रम्ब रेखा: Difference between revisions

From Vigyanwiki
(Created page with "{{short description|Arc crossing all meridians of longitude at the same angle}} {{Distinguish|Rhumbline network}} {{for multi|the album|The Rhumb Line|the board game|Rhumb Lin...")
 
No edit summary
Line 1: Line 1:
{{short description|Arc crossing all meridians of longitude at the same angle}}
{{short description|Arc crossing all meridians of longitude at the same angle}}
{{Distinguish|Rhumbline network}}
{{Distinguish|रूम्ब संजाल}}
{{for multi|the album|The Rhumb Line|the board game|Rhumb Line (board game)}}
{{for multi|चित्र संग्रह|रूम्ब रेखा|पट्ट खेल|रूम्ब लाइन (पट्ट खेल)}}
{{More citations needed|date=August 2017}}
{{More citations needed|date=अगस्त 2017}}
{{Use dmy dates|date=October 2019}}
{{Use dmy dates|date=October 2019}}
[[File:Loxodrome.png|thumb|right|220px|लॉक्सोड्रोम, या रम्ब रेखा की छवि, जो [[उत्तरी ध्रुव]] की ओर बढ़ती है]][[ मार्गदर्शन ]] में, एक रूम्ब लाइन, रंब ({{IPAc-en|r|ʌ|m}}), या लॉक्सोड्रोम एक [[चाप (ज्यामिति)]] है जो एक ही [[कोण]] पर देशांतर के सभी [[मेरिडियन (भूगोल)]] को पार करता है, यानी, वास्तविक उत्तर के सापेक्ष मापा गया निरंतर [[असर (नेविगेशन)]] वाला पथ।
[[File:Loxodrome.png|thumb|right|220px|लॉक्सोड्रोम, या रम्ब रेखा की छवि, जो [[उत्तरी ध्रुव]] की ओर बढ़ती है]][[ मार्गदर्शन ]]में, एक रूम्ब रेखा, रूम्ब ({{IPAc-en|r|ʌ|m}}), या लॉक्सोड्रोम एक [[चाप (ज्यामिति)]] है जो एक ही [[कोण]] पर देशांतर के सभी [[मेरिडियन (भूगोल)]] को पार करता है, अर्थात, वास्तविक उत्तर के सापेक्ष मापा गया निरंतर [[असर (नेविगेशन)|दिक्कोण (नेविगेशन)]] वाला पथ।


== परिचय ==
== परिचय ==
एक ग्लोब की सतह पर एक रूम्ब लाइन पाठ्यक्रम का पालन करने के प्रभाव पर पहली बार 1537 में [[पुर्तगाली लोग]] [[गणितज्ञ]] [[पेड्रो नून्स]] ने 1590 के दशक में [[थॉमस हैरियट]] द्वारा आगे के गणितीय विकास के साथ समुद्री चार्ट की रक्षा में अपने ग्रंथ में चर्चा की थी।
एक ग्लोब की सतह पर एक रूम्ब रेखा पाठ्यक्रम का पालन करने के प्रभाव पर प्रथम बार 1537 में [[पुर्तगाली लोग]] [[गणितज्ञ]] [[पेड्रो नून्स]] ने 1590 के दशक में [[थॉमस हैरियट]] द्वारा आगे के गणितीय विकास के साथ समुद्री लेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।


एक रंब लाइन की तुलना एक बड़े वृत्त से की जा सकती है, जो एक गोले की सतह पर दो बिंदुओं के बीच की सबसे छोटी दूरी का मार्ग है। एक बड़े वृत्त पर, गंतव्य बिंदु का असर स्थिर नहीं रहता है। अगर किसी को एक महान सर्कल के साथ एक कार चलाना होता है तो वह स्टीयरिंग व्हील को स्थिर रखता है, लेकिन एक रूम्ब लाइन का पालन करने के लिए पहिया को घुमाना पड़ता है, जैसे-जैसे खंभे पास आते हैं, इसे और अधिक तेजी से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य [[जियोडेसिक वक्रता]] के साथ स्थानीय रूप से सीधा होता है, जबकि एक रंब रेखा में गैर-शून्य जियोडेसिक वक्रता होती है।
एक रूम्ब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक गोले की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का मार्ग है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। अगर किसी को एक बृहत् वृत के साथ एक कार चलाना होता है तो वह चालन चक्र को स्थिर रखता है, परन्तु एक रूम्ब रेखा का पालन करने के लिए चक्र को घुमाना पड़ता है, जैसे-जैसे ध्रुव पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य [[जियोडेसिक वक्रता]] के साथ स्थानीय रूप से सीधा होता है, जबकि एक रूम्ब रेखा में गैर-शून्य जियोडेसिक वक्रता होती है।


देशांतर के मेरिडियन और अक्षांश के समानांतर रूम्ब लाइन के विशेष मामले प्रदान करते हैं, जहां उनके चौराहे के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण मार्ग पर रूम्ब लाइन पाठ्यक्रम एक महान वृत्त के साथ मेल खाता है, जैसा कि यह [[भूमध्य रेखा]] के साथ पूर्व-पश्चिम मार्ग पर होता है।
देशांतर के मेरिडियन और अक्षांश के समानांतर रूम्ब रेखा के विशेष मामले प्रदान करते हैं, जहां उनके चौराहे के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण मार्ग पर रूम्ब रेखा पाठ्यक्रम एक महान वृत्त के साथ मेल खाता है, जैसा कि यह [[भूमध्य रेखा]] के साथ पूर्व-पश्चिम मार्ग पर होता है।


[[मर्केटर प्रोजेक्शन]] मैप पर, कोई भी रूम्ब लाइन एक सीधी रेखा है; इस तरह के नक्शे पर पृथ्वी पर किन्हीं दो बिंदुओं के बीच बिना नक्शे के किनारे से हटे एक रंब रेखा खींची जा सकती है। लेकिन सैद्धांतिक रूप से एक लॉक्सोड्रोम नक्शे के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी ढलान के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि नक्शा बिल्कुल 360 डिग्री देशांतर को कवर करता है)।
[[मर्केटर प्रोजेक्शन]] मैप पर, कोई भी रूम्ब रेखा एक सीधी रेखा है; इस तरह के नक्शे पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना नक्शे के किनारे से हटे एक रूम्ब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एक लॉक्सोड्रोम नक्शे के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी ढलान के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि नक्शा बिल्कुल 360 डिग्री देशांतर को कवर करता है)।


तिरछी कोणों पर मध्याह्न रेखाओं को काटने वाली रूंब लाइनें लॉक्सोड्रोमिक वक्र हैं जो ध्रुवों की ओर सर्पिल होती हैं।<ref name="EOS" />मर्केटर प्रोजेक्शन पर [[उत्तरी ध्रुव]] और [[दक्षिणी ध्रुव]] अनंत पर होते हैं और इसलिए इन्हें कभी नहीं दिखाया जाता है। हालांकि असीमित उच्च मानचित्र पर पूर्ण लॉक्सोड्रोम में दो किनारों के बीच असीम रूप से कई रेखा खंड शामिल होंगे। स्टीरियोग्राफिक प्रोजेक्शन मैप पर, एक लॉक्सोड्रोम एक [[समकोणीय सर्पिल]] है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।
तिरछी कोणों पर मध्याह्न रेखाओं को काटने वाली रूंब लाइनें लॉक्सोड्रोमिक वक्र हैं जो ध्रुवों की ओर सर्पिल होती हैं।<ref name="EOS" />मर्केटर प्रोजेक्शन पर [[उत्तरी ध्रुव]] और [[दक्षिणी ध्रुव]] अनंत पर होते हैं और इसलिए इन्हें कभी नहीं दिखाया जाता है। हालांकि असीमित उच्च मानचित्र पर पूर्ण लॉक्सोड्रोम में दो किनारों के मध्य असीम रूप से कई रेखा खंड शामिल होंगे। स्टीरियोग्राफिक प्रोजेक्शन मैप पर, एक लॉक्सोड्रोम एक [[समकोणीय सर्पिल]] है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।


सभी लॉक्सोड्रोम एक [[भौगोलिक ध्रुव]] से दूसरे तक सर्पिल होते हैं। ध्रुवों के पास, वे लॉगरिदमिक सर्पिल होने के करीब हैं (जो कि वे एक [[त्रिविम प्रक्षेपण]] पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं लेकिन एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एक लॉक्सोड्रोम की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) मेरिडियन (भूगोल) की लंबाई है जो वास्तविक उत्तर से दूर असर के [[ कोज्या ]] से विभाजित होती है। लॉक्सोड्रोम को ध्रुवों पर परिभाषित नहीं किया गया है।
सभी लॉक्सोड्रोम एक [[भौगोलिक ध्रुव]] से दूसरे तक सर्पिल होते हैं। ध्रुवों के पास, वे लॉगरिदमिक सर्पिल होने के करीब हैं (जो कि वे एक [[त्रिविम प्रक्षेपण]] पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एक लॉक्सोड्रोम की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) मेरिडियन (भूगोल) की लंबाई है जो वास्तविक उत्तर से दूर दिक्कोण के [[ कोज्या ]] से विभाजित होती है। लॉक्सोड्रोम को ध्रुवों पर परिभाषित नहीं किया गया है।


<गैलरी कैप्शन = पोल-टू-पोल लॉक्सोड्रोम चौड़ाई के तीन दृश्य = 250 पीएक्स ऊंचाई = 250 पीएक्स पेरो = 3 >
<गैलरी कैप्शन = पोल-टू-पोल लॉक्सोड्रोम चौड़ाई के तीन दृश्य = 250 पीएक्स ऊंचाई = 250 पीएक्स पेरो = 3 >
Line 27: Line 27:
लॉक्सोड्रोम शब्द प्राचीन ग्रीक भाषा λοξός loxos से आया है: तिरछा + δρόμος ड्रमोस: चल रहा है (δραμεῖν drameîn से: चलाने के लिए)। रूंब शब्द [[स्पेनिश भाषा]] या [[पुर्तगाली भाषा]] रूंबो/रुमो (पाठ्यक्रम या दिशा) और ग्रीक समचतुर्भुज | ῥόμβος rhómbos, से आया है।<ref>''[http://www.thefreedictionary.com/rhumb Rhumb]'' at TheFreeDictionary</ref> रेम्बिन से।
लॉक्सोड्रोम शब्द प्राचीन ग्रीक भाषा λοξός loxos से आया है: तिरछा + δρόμος ड्रमोस: चल रहा है (δραμεῖν drameîn से: चलाने के लिए)। रूंब शब्द [[स्पेनिश भाषा]] या [[पुर्तगाली भाषा]] रूंबो/रुमो (पाठ्यक्रम या दिशा) और ग्रीक समचतुर्भुज | ῥόμβος rhómbos, से आया है।<ref>''[http://www.thefreedictionary.com/rhumb Rhumb]'' at TheFreeDictionary</ref> रेम्बिन से।


द ग्लोब एनसाइक्लोपीडिया ऑफ यूनिवर्सल इंफॉर्मेशन के 1878 संस्करण में लॉक्सोड्रोम लाइन का वर्णन इस प्रकार है:<ref name="Globe"/>
द ग्लोब एनसाइक्लोपीडिया ऑफ यूनिवर्सल इंफॉर्मेशन के 1878 संस्करण में लॉक्सोड्रोम रेखा का वर्णन इस प्रकार है:<ref name="Globe"/>


<blockquote>लोक्सोड्रोमिक रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक सदस्य को एक ही कोण पर काटती है। कम्पास के एक ही बिंदु की ओर जाने वाला जहाज एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रोजेक्शन (q.v.) में लॉक्सोड्रोमिक रेखाएँ स्पष्ट रूप से सीधी होती हैं।<ref name="Globe">Ross, J.M. (editor) (1878). ''[https://archive.org/details/globeencyclopae01rossgoog The Globe Encyclopaedia of Universal Information]'', Vol. IV, Edinburgh-Scotland, Thomas C. Jack, Grange Publishing Works, retrieved from [[Google Books]] 2009-03-18;</ref></ब्लॉककोट>
<blockquote>लोक्सोड्रोमिक रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक सदस्य को एक ही कोण पर काटती है। कम्पास के एक ही बिंदु की ओर जाने वाला जहाज एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रोजेक्शन (q.v.) में लॉक्सोड्रोमिक रेखाएँ स्पष्ट रूप से सीधी होती हैं।<ref name="Globe">Ross, J.M. (editor) (1878). ''[https://archive.org/details/globeencyclopae01rossgoog The Globe Encyclopaedia of Universal Information]'', Vol. IV, Edinburgh-Scotland, Thomas C. Jack, Grange Publishing Works, retrieved from [[Google Books]] 2009-03-18;</ref></ब्लॉककोट>


एक गलतफहमी उत्पन्न हो सकती है क्योंकि जब यह शब्द प्रयोग में आया तो इसका कोई सटीक अर्थ नहीं था। यह [[इन्द्रोंसे लाइन]] के लिए समान रूप से अच्छी तरह से लागू होता है क्योंकि यह लॉक्सोड्रोम के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से लागू होता है और इसका मतलब केवल वही होता है जो एक नाविक ने निरंतर असर (नेविगेशन) के साथ पालने के लिए किया था, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, जब [[पोर्टोलन]] उपयोग में थे, तो रूम्ब पोर्टोलन्स पर सीधी रेखाओं पर लागू होता था, साथ ही मर्केटर चार्ट पर हमेशा सीधी रेखाओं के लिए भी लागू होता था। छोटी दूरी के लिए पोर्टोलन रूम्ब्स मर्केटर रूम्ब्स से सार्थक रूप से भिन्न नहीं होते हैं, लेकिन इन दिनों रंब गणितीय रूप से सटीक लॉक्सोड्रोम का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से पर्यायवाची बना दिया गया है।
एक गलतफहमी उत्पन्न हो सकती है क्योंकि जब यह शब्द प्रयोग में आया तो इसका कोई सटीक अर्थ नहीं था। यह [[इन्द्रोंसे लाइन|इन्द्रोंसे रेखा]] के लिए समान रूप से अच्छी तरह से लागू होता है क्योंकि यह लॉक्सोड्रोम के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से लागू होता है और इसका मतलब केवल वही होता है जो एक नाविक ने निरंतर दिक्कोण (नेविगेशन) के साथ पालने के लिए किया था, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, जब [[पोर्टोलन]] उपयोग में थे, तो रूम्ब पोर्टोलन्स पर सीधी रेखाओं पर लागू होता था, साथ ही मर्केटर चार्ट पर हमेशा सीधी रेखाओं के लिए भी लागू होता था। छोटी दूरी के लिए पोर्टोलन रूम्ब्स मर्केटर रूम्ब्स से सार्थक रूप से भिन्न नहीं होते हैं, परन्तु इन दिनों रूम्ब गणितीय रूप से सटीक लॉक्सोड्रोम का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से पर्यायवाची बना दिया गया है।


जैसा कि लियो बग्रो कहते हैं:<ref name="Bagrow2010">{{cite book|author=Leo Bagrow|title=कार्टोग्राफी का इतिहास|url=https://books.google.com/books?id=OBeB4tDmJv8C&pg=PA65|year=2010|publisher=Transaction Publishers|isbn=978-1-4128-2518-4|page=65}}</ref> शब्द ('रंबलाइन') इस अवधि के समुद्र-चार्ट पर गलत तरीके से लागू किया गया है, क्योंकि एक लॉक्सोड्रोम एक सटीक पाठ्यक्रम देता है, जब चार्ट एक उपयुक्त प्रक्षेपण पर खींचा जाता है। कार्टोमेट्रिक जांच से पता चला है कि शुरुआती चार्ट में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पोर्टोलन' नाम रखते हैं।
जैसा कि लियो बग्रो कहते हैं:<ref name="Bagrow2010">{{cite book|author=Leo Bagrow|title=कार्टोग्राफी का इतिहास|url=https://books.google.com/books?id=OBeB4tDmJv8C&pg=PA65|year=2010|publisher=Transaction Publishers|isbn=978-1-4128-2518-4|page=65}}</ref> शब्द ('रंबलाइन') इस अवधि के समुद्र-चार्ट पर गलत तरीके से लागू किया गया है, क्योंकि एक लॉक्सोड्रोम एक सटीक पाठ्यक्रम देता है, जब चार्ट एक उपयुक्त प्रक्षेपण पर खींचा जाता है। कार्टोमेट्रिक जांच से पता चला है कि शुरुआती चार्ट में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पोर्टोलन' नाम रखते हैं।
Line 69: Line 69:
कहाँ <math>\operatorname{gd}</math> और <math>\operatorname{gd}^{-1}</math> [[गुडरमैनियन समारोह]] और इसके व्युत्क्रम हैं, <math>\operatorname{gd}\psi = \arctan(\sinh\psi),</math> <math>\operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi),</math> और <math>\operatorname{arsinh}</math> [[उलटा अतिशयोक्तिपूर्ण कार्य]] है।
कहाँ <math>\operatorname{gd}</math> और <math>\operatorname{gd}^{-1}</math> [[गुडरमैनियन समारोह]] और इसके व्युत्क्रम हैं, <math>\operatorname{gd}\psi = \arctan(\sinh\psi),</math> <math>\operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi),</math> और <math>\operatorname{arsinh}</math> [[उलटा अतिशयोक्तिपूर्ण कार्य]] है।


इस बीच के रिश्ते के साथ {{mvar|λ}} और {{mvar|φ}}, त्रिज्या वेक्टर एक चर का पैरामीट्रिक फ़ंक्शन बन जाता है, जो गोले पर लॉक्सोड्रोम का पता लगाता है:
इस मध्य के रिश्ते के साथ {{mvar|λ}} और {{mvar|φ}}, त्रिज्या वेक्टर एक चर का पैरामीट्रिक फ़ंक्शन बन जाता है, जो गोले पर लॉक्सोड्रोम का पता लगाता है:


:<math>\mathbf{r}(\lambda\,|\,\beta,\lambda_0,\varphi_0) = \big(\cos{\lambda} \cdot \operatorname{sech} \psi \big) \mathbf{i} +
:<math>\mathbf{r}(\lambda\,|\,\beta,\lambda_0,\varphi_0) = \big(\cos{\lambda} \cdot \operatorname{sech} \psi \big) \mathbf{i} +
Line 77: Line 77:
:<math>\psi \equiv (\lambda - \lambda_0) \cot\beta + \operatorname{gd}^{-1}\varphi_0 = \operatorname{gd}^{-1}\varphi</math>
:<math>\psi \equiv (\lambda - \lambda_0) \cot\beta + \operatorname{gd}^{-1}\varphi_0 = \operatorname{gd}^{-1}\varphi</math>
अक्षांश#सममितीय अक्षांश है।<ref>James Alexander, Loxodromes: A Rhumb Way to Go, "Mathematics Magazine", Vol. 77. No. 5, Dec. 2004. [http://hans.fugal.net/src/lindbergh/mathmag349-356.pdf]</ref>
अक्षांश#सममितीय अक्षांश है।<ref>James Alexander, Loxodromes: A Rhumb Way to Go, "Mathematics Magazine", Vol. 77. No. 5, Dec. 2004. [http://hans.fugal.net/src/lindbergh/mathmag349-356.pdf]</ref>
रंब रेखा में, जैसे-जैसे अक्षांश ध्रुवों की ओर जाता है, {{math|''φ'' → ±{{sfrac|π|2}}}}, {{math|sin ''φ'' → ±1}}, सममितीय अक्षांश {{math|arsinh(tan ''φ'') → ± ∞}}, और देशांतर {{mvar|λ}} बिना किसी सीमा के बढ़ता है, ध्रुव की ओर एक सर्पिल में इतनी तेजी से गोले का चक्कर लगाता है, जबकि एक परिमित कुल चाप लंबाई Δ की ओर जाता है{{math|s}} द्वारा दिए गए
रूम्ब रेखा में, जैसे-जैसे अक्षांश ध्रुवों की ओर जाता है, {{math|''φ'' → ±{{sfrac|π|2}}}}, {{math|sin ''φ'' → ±1}}, सममितीय अक्षांश {{math|arsinh(tan ''φ'') → ± ∞}}, और देशांतर {{mvar|λ}} बिना किसी सीमा के बढ़ता है, ध्रुव की ओर एक सर्पिल में इतनी तेजी से गोले का चक्कर लगाता है, जबकि एक परिमित कुल चाप लंबाई Δ की ओर जाता है{{math|s}} द्वारा दिए गए
:<math>\Delta s = R \, \big|(\pm\pi/2 - \varphi_0) \cdot \sec \beta\big|</math>
:<math>\Delta s = R \, \big|(\pm\pi/2 - \varphi_0) \cdot \sec \beta\big|</math>




== मर्केटर प्रोजेक्शन से कनेक्शन ==
== मर्केटर प्रोजेक्शन से कनेक्शन ==
[[File:Rhumb line vs great-circle arc.png|thumb|upright=1.3|लिस्बन, पुर्तगाल और हवाना, क्यूबा के बीच एक ग्रेट-सर्कल आर्क (लाल) की तुलना में एक रम्ब लाइन (नीला)। शीर्ष: लिखने का प्रक्षेपण। नीचे: मर्केटर प्रोजेक्शन।]]होने देना {{mvar|λ}} गोले पर एक बिंदु का देशांतर हो, और {{mvar|φ}} इसका अक्षांश। फिर, यदि हम मर्केटर प्रोजेक्शन के मानचित्र निर्देशांक को परिभाषित करते हैं
[[File:Rhumb line vs great-circle arc.png|thumb|upright=1.3|लिस्बन, पुर्तगाल और हवाना, क्यूबा के मध्य एक ग्रेट-सर्कल आर्क (लाल) की तुलना में एक रम्ब रेखा (नीला)। शीर्ष: लिखने का प्रक्षेपण। नीचे: मर्केटर प्रोजेक्शन।]]होने देना {{mvar|λ}} गोले पर एक बिंदु का देशांतर हो, और {{mvar|φ}} इसका अक्षांश। फिर, यदि हम मर्केटर प्रोजेक्शन के मानचित्र निर्देशांक को परिभाषित करते हैं
:<math>\begin{align}
:<math>\begin{align}
x &= \lambda - \lambda_0 \, , \\
x &= \lambda - \lambda_0 \, , \\
y &= \operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi)\, ,
y &= \operatorname{gd}^{-1}\varphi = \operatorname{arsinh}(\tan\varphi)\, ,
\end{align}</math>
\end{align}</math>
निरंतर असर (नेविगेशन) के साथ एक लॉक्सोड्रोम {{mvar|β}} सही उत्तर से एक सीधी रेखा होगी, क्योंकि (पिछले अनुभाग में अभिव्यक्ति का उपयोग करके)
निरंतर दिक्कोण (नेविगेशन) के साथ एक लॉक्सोड्रोम {{mvar|β}} सही उत्तर से एक सीधी रेखा होगी, क्योंकि (पिछले अनुभाग में अभिव्यक्ति का उपयोग करके)
:<math>y = m x</math>
:<math>y = m x</math>
ढलान के साथ
ढलान के साथ
:<math>m=\cot\beta\,.</math>
:<math>m=\cot\beta\,.</math>
दो दिए गए बिंदुओं के बीच लॉक्सोड्रोम का पता लगाना एक मर्केटर मैप पर ग्राफिक रूप से किया जा सकता है, या दो अज्ञात में दो समीकरणों की एक गैर-रैखिक प्रणाली को हल करके किया जा सकता है। {{math|1=''m'' = cot ''β''}} और {{math|''λ''<sub>0</sub>}}. अपरिमित रूप से अनेक हल हैं; सबसे छोटा वह है जो वास्तविक देशांतर अंतर को कवर करता है, यानी अतिरिक्त चक्कर नहीं लगाता है, और गलत रास्ते पर नहीं जाता है।
दो दिए गए बिंदुओं के मध्य लॉक्सोड्रोम का पता लगाना एक मर्केटर मैप पर ग्राफिक रूप से किया जा सकता है, या दो अज्ञात में दो समीकरणों की एक गैर-रैखिक प्रणाली को हल करके किया जा सकता है। {{math|1=''m'' = cot ''β''}} और {{math|''λ''<sub>0</sub>}}. अपरिमित रूप से अनेक हल हैं; सबसे छोटा वह है जो वास्तविक देशांतर अंतर को कवर करता है, अर्थात अतिरिक्त चक्कर नहीं लगाता है, और गलत रास्ते पर नहीं जाता है।


दो बिंदुओं के बीच की दूरी {{math|Δ''s''}}, एक लॉक्सोड्रोम के साथ मापा जाता है, उत्तर-दक्षिण दूरी (अक्षांश के हलकों को छोड़कर जिसके लिए दूरी अनंत हो जाती है) के असर (अज़िमथ) के [[छेदक (त्रिकोणमिति)]] का पूर्ण मान है:
दो बिंदुओं के मध्य की दूरी {{math|Δ''s''}}, एक लॉक्सोड्रोम के साथ मापा जाता है, उत्तर-दक्षिण दूरी (अक्षांश के हलकों को छोड़कर जिसके लिए दूरी अनंत हो जाती है) के दिक्कोण (अज़िमथ) के [[छेदक (त्रिकोणमिति)]] का पूर्ण मान है:


:<math>\Delta s = R \, \big|(\varphi - \varphi_0)\cdot \sec \beta \big|</math>
:<math>\Delta s = R \, \big|(\varphi - \varphi_0)\cdot \sec \beta \big|</math>
Line 99: Line 99:


== आवेदन ==
== आवेदन ==
नेविगेशन में इसका उपयोग सीधे शैली से जुड़ा हुआ है, या कुछ नेविगेशनल मानचित्रों के मानचित्र प्रक्षेपण से जुड़ा हुआ है। [[नक्शा प्रक्षेपण]] मैप पर एक रूंब लाइन एक सीधी रेखा के रूप में दिखाई देती है।<ref name="EOS">Oxford University Press [http://www.encyclopedia.com/doc/1O225-rhumbline.html Rhumb Line]. The Oxford Companion to Ships and the Sea, Oxford University Press, 2006. Retrieved from Encyclopedia.com 18 July 2009.</ref>
नेविगेशन में इसका उपयोग सीधे शैली से जुड़ा हुआ है, या कुछ नेविगेशनल मानचित्रों के मानचित्र प्रक्षेपण से जुड़ा हुआ है। [[नक्शा प्रक्षेपण]] मैप पर एक रूंब रेखा एक सीधी रेखा के रूप में दिखाई देती है।<ref name="EOS">Oxford University Press [http://www.encyclopedia.com/doc/1O225-rhumbline.html Rhumb Line]. The Oxford Companion to Ships and the Sea, Oxford University Press, 2006. Retrieved from Encyclopedia.com 18 July 2009.</ref>
यह नाम क्रमशः पुराने फ्रांसीसी या स्पैनिश से लिया गया है: रूंब या रूंबो, चार्ट पर एक रेखा जो एक ही कोण पर सभी मध्याह्न रेखा को काटती है।<ref name="EOS" />समतल सतह पर यह दो बिंदुओं के बीच की सबसे छोटी दूरी होगी। कम अक्षांशों पर या कम दूरी पर पृथ्वी की सतह पर इसका उपयोग किसी वाहन, विमान या जहाज के पाठ्यक्रम की साजिश रचने के लिए किया जा सकता है।<ref name="EOS" />लंबी दूरी और/या उच्च अक्षांशों पर महान वृत्त मार्ग समान दो बिंदुओं के बीच की रेखा से काफी छोटा है। हालांकि, एक बड़े सर्कल मार्ग की यात्रा करते समय बियरिंग्स को लगातार बदलने की असुविधा कुछ उदाहरणों में रूम्ब लाइन नेविगेशन को आकर्षक बनाती है।<ref name="EOS" />
यह नाम क्रमशः पुराने फ्रांसीसी या स्पैनिश से लिया गया है: रूंब या रूंबो, चार्ट पर एक रेखा जो एक ही कोण पर सभी मध्याह्न रेखा को काटती है।<ref name="EOS" />समतल सतह पर यह दो बिंदुओं के मध्य की सबसे छोटी दूरी होगी। कम अक्षांशों पर या कम दूरी पर पृथ्वी की सतह पर इसका उपयोग किसी वाहन, विमान या जहाज के पाठ्यक्रम की साजिश रचने के लिए किया जा सकता है।<ref name="EOS" />लंबी दूरी और/या उच्च अक्षांशों पर महान वृत्त मार्ग समान दो बिंदुओं के मध्य की रेखा से काफी छोटा है। हालांकि, एक बड़े सर्कल मार्ग की यात्रा करते समय बियरिंग्स को लगातार बदलने की असुविधा कुछ उदाहरणों में रूम्ब रेखा नेविगेशन को आकर्षक बनाती है।<ref name="EOS" />


बिंदु को भूमध्य रेखा के साथ [[90 डिग्री]] देशांतर पर एक पूर्व-पश्चिम मार्ग के साथ चित्रित किया जा सकता है, जिसके लिए महान वृत्त और रूम्ब लाइन की दूरी समान हैं, पर {{convert|5400|nmi|km|abbr=off|order=flip}}. 20 डिग्री उत्तर में महान वृत्त दूरी है {{convert|4997|nmi|km|abbr=on|order=flip}} जबकि समचतुर्भुज रेखा की दूरी है {{convert|5074|nmi|km|abbr=on|order=flip}}, लगभग 1.5% आगे। लेकिन 60 डिग्री उत्तर में महान वृत्त दूरी है {{convert|2485|nmi|km|abbr=on|order=flip}} जबकि रंब रेखा है {{convert|2700|nmi|km|abbr=on|order=flip}}, 8.5% का अंतर। एक अधिक चरम मामला [[न्यूयॉर्क शहर]] और [[हांगकांग]] के बीच का हवाई मार्ग है, जिसके लिए रूम्ब लाइन पथ है {{convert|9700|nmi|km|abbr=on|order=flip}}. उत्तरी ध्रुव के ऊपर वृहत वृत्त मार्ग है {{convert|7000|nmi|km|abbr=on|order=flip}}, या {{frac|5|1|2}} सामान्य [[क्रूज (उड़ान)]] पर घंटे कम उड़ान समय।
बिंदु को भूमध्य रेखा के साथ [[90 डिग्री]] देशांतर पर एक पूर्व-पश्चिम मार्ग के साथ चित्रित किया जा सकता है, जिसके लिए महान वृत्त और रूम्ब रेखा की दूरी समान हैं, पर {{convert|5400|nmi|km|abbr=off|order=flip}}. 20 डिग्री उत्तर में महान वृत्त दूरी है {{convert|4997|nmi|km|abbr=on|order=flip}} जबकि समचतुर्भुज रेखा की दूरी है {{convert|5074|nmi|km|abbr=on|order=flip}}, लगभग 1.5% आगे। परन्तु 60 डिग्री उत्तर में महान वृत्त दूरी है {{convert|2485|nmi|km|abbr=on|order=flip}} जबकि रूम्ब रेखा है {{convert|2700|nmi|km|abbr=on|order=flip}}, 8.5% का अंतर। एक अधिक चरम मामला [[न्यूयॉर्क शहर]] और [[हांगकांग]] के मध्य का हवाई मार्ग है, जिसके लिए रूम्ब रेखा पथ है {{convert|9700|nmi|km|abbr=on|order=flip}}. उत्तरी ध्रुव के ऊपर वृहत वृत्त मार्ग है {{convert|7000|nmi|km|abbr=on|order=flip}}, या {{frac|5|1|2}} सामान्य [[क्रूज (उड़ान)]] पर घंटे कम उड़ान समय।


मर्केटर प्रोजेक्शन के कुछ पुराने नक्शों में [[अक्षांश]] और देशांतर की रेखाओं से बने ग्रिड होते हैं, लेकिन रूंब लाइनें भी दिखाई देती हैं, जो सीधे उत्तर की ओर, उत्तर से समकोण पर, या उत्तर से कुछ कोण पर होती हैं, जो कि कुछ सरल तर्कसंगत अंश है। एक समकोण। ये रुम्ब रेखाएँ खींची जाएँगी ताकि वे मानचित्र के कुछ बिंदुओं पर अभिसरित हों: प्रत्येक दिशा में जाने वाली रेखाएँ इनमें से प्रत्येक बिंदु पर अभिसरित होंगी। [[कम्पास गुलाब]] देखें। इस तरह के नक्शे आवश्यक रूप से मर्केटर प्रोजेक्शन में रहे होंगे इसलिए सभी पुराने नक्शे रूंब लाइन चिह्नों को दिखाने में सक्षम नहीं रहे होंगे।
मर्केटर प्रोजेक्शन के कुछ पुराने नक्शों में [[अक्षांश]] और देशांतर की रेखाओं से बने ग्रिड होते हैं, परन्तु रूंब लाइनें भी दिखाई देती हैं, जो सीधे उत्तर की ओर, उत्तर से समकोण पर, या उत्तर से कुछ कोण पर होती हैं, जो कि कुछ सरल तर्कसंगत अंश है। एक समकोण। ये रुम्ब रेखाएँ खींची जाएँगी ताकि वे मानचित्र के कुछ बिंदुओं पर अभिसरित हों: प्रत्येक दिशा में जाने वाली रेखाएँ इनमें से प्रत्येक बिंदु पर अभिसरित होंगी। [[कम्पास गुलाब]] देखें। इस तरह के नक्शे आवश्यक रूप से मर्केटर प्रोजेक्शन में रहे होंगे इसलिए सभी पुराने नक्शे रूंब रेखा चिह्नों को दिखाने में सक्षम नहीं रहे होंगे।


कम्पास गुलाब पर रेडियल लाइनों को रूम्ब्स भी कहा जाता है। 16वीं-19वीं शताब्दी में एक विशेष कंपास शीर्षक को इंगित करने के लिए एक छंद पर नौकायन अभिव्यक्ति का उपयोग किया गया था।<ref name="EOS" />
कम्पास गुलाब पर रेडियल लाइनों को रूम्ब्स भी कहा जाता है। 16वीं-19वीं शताब्दी में एक विशेष कंपास शीर्षक को इंगित करने के लिए एक छंद पर नौकायन अभिव्यक्ति का उपयोग किया गया था।<ref name="EOS" />


[[समुद्री क्रोनोमीटर]] के आविष्कार से पहले के शुरुआती नाविकों ने लंबे समुद्री मार्गों पर रूम्ब लाइन कोर्स का इस्तेमाल किया था, क्योंकि जहाज का अक्षांश सूर्य या तारों को देखकर सटीक रूप से स्थापित किया जा सकता था लेकिन देशांतर निर्धारित करने का कोई सटीक तरीका नहीं था। गंतव्य के अक्षांश तक पहुंचने तक जहाज उत्तर या दक्षिण की ओर जाएगा, और जहाज तब पूर्व या पश्चिम में रूम्ब लाइन (वास्तव में अक्षांश का एक सर्कल, जो कि रूंब लाइन का एक विशेष मामला है) के साथ चलेगा, एक निरंतर बनाए रखेगा। अक्षांश और भूमि के साक्ष्य देखे जाने तक दूरी के नियमित अनुमानों को रिकॉर्ड करना।<ref>A Brief History of British Seapower, David Howarth, pub. Constable & Robinson, London, 2003, chapter 8.</ref>
[[समुद्री क्रोनोमीटर]] के आविष्कार से पहले के शुरुआती नाविकों ने लंबे समुद्री मार्गों पर रूम्ब रेखा कोर्स का इस्तेमाल किया था, क्योंकि जहाज का अक्षांश सूर्य या तारों को देखकर सटीक रूप से स्थापित किया जा सकता था परन्तु देशांतर निर्धारित करने का कोई सटीक तरीका नहीं था। गंतव्य के अक्षांश तक पहुंचने तक जहाज उत्तर या दक्षिण की ओर जाएगा, और जहाज तब पूर्व या पश्चिम में रूम्ब रेखा (वास्तव में अक्षांश का एक सर्कल, जो कि रूंब रेखा का एक विशेष मामला है) के साथ चलेगा, एक निरंतर बनाए रखेगा। अक्षांश और भूमि के साक्ष्य देखे जाने तक दूरी के नियमित अनुमानों को रिकॉर्ड करना।<ref>A Brief History of British Seapower, David Howarth, pub. Constable & Robinson, London, 2003, chapter 8.</ref>




Line 140: Line 140:
|url = http://ntv.spbstu.ru/fulltext/T3.198.2014_05.PDF
|url = http://ntv.spbstu.ru/fulltext/T3.198.2014_05.PDF
}}
}}
</ref> रूम्ब लाइन का मार्ग केवल दीर्घवृत्ताभ [[सममितीय अक्षांश]] का उपयोग करके पाया जाता है। इस पृष्ठ पर उपरोक्त सूत्रों में, गोले पर अक्षांश के लिए दीर्घवृत्ताभ पर अक्षांश#अनुरूप अक्षांश को प्रतिस्थापित करें। इसी तरह, दिगंश के छेदक द्वारा दीर्घवृत्ताकार याम्योत्तर चाप की लंबाई को गुणा करके दूरियां पाई जाती हैं।
</ref> रूम्ब रेखा का मार्ग केवल दीर्घवृत्ताभ [[सममितीय अक्षांश]] का उपयोग करके पाया जाता है। इस पृष्ठ पर उपरोक्त सूत्रों में, गोले पर अक्षांश के लिए दीर्घवृत्ताभ पर अक्षांश#अनुरूप अक्षांश को प्रतिस्थापित करें। इसी तरह, दिगंश के छेदक द्वारा दीर्घवृत्ताकार याम्योत्तर चाप की लंबाई को गुणा करके दूरियां पाई जाती हैं।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 14:01, 22 April 2023

लॉक्सोड्रोम, या रम्ब रेखा की छवि, जो उत्तरी ध्रुव की ओर बढ़ती है

मार्गदर्शन में, एक रूम्ब रेखा, रूम्ब (/rʌm/), या लॉक्सोड्रोम एक चाप (ज्यामिति) है जो एक ही कोण पर देशांतर के सभी मेरिडियन (भूगोल) को पार करता है, अर्थात, वास्तविक उत्तर के सापेक्ष मापा गया निरंतर दिक्कोण (नेविगेशन) वाला पथ।

परिचय

एक ग्लोब की सतह पर एक रूम्ब रेखा पाठ्यक्रम का पालन करने के प्रभाव पर प्रथम बार 1537 में पुर्तगाली लोग गणितज्ञ पेड्रो नून्स ने 1590 के दशक में थॉमस हैरियट द्वारा आगे के गणितीय विकास के साथ समुद्री लेखाचित्र की रक्षा में अपने ग्रंथ में चर्चा की थी।

एक रूम्ब रेखा की तुलना एक बड़े वृत्त से की जा सकती है, जो एक गोले की सतह पर दो बिंदुओं के मध्य की सबसे छोटी दूरी का मार्ग है। एक बड़े वृत्त पर, गंतव्य बिंदु का दिक्कोण स्थिर नहीं रहता है। अगर किसी को एक बृहत् वृत के साथ एक कार चलाना होता है तो वह चालन चक्र को स्थिर रखता है, परन्तु एक रूम्ब रेखा का पालन करने के लिए चक्र को घुमाना पड़ता है, जैसे-जैसे ध्रुव पास आते हैं, इसे और अधिक तीव्रता से घुमाते हैं। दूसरे शब्दों में, एक बड़ा वृत्त शून्य जियोडेसिक वक्रता के साथ स्थानीय रूप से सीधा होता है, जबकि एक रूम्ब रेखा में गैर-शून्य जियोडेसिक वक्रता होती है।

देशांतर के मेरिडियन और अक्षांश के समानांतर रूम्ब रेखा के विशेष मामले प्रदान करते हैं, जहां उनके चौराहे के कोण क्रमशः 0° और 90° होते हैं। एक उत्तर-दक्षिण मार्ग पर रूम्ब रेखा पाठ्यक्रम एक महान वृत्त के साथ मेल खाता है, जैसा कि यह भूमध्य रेखा के साथ पूर्व-पश्चिम मार्ग पर होता है।

मर्केटर प्रोजेक्शन मैप पर, कोई भी रूम्ब रेखा एक सीधी रेखा है; इस तरह के नक्शे पर पृथ्वी पर किन्हीं दो बिंदुओं के मध्य बिना नक्शे के किनारे से हटे एक रूम्ब रेखा खींची जा सकती है। परन्तु सैद्धांतिक रूप से एक लॉक्सोड्रोम नक्शे के दाहिने किनारे से आगे बढ़ सकता है, जहां यह फिर उसी ढलान के साथ बाएं किनारे पर जारी रहता है (यह मानते हुए कि नक्शा बिल्कुल 360 डिग्री देशांतर को कवर करता है)।

तिरछी कोणों पर मध्याह्न रेखाओं को काटने वाली रूंब लाइनें लॉक्सोड्रोमिक वक्र हैं जो ध्रुवों की ओर सर्पिल होती हैं।[1]मर्केटर प्रोजेक्शन पर उत्तरी ध्रुव और दक्षिणी ध्रुव अनंत पर होते हैं और इसलिए इन्हें कभी नहीं दिखाया जाता है। हालांकि असीमित उच्च मानचित्र पर पूर्ण लॉक्सोड्रोम में दो किनारों के मध्य असीम रूप से कई रेखा खंड शामिल होंगे। स्टीरियोग्राफिक प्रोजेक्शन मैप पर, एक लॉक्सोड्रोम एक समकोणीय सर्पिल है जिसका केंद्र उत्तर या दक्षिण ध्रुव है।

सभी लॉक्सोड्रोम एक भौगोलिक ध्रुव से दूसरे तक सर्पिल होते हैं। ध्रुवों के पास, वे लॉगरिदमिक सर्पिल होने के करीब हैं (जो कि वे एक त्रिविम प्रक्षेपण पर हैं, नीचे देखें), इसलिए वे प्रत्येक ध्रुव के चारों ओर अनंत बार चक्कर लगाते हैं परन्तु एक सीमित दूरी में ध्रुव तक पहुंचते हैं। एक लॉक्सोड्रोम की ध्रुव-से-ध्रुव लंबाई (एक आदर्श क्षेत्र मानते हुए) मेरिडियन (भूगोल) की लंबाई है जो वास्तविक उत्तर से दूर दिक्कोण के कोज्या से विभाजित होती है। लॉक्सोड्रोम को ध्रुवों पर परिभाषित नहीं किया गया है।

<गैलरी कैप्शन = पोल-टू-पोल लॉक्सोड्रोम चौड़ाई के तीन दृश्य = 250 पीएक्स ऊंचाई = 250 पीएक्स पेरो = 3 > File:Loxodrome-1.gif File:Loxodrome-2.gif File:Loxodrome-3.gif</गैलरी>

व्युत्पत्ति और ऐतिहासिक विवरण

लॉक्सोड्रोम शब्द प्राचीन ग्रीक भाषा λοξός loxos से आया है: तिरछा + δρόμος ड्रमोस: चल रहा है (δραμεῖν drameîn से: चलाने के लिए)। रूंब शब्द स्पेनिश भाषा या पुर्तगाली भाषा रूंबो/रुमो (पाठ्यक्रम या दिशा) और ग्रीक समचतुर्भुज | ῥόμβος rhómbos, से आया है।[2] रेम्बिन से।

द ग्लोब एनसाइक्लोपीडिया ऑफ यूनिवर्सल इंफॉर्मेशन के 1878 संस्करण में लॉक्सोड्रोम रेखा का वर्णन इस प्रकार है:[3]

लोक्सोड्रोमिक रेखा एक वक्र है जो किसी दिए गए सतह की वक्रता की रेखाओं की प्रणाली के प्रत्येक सदस्य को एक ही कोण पर काटती है। कम्पास के एक ही बिंदु की ओर जाने वाला जहाज एक ऐसी रेखा का वर्णन करता है जो सभी याम्योत्तरों को एक ही कोण पर काटती है। मर्केटर के प्रोजेक्शन (q.v.) में लॉक्सोड्रोमिक रेखाएँ स्पष्ट रूप से सीधी होती हैं।[3]</ब्लॉककोट>

एक गलतफहमी उत्पन्न हो सकती है क्योंकि जब यह शब्द प्रयोग में आया तो इसका कोई सटीक अर्थ नहीं था। यह इन्द्रोंसे रेखा के लिए समान रूप से अच्छी तरह से लागू होता है क्योंकि यह लॉक्सोड्रोम के लिए किया जाता है क्योंकि यह शब्द केवल स्थानीय रूप से लागू होता है और इसका मतलब केवल वही होता है जो एक नाविक ने निरंतर दिक्कोण (नेविगेशन) के साथ पालने के लिए किया था, जो कि सभी अशुद्धियों के साथ होता है। इसलिए, जब पोर्टोलन उपयोग में थे, तो रूम्ब पोर्टोलन्स पर सीधी रेखाओं पर लागू होता था, साथ ही मर्केटर चार्ट पर हमेशा सीधी रेखाओं के लिए भी लागू होता था। छोटी दूरी के लिए पोर्टोलन रूम्ब्स मर्केटर रूम्ब्स से सार्थक रूप से भिन्न नहीं होते हैं, परन्तु इन दिनों रूम्ब गणितीय रूप से सटीक लॉक्सोड्रोम का पर्याय बन गया है क्योंकि इसे पूर्वव्यापी रूप से पर्यायवाची बना दिया गया है।

जैसा कि लियो बग्रो कहते हैं:[4] शब्द ('रंबलाइन') इस अवधि के समुद्र-चार्ट पर गलत तरीके से लागू किया गया है, क्योंकि एक लॉक्सोड्रोम एक सटीक पाठ्यक्रम देता है, जब चार्ट एक उपयुक्त प्रक्षेपण पर खींचा जाता है। कार्टोमेट्रिक जांच से पता चला है कि शुरुआती चार्ट में किसी प्रक्षेपण का उपयोग नहीं किया गया था, इसलिए हम 'पोर्टोलन' नाम रखते हैं।

गणितीय विवरण

त्रिज्या 1 के गोले के लिए, अज़ीमुथल कोण λ, ध्रुवीय कोण π/2φπ/2 (अक्षांश के अनुरूप यहां परिभाषित), और कार्टेशियन समन्वय प्रणाली # मानक आधार में एक वेक्टर का प्रतिनिधित्व करना i, j, और k का उपयोग त्रिज्या वेक्टर लिखने के लिए किया जा सकता है r जैसा

ओर्थोगोनैलिटी#यूक्लिडियन वेक्टर रिक्त स्थान दिगंशीय और गोले के ध्रुवीय दिशाओं में लिखा जा सकता है

जिसकी डॉट उत्पाद#ज्यामितीय परिभाषा है

λ̂ निरंतर के लिए φ अक्षांश के समानांतर का पता लगाता है, जबकि φ̂ निरंतर के लिए λ देशांतर के एक याम्योत्तर का पता लगाता है, और साथ में वे गोले के लिए एक तल स्पर्शरेखा उत्पन्न करते हैं।

यूनिट वेक्टर

एक स्थिर कोण है β इकाई वेक्टर के साथ φ̂ किसी के लिए λ और φ, क्योंकि उनका अदिश गुणनफल है

एक लॉक्सोड्रोम को गोले पर एक वक्र के रूप में परिभाषित किया जाता है जिसमें एक स्थिर कोण होता है β देशांतर के सभी याम्योत्तरों के साथ, और इसलिए इकाई वेक्टर के समानांतर होना चाहिए β̂. नतीजतन, एक अंतर लंबाई ds लॉक्सोड्रोम के साथ एक अंतर विस्थापन उत्पन्न करेगा