण प्रणाली।<ref>{{cite book|first1=V.|last1=Gribov|title=जटिल कोणीय संवेग का सिद्धांत|year=2003| isbn=978-0-521-81834-6| bibcode=2003tcam.book.....G|publisher=Cambridge University press}}</ref>
कुछ ही समय बाद, [[स्टेनली मैंडेलस्टम]] ने सुनिश्चित किया कि सापेक्षता  में <math>z</math> बड़े की विशुद्ध रूप से औपचारिक सीमा एक भौतिक सीमा के निकट है - बड़े <math>t</math> की सीमा। बड़े <math>t</math> का अर्थ है पार किए गए चैनल में बड़ी ऊर्जा, जहां आने वाले कणों में से एक में एक ऊर्जा गति होती है जो इसे एक ऊर्जावान आउटगोइंग एंटीपार्टिकल बनाती है। इस अवलोकन ने रेगे सिद्धांत को एक गणितीय जिज्ञासा से एक भौतिक सिद्धांत में बदल दिया: यह कहा जाता है कि बड़ी ऊर्जा पर कण-कण प्रकीर्णन    के लिए प्रकीर्णन    वाले आयाम की गिरावट दर निर्धारित करने वाला कार्य उस फ़ंक्शन के समान है जो एक के लिए बाध्य राज्य ऊर्जा निर्धारित करता है। कोणीय संवेग के फलन के रूप में कण-प्रतिकण प्रणाली।<ref>{{cite book|first1=V.|last1=Gribov|title=जटिल कोणीय संवेग का सिद्धांत|year=2003| isbn=978-0-521-81834-6| bibcode=2003tcam.book.....G|publisher=Cambridge University press}}</ref>


स्विच को मैंडेलस्टैम चरों की अदला-बदली की आवश्यकता थी <math>s</math> ऊर्जा वर्ग <math>t</math> के लिए चुकता संवेग अंतरण है, जो समान कणों के लोचदार नरम टकरावों के लिए प्रकीर्णन वाले कोण के कोसाइन का एक गुना घटा है। क्रॉस्ड चैनल में संबंध बन जाता है
स्विच को मैंडेलस्टैम चरों की अदला-बदली की आवश्यकता थी <math>s</math> ऊर्जा वर्ग <math>t</math> के लिए चुकता संवेग अंतरण है, जो समान कणों के लोचदार नरम टकरावों के लिए प्रकीर्णन वाले कोण के कोसाइन का एक गुना घटा है। क्रॉस्ड चैनल में संबंध बन जाता है
Line 34: Line 34:
A(z) \propto s^{l(t)}
A(z) \propto s^{l(t)}
</math>
</math>
जो कहता है कि आयाम में अलग-अलग संबंधित कोणों पर ऊर्जा के कार्य के रूप में आयाम का एक अलग शक्ति नियम है, जहां संगत कोण  <math>t</math> के समान मान वाले होते हैं। यह भविष्यवाणी करता है कि कार्य जो शक्ति कानून को निर्धारित करता है वही कार्य है जो उन ऊर्जाओं को प्रक्षेपित करता है जहां अनुनाद दिखाई देते हैं। कोणों की सीमा जहां रेगे सिद्धांत द्वारा बिखरने का उत्पादक रूप से वर्णन किया जा सकता है, बड़ी ऊर्जाओं पर बीम-लाइन के चारों ओर एक संकीर्ण शंकु में सिकुड़ जाता है।
जो कहता है कि आयाम में अलग-अलग संबंधित कोणों पर ऊर्जा के कार्य के रूप में आयाम का एक अलग शक्ति नियम है, जहां संगत कोण  <math>t</math> के समान मान वाले होते हैं। यह भविष्यवाणी करता है कि कार्य जो शक्ति कानून को निर्धारित करता है वही कार्य है जो उन ऊर्जाओं को प्रक्षेपित करता है जहां अनुनाद दिखाई देते हैं। कोणों की सीमा जहां रेगे सिद्धांत द्वारा प्रकीर्णन    का उत्पादक रूप से वर्णन किया जा सकता है, बड़ी ऊर्जाओं पर बीम-लाइन के चारों ओर एक संकीर्ण शंकु में सिकुड़ जाता है।


1960 में जेफ्री च्यू और [[स्टीवन फ्रौत्ची]] ने सीमित डेटा से अनुमान लगाया कि दृढ़ता से परस्पर क्रिया करने वाले कणों में कोणीय गति पर वर्ग-द्रव्यमान की एक बहुत ही सरल निर्भरता थी: कण उन परिवारों में आते हैं जहां रेगे प्रक्षेपवक्र कार्य सीधी रेखाएँ थीं: <math>l(s)=ks</math> उसी स्थिरांक के साथ <math>k</math> सभी प्रक्षेप पथों के लिए। स्ट्रेट-लाइन रेगे प्रक्षेपवक्र को बाद में सापेक्षतावादी तारों को घुमाने पर बड़े पैमाने पर समापन बिंदुओं से उत्पन्न होने के रूप में समझा गया। चूंकि एक रेगे विवरण में निहित है कि कण बंधे हुए राज्य थे, च्यू और फ्रौत्ची ने निष्कर्ष निकाला कि कोई भी दृढ़ता से परस्पर क्रिया करने वाले कण प्राथमिक नहीं थे।
1960 में जेफ्री च्यू और [[स्टीवन फ्रौत्ची]] ने सीमित डेटा से अनुमान लगाया कि दृढ़ता से परस्पर क्रिया करने वाले कणों में कोणीय गति पर वर्ग-द्रव्यमान की एक बहुत ही सरल निर्भरता थी: कण उन परिवारों में आते हैं जहां रेगे प्रक्षेपवक्र कार्य सीधी रेखाएँ थीं: <math>l(s)=ks</math> उसी स्थिरांक के साथ <math>k</math> सभी प्रक्षेप पथों के लिए। स्ट्रेट-लाइन रेगे प्रक्षेपवक्र को बाद में सापेक्षतावादी तारों को घुमाने पर बड़े पैमाने पर समापन बिंदुओं से उत्पन्न होने के रूप में समझा गया। चूंकि एक रेगे विवरण में निहित है कि कण बंधे हुए राज्य थे, च्यू और फ्रौत्ची ने निष्कर्ष निकाला कि कोई भी दृढ़ता से परस्पर क्रिया करने वाले कण प्राथमिक नहीं थे।


प्रायोगिक रूप से, बिखरने का निकट-बीम व्यवहार कोण के साथ गिर गया, जैसा कि रेगे सिद्धांत द्वारा समझाया गया था, जिससे कई लोगों ने यह स्वीकार किया कि मजबूत अंतःक्रियाओं में कण समग्र थे। अधिकांश प्रकीर्णन विवर्तनिक था, जिसका अर्थ है कि कण मुश्किल से बिखरते हैं - टक्कर के बाद बीम लाइन के करीब रहना। [[व्लादिमीर ग्रिबोव]] ने उल्लेख किया कि अधिकतम संभव बिखरने की धारणा के साथ संयुक्त [[फ्रिसार्ट बाध्य]] एक रेगे प्रक्षेपवक्र था जो लॉगरिदमिक रूप से बढ़ते क्रॉस सेक्शन का नेतृत्व करेगा, एक प्रक्षेपवक्र जिसे आजकल [[पोमेरॉन]] के रूप में जाना जाता है। उन्होंने मल्टी-पोमेरॉन एक्सचेंज के वर्चस्व वाली निकट बीम लाइन स्कैटरिंग के लिए एक [[मात्रात्मक गड़बड़ी सिद्धांत]] तैयार किया।
प्रायोगिक रूप से, प्रकीर्णन    का निकट-बीम व्यवहार कोण के साथ गिर गया, जैसा कि रेगे सिद्धांत द्वारा समझाया गया था, जिससे कई लोगों ने यह स्वीकार किया कि मजबूत अंतःक्रियाओं में कण समग्र थे। अधिकांश प्रकीर्णन विवर्तनिक था, जिसका अर्थ है कि कण मुश्किल से बिखरते हैं - टक्कर के बाद बीम लाइन के करीब रहना। [[व्लादिमीर ग्रिबोव]] ने उल्लेख किया कि अधिकतम संभव प्रकीर्णन    की धारणा के साथ संयुक्त [[फ्रिसार्ट बाध्य]] एक रेगे प्रक्षेपवक्र था जो लॉगरिदमिक रूप से बढ़ते क्रॉस सेक्शन का नेतृत्व करेगा, एक प्रक्षेपवक्र जिसे आजकल [[पोमेरॉन]] के रूप में जाना जाता है। उन्होंने मल्टी-पोमेरॉन एक्सचेंज के वर्चस्व वाली निकट बीम लाइन स्कैटरिंग के लिए एक [[मात्रात्मक गड़बड़ी सिद्धांत]] तैयार किया।


मौलिक अवलोकन से कि हैड्रोन समग्र हैं, दो दृष्टिकोण विकसित हुए। कुछ लोगों ने सही ढंग से वकालत की कि प्राथमिक कण थे, जिन्हें आजकल क्वार्क और ग्लून्स कहा जाता है, जिसने एक क्वांटम क्षेत्र सिद्धांत बनाया जिसमें हैड्रॉन बंधे हुए राज्य थे। अन्य लोग भी सही ढंग से मानते थे कि प्राथमिक कणों के बिना एक सिद्धांत तैयार करना संभव था - जहां सभी कण रेगे प्रक्षेपवक्र पर पड़े राज्यों से बंधे हुए थे और स्वयं को लगातार बिखेरते थे। इसे S-आव्यूह सिद्धांत कहा जाता था।
मौलिक अवलोकन से कि हैड्रोन समग्र हैं, दो दृष्टिकोण विकसित हुए। कुछ लोगों ने सही ढंग से वकालत की कि प्राथमिक कण थे, जिन्हें आजकल क्वार्क और ग्लून्स कहा जाता है, जिसने एक क्वांटम क्षेत्र सिद्धांत बनाया जिसमें हैड्रॉन बंधे हुए राज्य थे। अन्य लोग भी सही ढंग से मानते थे कि प्राथमिक कणों के बिना एक सिद्धांत तैयार करना संभव था - जहां सभी कण रेगे प्रक्षेपवक्र पर पड़े राज्यों से बंधे हुए थे और स्वयं को लगातार बिखेरते थे। इसे S-आव्यूह सिद्धांत कहा जाता था।
Line 44: Line 44:
सबसे सफल एस-आव्यूह दृष्टिकोण संकीर्ण-अनुनाद सन्निकटन पर केंद्रित है, यह विचार है कि सीधी रेखा रेगे प्रक्षेपवक्र पर स्थिर कणों से शुरू होने वाला एक निरंतर विस्तार है। कई झूठी शुरुआत के बाद, रिचर्ड डोलेन, [[डेविड हॉर्न (इज़राइली भौतिक विज्ञानी)]] और क्रिस्टोफ श्मिट ने एक महत्वपूर्ण संपत्ति को समझा जिसने [[गेब्रियल विनीशियन]] को एक आत्म-निरंतर प्रकीर्णन आयाम, पहला [[स्ट्रिंग सिद्धांत]] तैयार करने के लिए प्रेरित किया। मंडेलस्टम ने नोट किया कि सीमा जहां रेगे प्रक्षेपवक्र सीधे हैं, वह सीमा भी है जहां राज्यों का जीवनकाल लंबा है।
सबसे सफल एस-आव्यूह दृष्टिकोण संकीर्ण-अनुनाद सन्निकटन पर केंद्रित है, यह विचार है कि सीधी रेखा रेगे प्रक्षेपवक्र पर स्थिर कणों से शुरू होने वाला एक निरंतर विस्तार है। कई झूठी शुरुआत के बाद, रिचर्ड डोलेन, [[डेविड हॉर्न (इज़राइली भौतिक विज्ञानी)]] और क्रिस्टोफ श्मिट ने एक महत्वपूर्ण संपत्ति को समझा जिसने [[गेब्रियल विनीशियन]] को एक आत्म-निरंतर प्रकीर्णन आयाम, पहला [[स्ट्रिंग सिद्धांत]] तैयार करने के लिए प्रेरित किया। मंडेलस्टम ने नोट किया कि सीमा जहां रेगे प्रक्षेपवक्र सीधे हैं, वह सीमा भी है जहां राज्यों का जीवनकाल लंबा है।


उच्च ऊर्जा पर [[मजबूत बातचीत|मजबूत संबंध]] के एक मौलिक सिद्धांत के रूप में, रेगे सिद्धांत ने 1960 के दशक में रुचि की अवधि का आनंद लिया, लेकिन यह [[क्वांटम क्रोमोडायनामिक्स]] द्वारा काफी हद तक सफल रहा। एक अभूतपूर्व सिद्धांत के रूप में, यह अभी भी निकट-बीम लाइन बिखरने और बहुत बड़ी ऊर्जा पर बिखरने को समझने के लिए एक अनिवार्य उपकरण है। आधुनिक अनुसंधान गड़बड़ी सिद्धांत और स्ट्रिंग सिद्धांत दोनों के संबंध पर केंद्रित है।
उच्च ऊर्जा पर [[मजबूत बातचीत|मजबूत संबंध]] के एक मौलिक सिद्धांत के रूप में, रेगे सिद्धांत ने 1960 के दशक में रुचि की अवधि का आनंद लिया, लेकिन यह [[क्वांटम क्रोमोडायनामिक्स]] द्वारा काफी हद तक सफल रहा। एक अभूतपूर्व सिद्धांत के रूप में, यह अभी भी निकट-बीम लाइन प्रकीर्णन    और बहुत बड़ी ऊर्जा पर प्रकीर्णन    को समझने के लिए एक अनिवार्य उपकरण है। आधुनिक अनुसंधान गड़बड़ी सिद्धांत और स्ट्रिंग सिद्धांत दोनों के संबंध पर केंद्रित है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 12:47, 24 April 2023

क्वांटम भौतिकी में, रेगे सिद्धांत (/ˈrɛ/) कोणीय संवेग के फलन के रूप में प्रकीर्णन के विश्लेषणात्मक गुणों का अध्ययन है जहां कोणीय संवेग ħ के पूर्णांक बहु तक सीमित नहीं है, लेकिन किसी भी जटिल मान को लेने की अनुमति है। 1959 में टुल्लियो रेगे द्वारा गैर-सापेक्षवादी सिद्धांत विकसित किया गया था।[1]


विवरण

रेगे ध्रुवों का सबसे सरल उदाहरण कूलम्ब क्षमता के क्वांटम यांत्रिक उपचार द्वारा प्रदान किया जाता है या, द्रव्यमान m और इलेक्ट्रॉन के बंधन या प्रकीर्णन के क्वांटम यांत्रिक उपचार द्वारा भिन्न रूप में व्यक्त किया गया विद्युत आवेश द्रव्यमान के एक प्रोटॉन और आवेश प्रोटॉन के लिए इलेक्ट्रॉन के बंधन की ऊर्जा ऋणात्मक होती है जबकि प्रकीर्णन के लिए ऊर्जा धनात्मक होती है। बंधन ऊर्जा का सूत्र है

जहाँ , प्लैंक स्थिरांक है और निर्वात की पारगम्यता है। प्रमुख क्वांटम संख्या क्वांटम यांत्रिकी में (रेडियल श्रोडिंगर समीकरण के समाधान) द्वारा , जहाँ रेडियल क्वांटम संख्या है और कक्षीय कोणीय गति की क्वांटम संख्या। उपरोक्त समीकरण को , के लिए हल करने पर हमें समीकरण प्राप्त होता है

एक जटिल कार्य के रूप में माना जाता है यह अभिव्यक्ति जटिल - समतल में एक पथ का वर्णन करती है जिसे रेगे प्रक्षेपवक्र कहा जाता है। इस प्रकार इस विचार में कक्षीय

संवेग जटिल मान ग्रहण कर सकता है।

विशेष रूप से युकावा क्षमता के लिए भी कई अन्य संभावनाओं के लिए रेगे प्रक्षेपवक्र प्राप्त किए जा सकते हैं।[2][3]

[4]

रेगे प्रक्षेपवक्र प्रकीर्णन आयाम के ध्रुवों के रूप में या संबंधित आव्यूह में दिखाई देते हैं। -आव्यूह के ऊपर विचार किए गए कूलम्ब क्षमता के मामले में निम्नलिखित अभिव्यक्ति द्वारा दिया गया है जिसे क्वांटम यांत्रिकी पर किसी भी पाठ्यपुस्तक के संदर्भ में जांचा जा सकता है:

जहाँ गामा फ़ंक्शन है, फ़ैक्टोरियल का सामान्यीकरण . यह गामा फलन . इसलिए रेगे पोल नाम इस प्रकार (अंश में गामा फ़ंक्शन) के लिए अभिव्यक्ति ठीक उन बिंदुओं पर ध्रुव रखता है जो रेगे प्रक्षेपवक्र के लिए उपरोक्त अभिव्यक्ति द्वारा दिए गए हैं।

इतिहास और निहितार्थ

सिद्धांत का मुख्य परिणाम यह है कि संभावित प्रकीर्णन के लिए प्रकीर्णन वाला आयाम प्रकीर्णन वाले कोण के कोसाइन के कार्य में एक शक्ति के रूप में बढ़ता है जो प्रकीर्णन वाली ऊर्जा में परिवर्तन के रूप में बदलता है:

जहाँ ऊर्जा के साथ बाध्य होने वाली स्थिति के कोणीय गति का गैर-पूर्णांक मान हैं। यह रेडियल श्रोडिंगर समीकरण को हल करके निर्धारित किया जाता है और यह अलग-अलग कोणीय गति के साथ लेकिन समान रेडियल उत्तेजना संख्या के साथ वेवफंक्शन की ऊर्जा को सुचारू रूप से प्रक्षेपित करता है। प्रक्षेपवक्र कार्य सापेक्षवादी सामान्यीकरण के लिए का एक कार्य है। अभिव्यक्ति रेगे प्रक्षेपवक्र फ़ंक्शन के रूप में जाना जाता है और जब यह एक पूर्णांक होता है, तो कण इस कोणीय गति के साथ एक वास्तविक बाध्य अवस्था बनाते हैं। स्पर्शोन्मुख रूप तब लागू होता है जब एक से बहुत अधिक होता है, जो गैर-सापेक्षिक प्रकीर्णन में भौतिक सीमा नहीं है।

कुछ ही समय बाद, स्टेनली मैंडेलस्टम ने सुनिश्चित किया कि सापेक्षता में बड़े की विशुद्ध रूप से औपचारिक सीमा एक भौतिक सीमा के निकट है - बड़े की सीमा। बड़े का अर्थ है पार किए गए चैनल में बड़ी ऊर्जा, जहां आने वाले कणों में से एक में एक ऊर्जा गति होती है जो इसे एक ऊर्जावान आउटगोइंग एंटीपार्टिकल बनाती है। इस अवलोकन ने रेगे सिद्धांत को एक गणितीय जिज्ञासा से एक भौतिक सिद्धांत में बदल दिया: यह कहा जाता है कि बड़ी ऊर्जा पर कण-कण प्रकीर्णन के लिए प्रकीर्णन वाले आयाम की गिरावट दर निर्धारित करने वाला कार्य उस फ़ंक्शन के समान है जो एक के लिए बाध्य राज्य ऊर्जा निर्धारित करता है। कोणीय संवेग के फलन के रूप में कण-प्रतिकण प्रणाली।[5]

स्विच को मैंडेलस्टैम चरों की अदला-बदली की आवश्यकता थी ऊर्जा वर्ग के लिए चुकता संवेग अंतरण है, जो समान कणों के लोचदार नरम टकरावों के लिए प्रकीर्णन वाले कोण के कोसाइन का एक गुना घटा है। क्रॉस्ड चैनल में संबंध बन जाता है

जो कहता है कि आयाम में अलग-अलग संबंधित कोणों पर ऊर्जा के कार्य के रूप में आयाम का एक अलग शक्ति नियम है, जहां संगत कोण के समान मान वाले होते हैं। यह भविष्यवाणी करता है कि कार्य जो शक्ति कानून को निर्धारित करता है वही कार्य है जो उन ऊर्जाओं को प्रक्षेपित करता है जहां अनुनाद दिखाई देते हैं। कोणों की सीमा जहां रेगे सिद्धांत द्वारा प्रकीर्णन का उत्पादक रूप से वर्णन किया जा सकता है, बड़ी ऊर्जाओं पर बीम-लाइन के चारों ओर एक संकीर्ण शंकु में सिकुड़ जाता है।

1960 में जेफ्री च्यू और स्टीवन फ्रौत्ची ने सीमित डेटा से अनुमान लगाया कि दृढ़ता से परस्पर क्रिया करने वाले कणों में कोणीय गति पर वर्ग-द्रव्यमान की एक बहुत ही सरल निर्भरता थी: कण उन परिवारों में आते हैं जहां रेगे प्रक्षेपवक्र कार्य सीधी रेखाएँ थीं: उसी स्थिरांक के साथ सभी प्रक्षेप पथों के लिए। स्ट्रेट-लाइन रेगे प्रक्षेपवक्र को बाद में सापेक्षतावादी तारों को घुमाने पर बड़े पैमाने पर समापन बिंदुओं से उत्पन्न होने के रूप में समझा गया। चूंकि एक रेगे विवरण में निहित है कि कण बंधे हुए राज्य थे, च्यू और फ्रौत्ची ने निष्कर्ष निकाला कि कोई भी दृढ़ता से परस्पर क्रिया करने वाले कण प्राथमिक नहीं थे।

प्रायोगिक रूप से, प्रकीर्णन का निकट-बीम व्यवहार कोण के साथ गिर गया, जैसा कि रेगे सिद्धांत द्वारा समझाया गया था, जिससे कई लोगों ने यह स्वीकार किया कि मजबूत अंतःक्रियाओं में कण समग्र थे। अधिकांश प्रकीर्णन विवर्तनिक था, जिसका अर्थ है कि कण मुश्किल से बिखरते हैं - टक्कर के बाद बीम लाइन के करीब रहना। व्लादिमीर ग्रिबोव ने उल्लेख किया कि अधिकतम संभव प्रकीर्णन की धारणा के साथ संयुक्त फ्रिसार्ट बाध्य एक रेगे प्रक्षेपवक्र था जो लॉगरिदमिक रूप से बढ़ते क्रॉस सेक्शन का नेतृत्व करेगा, एक प्रक्षेपवक्र जिसे आजकल पोमेरॉन के रूप में जाना जाता है। उन्होंने मल्टी-पोमेरॉन एक्सचेंज के वर्चस्व वाली निकट बीम लाइन स्कैटरिंग के लिए एक मात्रात्मक गड़बड़ी सिद्धांत तैयार किया।

मौलिक अवलोकन से कि हैड्रोन समग्र हैं, दो दृष्टिकोण विकसित हुए। कुछ लोगों ने सही ढंग से वकालत की कि प्राथमिक कण थे, जिन्हें आजकल क्वार्क और ग्लून्स कहा जाता है, जिसने एक क्वांटम क्षेत्र सिद्धांत बनाया जिसमें हैड्रॉन बंधे हुए राज्य थे। अन्य लोग भी सही ढंग से मानते थे कि प्राथमिक कणों के बिना एक सिद्धांत तैयार करना संभव था - जहां सभी कण रेगे प्रक्षेपवक्र पर पड़े राज्यों से बंधे हुए थे और स्वयं को लगातार बिखेरते थे। इसे S-आव्यूह सिद्धांत कहा जाता था।

सबसे सफल एस-आव्यूह दृष्टिकोण संकीर्ण-अनुनाद सन्निकटन पर केंद्रित है, यह विचार है कि सीधी रेखा रेगे प्रक्षेपवक्र पर स्थिर कणों से शुरू होने वाला एक निरंतर विस्तार है। कई झूठी शुरुआत के बाद, रिचर्ड डोलेन, डेविड हॉर्न (इज़राइली भौतिक विज्ञानी) और क्रिस्टोफ श्मिट ने एक महत्वपूर्ण संपत्ति को समझा जिसने गेब्रियल विनीशियन को एक आत्म-निरंतर प्रकीर्णन आयाम, पहला स्ट्रिंग सिद्धांत तैयार करने के लिए प्रेरित किया। मंडेलस्टम ने नोट किया कि सीमा जहां रेगे प्रक्षेपवक्र सीधे हैं, वह सीमा भी है जहां राज्यों का जीवनकाल लंबा है।

उच्च ऊर्जा पर मजबूत संबंध के एक मौलिक सिद्धांत के रूप में, रेगे सिद्धांत ने 1960 के दशक में रुचि की अवधि का आनंद लिया, लेकिन यह क्वांटम क्रोमोडायनामिक्स द्वारा काफी हद तक सफल रहा। एक अभूतपूर्व सिद्धांत के रूप में, यह अभी भी निकट-बीम लाइन प्रकीर्णन और बहुत बड़ी ऊर्जा पर प्रकीर्णन को समझने के लिए एक अनिवार्य उपकरण है। आधुनिक अनुसंधान गड़बड़ी सिद्धांत और स्ट्रिंग सिद्धांत दोनों के संबंध पर केंद्रित है।

यह भी देखें

Unsolved problem in physics:

How does Regge theory emerge from quantum chromodynamics at long distances?

  • क्वार्क-ग्लूऑन प्लाज्मा
  • दोहरा अनुनाद मॉडल
  • पोमेरॉन

संदर्भ

  1. Regge, T. (1959). "जटिल कक्षीय संवेग का परिचय". Il Nuovo Cimento. Springer Science and Business Media LLC. 14 (5): 951–976. Bibcode:1959NCim...14..951R. doi:10.1007/bf02728177. ISSN 0029-6341. S2CID 8151034.
  2. Harald J.W. Müller-Kirsten: Introduction to Quantum Mechanics: Schrödinger Equation and Path Integral, 2nd ed., World Scientific (2012) pp. 395-414
  3. Müller, Harald J. W. (1965). "गैर-सापेक्षतावादी संभावित बिखरने में रेगे पोल". Annalen der Physik (in Deutsch). Wiley. 470 (7–8): 395–411. Bibcode:1965AnP...470..395M. doi:10.1002/andp.19654700708. ISSN 0003-3804.
  4. Müller, H. J. W.; Schilcher, K. (1968). "High‐Energy Scattering for Yukawa Potentials". Journal of Mathematical Physics. AIP Publishing. 9 (2): 255–259. doi:10.1063/1.1664576. ISSN 0022-2488.
  5. Gribov, V. (2003). जटिल कोणीय संवेग का सिद्धांत. Cambridge University press. Bibcode:2003tcam.book.....G. ISBN 978-0-521-81834-6.


अग्रिम पठन


बाहरी संबंध