स्पेक्ट्रम (कार्यात्मक विश्लेषण): Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Set of eigenvalues of a matrix}} गणित में, विशेष रूप से कार्यात्मक विश्लेषण म...")
 
No edit summary
Line 1: Line 1:
{{Short description|Set of eigenvalues of a matrix}}
{{Short description|Set of eigenvalues of a matrix}}
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] में, एक [[परिबद्ध संचालिका]] (या, अधिक सामान्यतः, एक [[असीमित ऑपरेटर]]) का स्पेक्ट्रम एक [[मैट्रिक्स (गणित)]] के [[eigenvalue]]s ​​​​के सेट का एक सामान्यीकरण है। विशेष रूप से, एक [[जटिल संख्या]] <math>\lambda</math> परिबद्ध रैखिक संकारक के स्पेक्ट्रम में होना कहा जाता है <math>T</math> अगर <math>T-\lambda I</math>
गणित में, विशेष रूप से [[कार्यात्मक विश्लेषण]] में,   [[परिबद्ध संचालिका]] (या, अधिक सामान्यतः,   [[असीमित ऑपरेटर]]) का स्पेक्ट्रम   [[मैट्रिक्स (गणित)]] के [[eigenvalue]]s ​​​​के सेट का   सामान्यीकरण है। विशेष रूप से,   [[जटिल संख्या]] <math>\lambda</math> परिबद्ध रैखिक संकारक के स्पेक्ट्रम में होना कहा जाता है <math>T</math> अगर <math>T-\lambda I</math>
* या तो कोई सेट-सैद्धांतिक प्रतिलोम फलन नहीं है;
* या तो कोई सेट-सैद्धांतिक प्रतिलोम फलन नहीं है;
* या सेट-सैद्धांतिक व्युत्क्रम या तो असीमित है या गैर-सघन उपसमुच्चय पर परिभाषित है।<ref>{{cite book |last1=Kreyszig |first1=Erwin |title=Introductory Functional Analysis with Applications}}</ref>
* या सेट-सैद्धांतिक व्युत्क्रम या तो असीमित है या गैर-सघन उपसमुच्चय पर परिभाषित है।<ref>{{cite book |last1=Kreyszig |first1=Erwin |title=Introductory Functional Analysis with Applications}}</ref>
Line 9: Line 9:
स्पेक्ट्रा और संबंधित गुणों के अध्ययन को स्पेक्ट्रल सिद्धांत के रूप में जाना जाता है, जिसमें कई अनुप्रयोग हैं, विशेष रूप से [[क्वांटम यांत्रिकी का गणितीय सूत्रीकरण]]।
स्पेक्ट्रा और संबंधित गुणों के अध्ययन को स्पेक्ट्रल सिद्धांत के रूप में जाना जाता है, जिसमें कई अनुप्रयोग हैं, विशेष रूप से [[क्वांटम यांत्रिकी का गणितीय सूत्रीकरण]]।


डायमेंशन ([[ सदिश स्थल ]]) पर एक ऑपरेटर का स्पेक्ट्रम | [[आयाम (वेक्टर स्थान)]] ठीक आइगेनवैल्यू का सेट है। हालांकि एक अनंत-आयामी अंतरिक्ष पर एक ऑपरेटर के स्पेक्ट्रम में अतिरिक्त तत्व हो सकते हैं, और हो सकता है कि कोई आइगेनवैल्यू न हो। उदाहरण के लिए, [[हिल्बर्ट अंतरिक्ष]] एलपी स्पेस|ℓ पर एकतरफा शिफ्ट ऑपरेटर आर पर विचार करें<sup>2</सुप>,
डायमेंशन ([[ सदिश स्थल ]]) पर   ऑपरेटर का स्पेक्ट्रम | [[आयाम (वेक्टर स्थान)]] ठीक आइगेनवैल्यू का सेट है। हालांकि   अनंत-आयामी अंतरिक्ष पर   ऑपरेटर के स्पेक्ट्रम में अतिरिक्त तत्व हो सकते हैं, और हो सकता है कि कोई आइगेनवैल्यू न हो। उदाहरण के लिए, [[हिल्बर्ट अंतरिक्ष]] एलपी स्पेस|ℓ पर एकतरफा शिफ्ट ऑपरेटर आर पर विचार करें<sup>2</सुप>,
:<math>(x_1, x_2, \dots) \mapsto (0, x_1, x_2, \dots).</math>
:<math>(x_1, x_2, \dots) \mapsto (0, x_1, x_2, \dots).</math>
इसका कोई eigenvalues ​​नहीं है, क्योंकि यदि Rx=λx तो इस व्यंजक का विस्तार करके हम देखते हैं कि x<sub>1</sub>= 0, एक्स<sub>2</sub>=0, आदि। दूसरी ओर, 0 स्पेक्ट्रम में है क्योंकि यद्यपि ऑपरेटर R − 0 (अर्थात स्वयं R) व्युत्क्रमणीय है, व्युत्क्रम को एक सेट पर परिभाषित किया गया है जो Lp स्थान में सघन नहीं है|ℓ<sup>2</उप>। वास्तव में एक जटिल संख्या [[बनच स्थान]] पर प्रत्येक परिबद्ध रैखिक संचालिका के पास एक गैर-खाली स्पेक्ट्रम होना चाहिए।
इसका कोई eigenvalues ​​नहीं है, क्योंकि यदि Rx=λx तो इस व्यंजक का विस्तार करके हम देखते हैं कि x<sub>1</sub>= 0, एक्स<sub>2</sub>=0, आदि। दूसरी ओर, 0 स्पेक्ट्रम में है क्योंकि यद्यपि ऑपरेटर R − 0 (अर्थात स्वयं R) व्युत्क्रमणीय है, व्युत्क्रम को   सेट पर परिभाषित किया गया है जो Lp स्थान में सघन नहीं है|ℓ<sup>2</उप>। वास्तव में   जटिल संख्या [[बनच स्थान]] पर प्रत्येक परिबद्ध रैखिक संचालिका के पास   गैर-खाली स्पेक्ट्रम होना चाहिए।


स्पेक्ट्रम की धारणा अनबाउंड ऑपरेटर (अर्थात् आवश्यक रूप से बाध्य नहीं) ऑपरेटरों तक फैली हुई है। एक सम्मिश्र संख्या λ को एक असीमित संकारक के स्पेक्ट्रम में कहा जाता है <math>T:\,X\to X</math> डोमेन पर परिभाषित <math>D(T)\subseteq X</math> यदि कोई परिबद्ध व्युत्क्रम नहीं है <math>(T-\lambda I)^{-1}:\,X\to D(T)</math> समग्र रूप से परिभाषित <math>X.</math> यदि टी [[बंद ऑपरेटर]] है (जिसमें टी बाध्य होने पर मामला शामिल है), की बाध्यता <math>(T-\lambda I)^{-1}</math> इसके अस्तित्व से स्वचालित रूप से अनुसरण करता है।
स्पेक्ट्रम की धारणा अनबाउंड ऑपरेटर (अर्थात् आवश्यक रूप से बाध्य नहीं) ऑपरेटरों तक फैली हुई है।   सम्मिश्र संख्या λ को   असीमित संकारक के स्पेक्ट्रम में कहा जाता है <math>T:\,X\to X</math> डोमेन पर परिभाषित <math>D(T)\subseteq X</math> यदि कोई परिबद्ध व्युत्क्रम नहीं है <math>(T-\lambda I)^{-1}:\,X\to D(T)</math> समग्र रूप से परिभाषित <math>X.</math> यदि टी [[बंद ऑपरेटर]] है (जिसमें टी बाध्य होने पर मामला शामिल है), की बाध्यता <math>(T-\lambda I)^{-1}</math> इसके अस्तित्व से स्वचालित रूप से अनुसरण करता है।


बानाच स्पेस एक्स पर परिबद्ध रैखिक ऑपरेटरों बी (एक्स) की जगह यूनिटल बीजगणित [[बनच बीजगणित]] का एक उदाहरण है। चूंकि स्पेक्ट्रम की परिभाषा में बी (एक्स) के किसी भी गुण का उल्लेख नहीं है, सिवाय इसके कि ऐसे किसी भी बीजगणित में है, स्पेक्ट्रम की धारणा को इस संदर्भ में उसी परिभाषा शब्दशः का उपयोग करके सामान्यीकृत किया जा सकता है।
बानाच स्पेस एक्स पर परिबद्ध रैखिक ऑपरेटरों बी (एक्स) की जगह यूनिटल बीजगणित [[बनच बीजगणित]] का   उदाहरण है। चूंकि स्पेक्ट्रम की परिभाषा में बी (एक्स) के किसी भी गुण का उल्लेख नहीं है, सिवाय इसके कि ऐसे किसी भी बीजगणित में है, स्पेक्ट्रम की धारणा को इस संदर्भ में उसी परिभाषा शब्दशः का उपयोग करके सामान्यीकृत किया जा सकता है।


== एक बंधे हुए ऑपरेटर का स्पेक्ट्रम ==
== एक बंधे हुए ऑपरेटर का स्पेक्ट्रम ==


=== परिभाषा ===
=== परिभाषा ===
होने देना <math>T</math> बनच स्थान पर अभिनय करने वाला एक परिबद्ध रेखीय संचालिका हो <math>X</math> जटिल अदिश क्षेत्र पर <math>\mathbb{C}</math>, और <math>I</math> [[पहचान ऑपरेटर]] ऑन रहें <math>X</math>. का स्पेक्ट्रम <math>T</math> सभी का सेट है <math>\lambda \in \mathbb{C}</math> जिसके लिए आपरेटर <math>T-\lambda I</math> एक व्युत्क्रम नहीं है जो एक परिबद्ध रैखिक संकारक है।
होने देना <math>T</math> बनच स्थान पर अभिनय करने वाला   परिबद्ध रेखीय संचालिका हो <math>X</math> जटिल अदिश क्षेत्र पर <math>\mathbb{C}</math>, और <math>I</math> [[पहचान ऑपरेटर]] ऑन रहें <math>X</math>. का स्पेक्ट्रम <math>T</math> सभी का सेट है <math>\lambda \in \mathbb{C}</math> जिसके लिए आपरेटर <math>T-\lambda I</math>   व्युत्क्रम नहीं है जो   परिबद्ध रैखिक संकारक है।


तब से <math>T-\lambda I</math> एक रेखीय संकारक है, यदि व्युत्क्रम मौजूद है तो रेखीय है; और, [[परिबद्ध व्युत्क्रम प्रमेय]] द्वारा, यह परिबद्ध है। इसलिए, स्पेक्ट्रम में सटीक रूप से वे अदिश होते हैं <math>\lambda</math> जिसके लिए <math>T-\lambda I</math> विशेषण नहीं है।
तब से <math>T-\lambda I</math>   रेखीय संकारक है, यदि व्युत्क्रम मौजूद है तो रेखीय है; और, [[परिबद्ध व्युत्क्रम प्रमेय]] द्वारा, यह परिबद्ध है। इसलिए, स्पेक्ट्रम में सटीक रूप से वे अदिश होते हैं <math>\lambda</math> जिसके लिए <math>T-\lambda I</math> विशेषण नहीं है।


किसी दिए गए ऑपरेटर का स्पेक्ट्रम <math>T</math> अक्सर निरूपित किया जाता है <math>\sigma(T)</math>, और इसके पूरक, [[विलायक सेट]] को निरूपित किया जाता है <math>\rho(T) = \mathbb{C} \setminus \sigma(T)</math>. (<math>\rho(T)</math> कभी-कभी वर्णक्रमीय त्रिज्या को निरूपित करने के लिए उपयोग किया जाता है <math>T</math>)
किसी दिए गए ऑपरेटर का स्पेक्ट्रम <math>T</math> अक्सर निरूपित किया जाता है <math>\sigma(T)</math>, और इसके पूरक, [[विलायक सेट]] को निरूपित किया जाता है <math>\rho(T) = \mathbb{C} \setminus \sigma(T)</math>. (<math>\rho(T)</math> कभी-कभी वर्णक्रमीय त्रिज्या को निरूपित करने के लिए उपयोग किया जाता है <math>T</math>)
Line 28: Line 28:
===आइगेनवैल्यू से संबंध===
===आइगेनवैल्यू से संबंध===


अगर <math>\lambda</math> का आइगेनवैल्यू है <math>T</math>, फिर ऑपरेटर <math>T-\lambda I</math> एक-से-एक नहीं है, और इसलिए इसका उलटा है <math>(T-\lambda I)^{-1}</math> परिभाषित नहीं है। हालांकि, विपरीत कथन सत्य नहीं है: ऑपरेटर <math>T - \lambda I</math> एक व्युत्क्रम नहीं हो सकता है, भले ही <math>\lambda</math> आइगेनवैल्यू नहीं है। इस प्रकार एक ऑपरेटर के स्पेक्ट्रम में हमेशा उसके सभी आइगेनवेल्यू होते हैं, लेकिन यह उन तक सीमित नहीं है।
अगर <math>\lambda</math> का आइगेनवैल्यू है <math>T</math>, फिर ऑपरेटर <math>T-\lambda I</math> एक-से-एक नहीं है, और इसलिए इसका उलटा है <math>(T-\lambda I)^{-1}</math> परिभाषित नहीं है। हालांकि, विपरीत कथन सत्य नहीं है: ऑपरेटर <math>T - \lambda I</math>   व्युत्क्रम नहीं हो सकता है, भले ही <math>\lambda</math> आइगेनवैल्यू नहीं है। इस प्रकार   ऑपरेटर के स्पेक्ट्रम में हमेशा उसके सभी आइगेनवेल्यू होते हैं, लेकिन यह उन तक सीमित नहीं है।


उदाहरण के लिए, हिल्बर्ट स्पेस पर विचार करें <math>\ell^2(\Z)</math>, जिसमें वास्तविक संख्याओं के सभी अनुक्रम#परिमित और अनंत|द्वि-अनंत अनुक्रम शामिल हैं
उदाहरण के लिए, हिल्बर्ट स्पेस पर विचार करें <math>\ell^2(\Z)</math>, जिसमें वास्तविक संख्याओं के सभी अनुक्रम#परिमित और अनंत|द्वि-अनंत अनुक्रम शामिल हैं
:<math>v = (\ldots, v_{-2},v_{-1},v_0,v_1,v_2,\ldots)</math>
:<math>v = (\ldots, v_{-2},v_{-1},v_0,v_1,v_2,\ldots)</math>
जिनके पास वर्गों का परिमित योग है <math display="inline">\sum_{i=-\infty}^{+\infty} v_i^2</math>. द्विपक्षीय शिफ्ट ऑपरेटर <math>T</math> बस अनुक्रम के प्रत्येक तत्व को एक स्थिति से विस्थापित कर देता है; अर्थात् यदि <math>u = T(v)</math> तब <math>u_i = v_{i-1}</math> प्रत्येक पूर्णांक के लिए <math>i</math>. आइगेनवैल्यू समीकरण <math>T(v) = \lambda v</math> इस स्थान में कोई अशून्य समाधान नहीं है, क्योंकि इसका तात्पर्य है कि सभी मान <math>v_i</math> समान निरपेक्ष मूल्य है (यदि <math> \vert \lambda \vert = 1</math>) या एक ज्यामितीय प्रगति है (यदि <math> \vert \lambda \vert \neq 1</math>); किसी भी तरह से, उनके वर्गों का योग परिमित नहीं होगा। हालांकि, ऑपरेटर <math>T-\lambda I</math> उलटा नहीं है अगर <math>|\lambda| = 1</math>. उदाहरण के लिए, अनुक्रम <math>u</math> ऐसा है कि <math>u_i = 1/(|i|+1)</math> में है <math>\ell^2(\Z)</math>; लेकिन कोई क्रम नहीं है <math>v</math> में <math>\ell^2(\Z)</math> ऐसा है कि <math>(T-I)v = u</math> (वह है, <math>v_{i-1} = u_i + v_i</math> सभी के लिए <math>i</math>).
जिनके पास वर्गों का परिमित योग है <math display="inline">\sum_{i=-\infty}^{+\infty} v_i^2</math>. द्विपक्षीय शिफ्ट ऑपरेटर <math>T</math> बस अनुक्रम के प्रत्येक तत्व को   स्थिति से विस्थापित कर देता है; अर्थात् यदि <math>u = T(v)</math> तब <math>u_i = v_{i-1}</math> प्रत्येक पूर्णांक के लिए <math>i</math>. आइगेनवैल्यू समीकरण <math>T(v) = \lambda v</math> इस स्थान में कोई अशून्य समाधान नहीं है, क्योंकि इसका तात्पर्य है कि सभी मान <math>v_i</math> समान निरपेक्ष मूल्य है (यदि <math> \vert \lambda \vert = 1</math>) या   ज्यामितीय प्रगति है (यदि <math> \vert \lambda \vert \neq 1</math>); किसी भी तरह से, उनके वर्गों का योग परिमित नहीं होगा। हालांकि, ऑपरेटर <math>T-\lambda I</math> उलटा नहीं है अगर <math>|\lambda| = 1</math>. उदाहरण के लिए, अनुक्रम <math>u</math> ऐसा है कि <math>u_i = 1/(|i|+1)</math> में है <math>\ell^2(\Z)</math>; लेकिन कोई क्रम नहीं है <math>v</math> में <math>\ell^2(\Z)</math> ऐसा है कि <math>(T-I)v = u</math> (वह है, <math>v_{i-1} = u_i + v_i</math> सभी के लिए <math>i</math>).


=== बुनियादी गुण ===
=== बुनियादी गुण ===


परिबद्ध संकारक T का वर्णक्रम हमेशा एक संवृत्त समुच्चय, परिबद्ध समुच्चय और रिक्त समुच्चय होता है। जटिल तल का अरिक्त उपसमुच्चय।
परिबद्ध संकारक T का वर्णक्रम हमेशा   संवृत्त समुच्चय, परिबद्ध समुच्चय और रिक्त समुच्चय होता है। जटिल तल का अरिक्त उपसमुच्चय।


यदि स्पेक्ट्रम खाली था, तो रिज़ॉल्वेंट औपचारिकता
यदि स्पेक्ट्रम खाली था, तो रिज़ॉल्वेंट औपचारिकता


:<math>R(\lambda) = (T-\lambda I)^{-1}, \qquad \lambda\in\Complex,</math>
:<math>R(\lambda) = (T-\lambda I)^{-1}, \qquad \lambda\in\Complex,</math>
जटिल विमान पर हर जगह परिभाषित किया जाएगा और घिरा होगा। लेकिन यह दिखाया जा सकता है कि रिज़ॉल्वेंट फ़ंक्शन R अपने डोमेन पर [[होलोमॉर्फिक फ़ंक्शन]] है। लिउविल के प्रमेय (जटिल विश्लेषण) | लिउविल के प्रमेय के वेक्टर-मूल्यवान संस्करण द्वारा, यह फ़ंक्शन स्थिर है, इस प्रकार हर जगह शून्य है क्योंकि यह अनंत पर शून्य है। यह एक विरोधाभास होगा।
जटिल विमान पर हर जगह परिभाषित किया जाएगा और घिरा होगा। लेकिन यह दिखाया जा सकता है कि रिज़ॉल्वेंट फ़ंक्शन R अपने डोमेन पर [[होलोमॉर्फिक फ़ंक्शन]] है। लिउविल के प्रमेय (जटिल विश्लेषण) | लिउविल के प्रमेय के वेक्टर-मूल्यवान संस्करण द्वारा, यह फ़ंक्शन स्थिर है, इस प्रकार हर जगह शून्य है क्योंकि यह अनंत पर शून्य है। यह   विरोधाभास होगा।


स्पेक्ट्रम की सीमा λ में [[न्यूमैन श्रृंखला]] से आती है; स्पेक्ट्रम σ(T) ||T|| से घिरा है। एक समान परिणाम स्पेक्ट्रम की निकटता को दर्शाता है।
स्पेक्ट्रम की सीमा λ में [[न्यूमैन श्रृंखला]] से आती है; स्पेक्ट्रम σ(T) ||T|| से घिरा है।   समान परिणाम स्पेक्ट्रम की निकटता को दर्शाता है।


बाउंड ||टी|| स्पेक्ट्रम पर कुछ हद तक परिष्कृत किया जा सकता है। T का [[वर्णक्रमीय त्रिज्या]], r(T), जटिल तल में सबसे छोटे वृत्त की त्रिज्या है जो मूल पर केंद्रित है और इसके अंदर स्पेक्ट्रम σ(T) समाहित करता है, अर्थात
बाउंड ||टी|| स्पेक्ट्रम पर कुछ हद तक परिष्कृत किया जा सकता है। T का [[वर्णक्रमीय त्रिज्या]], r(T), जटिल तल में सबसे छोटे वृत्त की त्रिज्या है जो मूल पर केंद्रित है और इसके अंदर स्पेक्ट्रम σ(T) समाहित करता है, अर्थात


:<math>r(T) = \sup \{|\lambda| : \lambda \in \sigma(T)\}.</math>
:<math>r(T) = \sup \{|\lambda| : \lambda \in \sigma(T)\}.</math>
वर्णक्रमीय त्रिज्या सूत्र कहता है<ref>Theorem 3.3.3 of Kadison & Ringrose, 1983, ''Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory'', New York: Academic Press, Inc.</ref> कि किसी भी तत्व के लिए <math>T</math> एक बनच बीजगणित का,
वर्णक्रमीय त्रिज्या सूत्र कहता है<ref>Theorem 3.3.3 of Kadison & Ringrose, 1983, ''Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory'', New York: Academic Press, Inc.</ref> कि किसी भी तत्व के लिए <math>T</math>   बनच बीजगणित का,
:<math>r(T) = \lim_{n \to \infty} \left\|T^n\right\|^{1/n}.</math>
:<math>r(T) = \lim_{n \to \infty} \left\|T^n\right\|^{1/n}.</math>


Line 57: Line 57:


=== परिभाषा ===
=== परिभाषा ===
बता दें कि X एक Banach स्पेस है और <math>T:\,D(T)\to X</math> डोमेन पर परिभाषित एक असीमित ऑपरेटर बनें <math>D(T) \subseteq X</math>.
बता दें कि X   Banach स्पेस है और <math>T:\,D(T)\to X</math> डोमेन पर परिभाषित   असीमित ऑपरेटर बनें <math>D(T) \subseteq X</math>.
एक जटिल संख्या λ को 'रिज़ॉल्वेंट सेट' (जिसे 'नियमित सेट' भी कहा जाता है) में कहा जाता है <math>T</math> अगर ऑपरेटर
एक जटिल संख्या λ को 'रिज़ॉल्वेंट सेट' (जिसे 'नियमित सेट' भी कहा जाता है) में कहा जाता है <math>T</math> अगर ऑपरेटर


Line 71: Line 71:
λ के लिए विलायक में होना (अर्थात स्पेक्ट्रम में नहीं), जैसे बंधे हुए मामले में, <math>T-\lambda I</math> वस्तुनिष्ठ होना चाहिए, क्योंकि इसमें दो तरफा व्युत्क्रम होना चाहिए। पहले की तरह, यदि कोई व्युत्क्रम मौजूद है, तो इसकी रैखिकता तत्काल है, लेकिन सामान्य तौर पर यह बाध्य नहीं हो सकता है, इसलिए इस स्थिति को अलग से जांचा जाना चाहिए।
λ के लिए विलायक में होना (अर्थात स्पेक्ट्रम में नहीं), जैसे बंधे हुए मामले में, <math>T-\lambda I</math> वस्तुनिष्ठ होना चाहिए, क्योंकि इसमें दो तरफा व्युत्क्रम होना चाहिए। पहले की तरह, यदि कोई व्युत्क्रम मौजूद है, तो इसकी रैखिकता तत्काल है, लेकिन सामान्य तौर पर यह बाध्य नहीं हो सकता है, इसलिए इस स्थिति को अलग से जांचा जाना चाहिए।


बंद ग्राफ प्रमेय द्वारा, की सीमा <math>(T-\lambda I)^{-1}</math> T बंद संकारक होने पर अपने अस्तित्व से सीधे अनुसरण करता है। फिर, बंधे हुए मामले की तरह, एक सम्मिश्र संख्या λ एक बंद संकारक T के स्पेक्ट्रम में निहित है यदि और केवल यदि <math>T-\lambda I</math> विशेषण नहीं है। ध्यान दें कि बंद ऑपरेटरों की श्रेणी में सभी बंधे हुए ऑपरेटर शामिल हैं।
बंद ग्राफ प्रमेय द्वारा, की सीमा <math>(T-\lambda I)^{-1}</math> T बंद संकारक होने पर अपने अस्तित्व से सीधे अनुसरण करता है। फिर, बंधे हुए मामले की तरह,   सम्मिश्र संख्या λ   बंद संकारक T के स्पेक्ट्रम में निहित है यदि और केवल यदि <math>T-\lambda I</math> विशेषण नहीं है। ध्यान दें कि बंद ऑपरेटरों की श्रेणी में सभी बंधे हुए ऑपरेटर शामिल हैं।


=== मूल गुण ===
=== मूल गुण ===


एक असीमित ऑपरेटर का स्पेक्ट्रम सामान्य रूप से जटिल विमान का एक बंद, संभवतः खाली, सबसेट है।
एक असीमित ऑपरेटर का स्पेक्ट्रम सामान्य रूप से जटिल विमान का   बंद, संभवतः खाली, सबसेट है।
यदि संकारक T संवृत्त रैखिक संकारक नहीं है, तब <math>\sigma(T)=\Complex</math>.
यदि संकारक T संवृत्त रैखिक संकारक नहीं है, तब <math>\sigma(T)=\Complex</math>.


Line 81: Line 81:
{{further|Decomposition of spectrum (functional analysis)}}
{{further|Decomposition of spectrum (functional analysis)}}


बानाच स्थान पर एक बंधा हुआ ऑपरेटर टी उलटा है, यानी एक बाध्य उलटा है, अगर और केवल अगर टी नीचे घिरा हुआ है, यानी। <math>\|Tx\| \geq c\|x\|,</math> कुछ के लिए <math>c > 0,</math> और सघन सीमा है। तदनुसार, T के स्पेक्ट्रम को निम्नलिखित भागों में विभाजित किया जा सकता है:
बानाच स्थान पर   बंधा हुआ ऑपरेटर टी उलटा है, यानी   बाध्य उलटा है, अगर और केवल अगर टी नीचे घिरा हुआ है, यानी। <math>\|Tx\| \geq c\|x\|,</math> कुछ के लिए <math>c > 0,</math> और सघन सीमा है। तदनुसार, T के स्पेक्ट्रम को निम्नलिखित भागों में विभाजित किया जा सकता है:


# <math>\lambda\in\sigma(T)</math> अगर <math>T - \lambda I</math> नीचे बाध्य नहीं है। विशेष रूप से, यदि ऐसा होता है <math>T - \lambda I</math> अंतःक्षेपी नहीं है, अर्थात λ एक आइगेनमान है। आइगेनवैल्यू के सेट को T का 'पॉइंट स्पेक्ट्रम' कहा जाता है और इसे σ द्वारा निरूपित किया जाता है<sub>p</sub>(टी)। वैकल्पिक रूप से, <math>T-\lambda I</math> एक-से-एक हो सकता है लेकिन अभी भी नीचे बाध्य नहीं है। इस तरह के λ एक eigenvalue नहीं है, लेकिन फिर भी T का एक अनुमानित eigenvalue है (स्वयं eigenvalues ​​भी अनुमानित eigenvalues ​​​​हैं)। अनुमानित eigenvalues ​​​​के सेट (जिसमें बिंदु स्पेक्ट्रम शामिल है) को T का 'अनुमानित बिंदु स्पेक्ट्रम' कहा जाता है, जिसे σ द्वारा निरूपित किया जाता है।<sub>ap</sub>(टी)।
# <math>\lambda\in\sigma(T)</math> अगर <math>T - \lambda I</math> नीचे बाध्य नहीं है। विशेष रूप से, यदि ऐसा होता है <math>T - \lambda I</math> अंतःक्षेपी नहीं है, अर्थात λ   आइगेनमान है। आइगेनवैल्यू के सेट को T का 'पॉइंट स्पेक्ट्रम' कहा जाता है और इसे σ द्वारा निरूपित किया जाता है<sub>p</sub>(टी)। वैकल्पिक रूप से, <math>T-\lambda I</math> एक-से-एक हो सकता है लेकिन अभी भी नीचे बाध्य नहीं है। इस तरह के λ   eigenvalue नहीं है, लेकिन फिर भी T का   अनुमानित eigenvalue है (स्वयं eigenvalues ​​भी अनुमानित eigenvalues ​​​​हैं)। अनुमानित eigenvalues ​​​​के सेट (जिसमें बिंदु स्पेक्ट्रम शामिल है) को T का 'अनुमानित बिंदु स्पेक्ट्रम' कहा जाता है, जिसे σ द्वारा निरूपित किया जाता है।<sub>ap</sub>(टी)।
# <math>\lambda\in\sigma(T)</math> अगर <math>T-\lambda I</math> सघन सीमा नहीं है। ऐसे λ के सेट को T का 'संपीड़न स्पेक्ट्रम' कहा जाता है, जिसे निरूपित किया जाता है <math>\sigma_{\mathrm{cp}}(T)</math>. अगर <math>T-\lambda I</math> सघन रेंज नहीं है, लेकिन इंजेक्शन है, λ को टी के 'अवशिष्ट स्पेक्ट्रम' में कहा जाता है, जिसे निरूपित किया जाता है <math>\sigma_{\mathrm{res}}(T)</math>.
# <math>\lambda\in\sigma(T)</math> अगर <math>T-\lambda I</math> सघन सीमा नहीं है। ऐसे λ के सेट को T का 'संपीड़न स्पेक्ट्रम' कहा जाता है, जिसे निरूपित किया जाता है <math>\sigma_{\mathrm{cp}}(T)</math>. अगर <math>T-\lambda I</math> सघन रेंज नहीं है, लेकिन इंजेक्शन है, λ को टी के 'अवशिष्ट स्पेक्ट्रम' में कहा जाता है, जिसे निरूपित किया जाता है <math>\sigma_{\mathrm{res}}(T)</math>.


Line 92: Line 92:
=== बिंदु स्पेक्ट्रम ===
=== बिंदु स्पेक्ट्रम ===


यदि कोई ऑपरेटर इंजेक्टिव नहीं है (इसलिए T(x) = 0 के साथ कुछ गैर-शून्य x है), तो यह स्पष्ट रूप से उलटा नहीं है। तो अगर λ टी का एक eigenvalue है, तो जरूरी है कि λ ∈ σ(T) हो। T के eigenvalues ​​​​के सेट को T का 'पॉइंट स्पेक्ट्रम' भी कहा जाता है, जिसे σ द्वारा निरूपित किया जाता है।<sub>p</sub>(टी)।
यदि कोई ऑपरेटर इंजेक्टिव नहीं है (इसलिए T(x) = 0 के साथ कुछ गैर-शून्य x है), तो यह स्पष्ट रूप से उलटा नहीं है। तो अगर λ टी का   eigenvalue है, तो जरूरी है कि λ ∈ σ(T) हो। T के eigenvalues ​​​​के सेट को T का 'पॉइंट स्पेक्ट्रम' भी कहा जाता है, जिसे σ द्वारा निरूपित किया जाता है।<sub>p</sub>(टी)।


=== अनुमानित बिंदु स्पेक्ट्रम ===
=== अनुमानित बिंदु स्पेक्ट्रम ===


अधिक सामान्यतः, परिबद्ध व्युत्क्रम प्रमेय द्वारा, T उलटा नहीं है यदि यह नीचे परिबद्ध नहीं है; यानी, अगर ऐसा कोई c > 0 नहीं है कि ||Tx|| ≥ सी||एक्स|| सभी के लिए {{nowrap|''x'' ∈ ''X''}}. तो स्पेक्ट्रम में अनुमानित eigenvalues ​​​​का सेट शामिल है, जो कि '' λ '' जैसे हैं {{nowrap|''T'' - ''λI''}} नीचे बाध्य नहीं है; समतुल्य रूप से, यह λ का समुच्चय है जिसके लिए इकाई सदिशों x का एक क्रम है<sub>1</sub>, एक्स<sub>2</sub>, ... जिसके लिए
अधिक सामान्यतः, परिबद्ध व्युत्क्रम प्रमेय द्वारा, T उलटा नहीं है यदि यह नीचे परिबद्ध नहीं है; यानी, अगर ऐसा कोई c > 0 नहीं है कि ||Tx|| ≥ सी||एक्स|| सभी के लिए {{nowrap|''x'' ∈ ''X''}}. तो स्पेक्ट्रम में अनुमानित eigenvalues ​​​​का सेट शामिल है, जो कि '' λ '' जैसे हैं {{nowrap|''T'' - ''λI''}} नीचे बाध्य नहीं है; समतुल्य रूप से, यह λ का समुच्चय है जिसके लिए इकाई सदिशों x का   क्रम है<sub>1</sub>, एक्स<sub>2</sub>, ... जिसके लिए


:<math>\lim_{n \to \infty} \|Tx_n - \lambda x_n\| = 0</math>.
:<math>\lim_{n \to \infty} \|Tx_n - \lambda x_n\| = 0</math>.
Line 107: Line 107:


:<math>R:\,e_j\mapsto e_{j+1},\quad j\in\Z,</math>
:<math>R:\,e_j\mapsto e_{j+1},\quad j\in\Z,</math>
कहाँ <math>\big(e_j\big)_{j\in\N}</math> में मानक ऑर्थोनॉर्मल आधार है <math>l^2(\Z)</math>. प्रत्यक्ष गणना से पता चलता है कि R का कोई आइगेनमान नहीं है, लेकिन प्रत्येक λ |λ| के साथ है = 1 एक अनुमानित आइगेनवैल्यू है; एक्स दे रहा है<sub>''n''</sub> वेक्टर हो
कहाँ <math>\big(e_j\big)_{j\in\N}</math> में मानक ऑर्थोनॉर्मल आधार है <math>l^2(\Z)</math>. प्रत्यक्ष गणना से पता चलता है कि R का कोई आइगेनमान नहीं है, लेकिन प्रत्येक λ |λ| के साथ है = 1   अनुमानित आइगेनवैल्यू है; एक्स दे रहा है<sub>''n''</sub> वेक्टर हो


:<math>\frac{1}{\sqrt{n}}(\dots, 0, 1, \lambda^{-1}, \lambda^{-2}, \dots, \lambda^{1 - n}, 0, \dots)</math>
:<math>\frac{1}{\sqrt{n}}(\dots, 0, 1, \lambda^{-1}, \lambda^{-2}, \dots, \lambda^{1 - n}, 0, \dots)</math>
Line 116: Line 116:


यह निष्कर्ष ऑपरेटरों के अधिक सामान्य वर्ग के लिए भी सही है।
यह निष्कर्ष ऑपरेटरों के अधिक सामान्य वर्ग के लिए भी सही है।
एकात्मक संकारक सामान्य संकारक होता है। [[वर्णक्रमीय प्रमेय]] द्वारा, हिल्बर्ट स्पेस एच पर एक बाध्य ऑपरेटर सामान्य है अगर और केवल अगर यह समतुल्य है (एच की पहचान के बाद <math>L^2</math> स्पेस) एक [[गुणा ऑपरेटर]] के लिए। यह दिखाया जा सकता है कि एक परिबद्ध गुणन संकारक का अनुमानित बिंदु स्पेक्ट्रम उसके स्पेक्ट्रम के बराबर होता है।
एकात्मक संकारक सामान्य संकारक होता है। [[वर्णक्रमीय प्रमेय]] द्वारा, हिल्बर्ट स्पेस एच पर   बाध्य ऑपरेटर सामान्य है अगर और केवल अगर यह समतुल्य है (एच की पहचान के बाद <math>L^2</math> स्पेस)   [[गुणा ऑपरेटर]] के लिए। यह दिखाया जा सकता है कि   परिबद्ध गुणन संकारक का अनुमानित बिंदु स्पेक्ट्रम उसके स्पेक्ट्रम के बराबर होता है।


=== सतत स्पेक्ट्रम ===
=== सतत स्पेक्ट्रम ===
Line 124: Line 124:
:<math>\sigma_{\mathrm{c}}(T) = \sigma_{\mathrm{ap}}(T) \setminus (\sigma_{\mathrm{r}}(T) \cup  \sigma_{\mathrm{p}}(T)) </math>.
:<math>\sigma_{\mathrm{c}}(T) = \sigma_{\mathrm{ap}}(T) \setminus (\sigma_{\mathrm{r}}(T) \cup  \sigma_{\mathrm{p}}(T)) </math>.


उदाहरण के लिए, <math>A:\,l^2(\N)\to l^2(\N)</math>, <math>e_j\mapsto e_j/j</math>, <math>j\in\N</math>, इंजेक्शन है और इसकी एक सघन सीमा है, फिर भी <math>\mathrm{Ran}(A)\subsetneq l^2(\N)</math>.
उदाहरण के लिए, <math>A:\,l^2(\N)\to l^2(\N)</math>, <math>e_j\mapsto e_j/j</math>, <math>j\in\N</math>, इंजेक्शन है और इसकी   सघन सीमा है, फिर भी <math>\mathrm{Ran}(A)\subsetneq l^2(\N)</math>.
दरअसल, अगर <math display="inline">x = \sum_{j\in\N} c_j e_j\in l^2(\N)</math> साथ <math>c_j \in \Complex</math> ऐसा है कि <math display="inline">\sum_{j\in\N} |c_j|^2 < \infty</math>, किसी के पास जरूरी नहीं है <math display="inline">\sum_{j\in\N} \left|j c_j\right|^2 < \infty</math>, और तब <math display="inline">\sum_{j\in\N} j c_j e_j \notin l^2(\N)</math>.
दरअसल, अगर <math display="inline">x = \sum_{j\in\N} c_j e_j\in l^2(\N)</math> साथ <math>c_j \in \Complex</math> ऐसा है कि <math display="inline">\sum_{j\in\N} |c_j|^2 < \infty</math>, किसी के पास जरूरी नहीं है <math display="inline">\sum_{j\in\N} \left|j c_j\right|^2 < \infty</math>, और तब <math display="inline">\sum_{j\in\N} j c_j e_j \notin l^2(\N)</math>.


Line 135: Line 135:
के समुच्चय <math>\lambda\in\Complex</math> जिसके लिए <math>T-\lambda I</math> इंजेक्शन है लेकिन इसमें सघन सीमा नहीं है जिसे 'टी' के अवशिष्ट स्पेक्ट्रम के रूप में जाना जाता है और इसे निरूपित किया जाता है  <math>\sigma_{\mathrm{r}}(T)</math>:
के समुच्चय <math>\lambda\in\Complex</math> जिसके लिए <math>T-\lambda I</math> इंजेक्शन है लेकिन इसमें सघन सीमा नहीं है जिसे 'टी' के अवशिष्ट स्पेक्ट्रम के रूप में जाना जाता है और इसे निरूपित किया जाता है  <math>\sigma_{\mathrm{r}}(T)</math>:
:<math>\sigma_{\mathrm{r}}(T) = \sigma_{\mathrm{cp}}(T) \setminus \sigma_{\mathrm{p}}(T).</math>
:<math>\sigma_{\mathrm{r}}(T) = \sigma_{\mathrm{cp}}(T) \setminus \sigma_{\mathrm{p}}(T).</math>
एक ऑपरेटर इंजेक्शन हो सकता है, यहां तक ​​​​कि नीचे भी घिरा हुआ है, लेकिन अभी भी उलटा नहीं है। दाहिनी ओर शिफ्ट <math>l^2(\mathbb{N})</math>, <math>R:\,l^2(\mathbb{N})\to l^2(\mathbb{N})</math>, <math>R:\,e_j\mapsto e_{j+1},\,j\in\N</math>, ऐसा ही एक उदाहरण है। यह शिफ्ट ऑपरेटर एक [[आइसोमेट्री]] है, इसलिए नीचे 1 से घिरा है। लेकिन यह व्युत्क्रमणीय नहीं है क्योंकि यह विशेषण नहीं है (<math>e_1\not\in\mathrm{Ran}(R)</math>), और इसके अलावा <math>\mathrm{Ran}(R)</math> में घना नहीं है <math>l^2(\mathbb{N})</math>
एक ऑपरेटर इंजेक्शन हो सकता है, यहां तक ​​​​कि नीचे भी घिरा हुआ है, लेकिन अभी भी उलटा नहीं है। दाहिनी ओर शिफ्ट <math>l^2(\mathbb{N})</math>, <math>R:\,l^2(\mathbb{N})\to l^2(\mathbb{N})</math>, <math>R:\,e_j\mapsto e_{j+1},\,j\in\N</math>, ऐसा ही   उदाहरण है। यह शिफ्ट ऑपरेटर   [[आइसोमेट्री]] है, इसलिए नीचे 1 से घिरा है। लेकिन यह व्युत्क्रमणीय नहीं है क्योंकि यह विशेषण नहीं है (<math>e_1\not\in\mathrm{Ran}(R)</math>), और इसके अलावा <math>\mathrm{Ran}(R)</math> में घना नहीं है <math>l^2(\mathbb{N})</math>
(<math>e_1\notin\overline{\mathrm{Ran}(R)}</math>).
(<math>e_1\notin\overline{\mathrm{Ran}(R)}</math>).


Line 162: Line 162:


# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},1}(A)</math> बिंदुओं के समूह के रूप में परिभाषित किया गया है <math>\lambda</math> स्पेक्ट्रम का ऐसा है <math>A-\lambda I</math> फ्रेडहोम संचालिका नहीं है|सेमी-फ्रेडहोम। (ऑपरेटर अर्ध-फ्रेडहोम है यदि इसकी सीमा बंद है और इसका कर्नेल या कोकर्नेल (या दोनों) परिमित-आयामी है।) <br>'उदाहरण 1:' <math>\lambda=0\in\sigma_{\mathrm{ess},1}(A)</math> ऑपरेटर के लिए <math>A:\,l^2(\N)\to l^2(\N)</math>, <math>A:\,e_j\mapsto e_j/j,~ j\in\N</math> (क्योंकि इस ऑपरेटर की सीमा बंद नहीं है: श्रेणी में सभी शामिल नहीं हैं <math>l^2(\N)</math> हालांकि इसका समापन होता है)।<br>उदाहरण 2: <math>\lambda=0\in\sigma_{\mathrm{ess},1}(N)</math> के लिए <math>N:\,l^2(\N)\to l^2(\N)</math>, <math>N:\,v\mapsto 0</math> किसी के लिए <math>v\in l^2(\N)</math> (क्योंकि इस ऑपरेटर के कर्नेल और कोकर्नेल दोनों अनंत-आयामी हैं)।
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},1}(A)</math> बिंदुओं के समूह के रूप में परिभाषित किया गया है <math>\lambda</math> स्पेक्ट्रम का ऐसा है <math>A-\lambda I</math> फ्रेडहोम संचालिका नहीं है|सेमी-फ्रेडहोम। (ऑपरेटर अर्ध-फ्रेडहोम है यदि इसकी सीमा बंद है और इसका कर्नेल या कोकर्नेल (या दोनों) परिमित-आयामी है।) <br>'उदाहरण 1:' <math>\lambda=0\in\sigma_{\mathrm{ess},1}(A)</math> ऑपरेटर के लिए <math>A:\,l^2(\N)\to l^2(\N)</math>, <math>A:\,e_j\mapsto e_j/j,~ j\in\N</math> (क्योंकि इस ऑपरेटर की सीमा बंद नहीं है: श्रेणी में सभी शामिल नहीं हैं <math>l^2(\N)</math> हालांकि इसका समापन होता है)।<br>उदाहरण 2: <math>\lambda=0\in\sigma_{\mathrm{ess},1}(N)</math> के लिए <math>N:\,l^2(\N)\to l^2(\N)</math>, <math>N:\,v\mapsto 0</math> किसी के लिए <math>v\in l^2(\N)</math> (क्योंकि इस ऑपरेटर के कर्नेल और कोकर्नेल दोनों अनंत-आयामी हैं)।
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},2}(A)</math> बिंदुओं के समूह के रूप में परिभाषित किया गया है <math>\lambda</math> स्पेक्ट्रम के ऐसे कि ऑपरेटर या तो <math>A-\lambda I</math> अनंत-आयामी कर्नेल है या एक सीमा है जो बंद नहीं है। इसे वेइल की कसौटी के संदर्भ में भी चित्रित किया जा सकता है: एक [[अनुक्रम]] मौजूद है <math>(x_j)_{j\in\N}</math> स्पेस एक्स में ऐसा है <math>\Vert x_j\Vert=1</math>, <math display="inline"> \lim_{j\to\infty} \left\|(A-\lambda I)x_j \right\| = 0,</math> और ऐसा है <math>(x_j)_{j\in\N}</math> कोई अभिसरण अनुवर्ती नहीं है। इस तरह के अनुक्रम को एकवचन अनुक्रम (या एक विलक्षण वेइल अनुक्रम) कहा जाता है।<br>'उदाहरण:' <math>\lambda=0\in\sigma_{\mathrm{ess},2}(B)</math> ऑपरेटर के लिए <math>B:\,l^2(\N)\to l^2(\N)</math>, <math>B:\,e_j\mapsto e_{j/2}</math> यदि j सम है और <math>e_j\mapsto 0</math> जब j विषम होता है (कर्नेल अनंत-आयामी होता है; कोकर्नेल शून्य-आयामी होता है)। ध्यान दें कि <math>\lambda=0\not\in\sigma_{\mathrm{ess},1}(B)</math>.
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},2}(A)</math> बिंदुओं के समूह के रूप में परिभाषित किया गया है <math>\lambda</math> स्पेक्ट्रम के ऐसे कि ऑपरेटर या तो <math>A-\lambda I</math> अनंत-आयामी कर्नेल है या   सीमा है जो बंद नहीं है। इसे वेइल की कसौटी के संदर्भ में भी चित्रित किया जा सकता है:   [[अनुक्रम]] मौजूद है <math>(x_j)_{j\in\N}</math> स्पेस एक्स में ऐसा है <math>\Vert x_j\Vert=1</math>, <math display="inline"> \lim_{j\to\infty} \left\|(A-\lambda I)x_j \right\| = 0,</math> और ऐसा है <math>(x_j)_{j\in\N}</math> कोई अभिसरण अनुवर्ती नहीं है। इस तरह के अनुक्रम को एकवचन अनुक्रम (या   विलक्षण वेइल अनुक्रम) कहा जाता है।<br>'उदाहरण:' <math>\lambda=0\in\sigma_{\mathrm{ess},2}(B)</math> ऑपरेटर के लिए <math>B:\,l^2(\N)\to l^2(\N)</math>, <math>B:\,e_j\mapsto e_{j/2}</math> यदि j सम है और <math>e_j\mapsto 0</math> जब j विषम होता है (कर्नेल अनंत-आयामी होता है; कोकर्नेल शून्य-आयामी होता है)। ध्यान दें कि <math>\lambda=0\not\in\sigma_{\mathrm{ess},1}(B)</math>.
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},3}(A)</math> बिंदुओं के समूह के रूप में परिभाषित किया गया है <math>\lambda</math> स्पेक्ट्रम का ऐसा है <math>A-\lambda I</math> फ्रेडहोम ऑपरेटर नहीं है। (संचालक फ्रेडहोम है यदि इसकी सीमा बंद है और इसके कर्नेल और कोकर्नेल दोनों परिमित-आयामी हैं।) <br>'उदाहरण:' <math>\lambda=0\in\sigma_{\mathrm{ess},3}(J)</math> ऑपरेटर के लिए <math>J:\,l^2(\N)\to l^2(\N)</math>, <math>J:\,e_j\mapsto e_{2j}</math> (कर्नेल शून्य-आयामी है, कोकर्नेल अनंत-आयामी है)। ध्यान दें कि <math>\lambda=0\not\in\sigma_{\mathrm{ess},2}(J)</math>.
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},3}(A)</math> बिंदुओं के समूह के रूप में परिभाषित किया गया है <math>\lambda</math> स्पेक्ट्रम का ऐसा है <math>A-\lambda I</math> फ्रेडहोम ऑपरेटर नहीं है। (संचालक फ्रेडहोम है यदि इसकी सीमा बंद है और इसके कर्नेल और कोकर्नेल दोनों परिमित-आयामी हैं।) <br>'उदाहरण:' <math>\lambda=0\in\sigma_{\mathrm{ess},3}(J)</math> ऑपरेटर के लिए <math>J:\,l^2(\N)\to l^2(\N)</math>, <math>J:\,e_j\mapsto e_{2j}</math> (कर्नेल शून्य-आयामी है, कोकर्नेल अनंत-आयामी है)। ध्यान दें कि <math>\lambda=0\not\in\sigma_{\mathrm{ess},2}(J)</math>.
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},4}(A)</math> बिंदुओं के समूह के रूप में परिभाषित किया गया है <math>\lambda</math> स्पेक्ट्रम का ऐसा है <math>A-\lambda I</math> इंडेक्स जीरो का फ्रेडहोम ऑपरेटर नहीं है। इसे ए के स्पेक्ट्रम के सबसे बड़े हिस्से के रूप में भी चित्रित किया जा सकता है जो [[कॉम्पैक्ट ऑपरेटर]] गड़बड़ी द्वारा संरक्षित है। दूसरे शब्दों में, <math display="inline">\sigma_{\mathrm{ess},4}(A) = \bigcap_{K \in B_0(X)} \sigma(A+K)</math>; यहाँ <math>B_0(X)</math> एक्स पर सभी कॉम्पैक्ट ऑपरेटरों के सेट को दर्शाता है। <br>'उदाहरण:' <math>\lambda=0\in\sigma_{\mathrm{ess},4}(R)</math> कहाँ <math>R:\,l^2(\N)\to l^2(\N)</math> सही शिफ्ट ऑपरेटर है, <math>R:\,l^2(\N)\to l^2(\N)</math>, <math>R:\,e_j\mapsto e_{j+1}</math> के लिए <math>j\in\N</math> (इसका कर्नेल शून्य है, इसका कोकर्नेल एक आयामी है)। ध्यान दें कि <math>\lambda=0\not\in\sigma_{\mathrm{ess},3}(R)</math>.
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},4}(A)</math> बिंदुओं के समूह के रूप में परिभाषित किया गया है <math>\lambda</math> स्पेक्ट्रम का ऐसा है <math>A-\lambda I</math> इंडेक्स जीरो का फ्रेडहोम ऑपरेटर नहीं है। इसे ए के स्पेक्ट्रम के सबसे बड़े हिस्से के रूप में भी चित्रित किया जा सकता है जो [[कॉम्पैक्ट ऑपरेटर]] गड़बड़ी द्वारा संरक्षित है। दूसरे शब्दों में, <math display="inline">\sigma_{\mathrm{ess},4}(A) = \bigcap_{K \in B_0(X)} \sigma(A+K)</math>; यहाँ <math>B_0(X)</math> एक्स पर सभी कॉम्पैक्ट ऑपरेटरों के सेट को दर्शाता है। <br>'उदाहरण:' <math>\lambda=0\in\sigma_{\mathrm{ess},4}(R)</math> कहाँ <math>R:\,l^2(\N)\to l^2(\N)</math> सही शिफ्ट ऑपरेटर है, <math>R:\,l^2(\N)\to l^2(\N)</math>, <math>R:\,e_j\mapsto e_{j+1}</math> के लिए <math>j\in\N</math> (इसका कर्नेल शून्य है, इसका कोकर्नेल   आयामी है)। ध्यान दें कि <math>\lambda=0\not\in\sigma_{\mathrm{ess},3}(R)</math>.
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},5}(A)</math> का संघ है <math>\sigma_{\mathrm{ess},1}(A)</math> के सभी घटकों के साथ <math>\Complex \setminus \sigma_{\mathrm{ess},1}(A)</math> जो रिज़ॉल्वेंट सेट के साथ प्रतिच्छेद नहीं करता है <math>\Complex \setminus \sigma(A)</math>. इसकी विशेषता भी हो सकती है <math>\sigma(A)\setminus\sigma_{\mathrm{d}}(A)</math>.<br>उदाहरण: ऑपरेटर पर विचार करें <math>T:\,l^2(\Z)\to l^2(\Z)</math>, <math>T:\,e_j\mapsto e_{j-1}</math> के लिए <math>j\ne 0</math>, <math>T:\,e_0\mapsto 0</math>. तब से <math>\Vert T\Vert=1</math>, किसी के पास <math>\sigma(T)\subset\overline{\mathbb{D}_1}</math>. किसी के लिए <math>z\in\Complex</math> साथ <math>|z|=1</math>, की सीमा <math>T-z I</math> घना है लेकिन बंद नहीं है, इसलिए यूनिट डिस्क की सीमा पहले प्रकार के आवश्यक स्पेक्ट्रम में है: <math>\partial\mathbb{D}_1\subset\sigma_{\mathrm{ess},1}(T)</math>. किसी के लिए <math>z\in\Complex</math> साथ <math>|z|<1</math>, <math>T-z I</math> एक बंद रेंज, एक आयामी कर्नेल और एक आयामी कोकर्नेल है, इसलिए <math>z\in\sigma(T)</math> यद्यपि <math>z\not\in\sigma_{\mathrm{ess},k}(T)</math> के लिए <math>1\le k\le 4</math>; इस प्रकार, <math>\sigma_{\mathrm{ess},k}(T)=\partial\mathbb{D}_1</math> के लिए <math>1\le k\le 4</math>. के दो घटक होते हैं <math>\Complex\setminus\sigma_{\mathrm{ess},1}(T)</math>: <math>\{z\in\Complex:\,|z|>1\}</math> और <math>\{z\in\Complex:\,|z|<1\}</math>. घटक <math>\{|z|<1\}</math> विलायक सेट के साथ कोई प्रतिच्छेदन नहीं है; परिभाषा से, <math>\sigma_{\mathrm{ess},5}(T)=\sigma_{\mathrm{ess},1}(T)\cup\{z\in\Complex:\,|z|<1\}=\{z\in\Complex:\,|z|\le 1\}</math>.
# आवश्यक स्पेक्ट्रम <math>\sigma_{\mathrm{ess},5}(A)</math> का संघ है <math>\sigma_{\mathrm{ess},1}(A)</math> के सभी घटकों के साथ <math>\Complex \setminus \sigma_{\mathrm{ess},1}(A)</math> जो रिज़ॉल्वेंट सेट के साथ प्रतिच्छेद नहीं करता है <math>\Complex \setminus \sigma(A)</math>. इसकी विशेषता भी हो सकती है <math>\sigma(A)\setminus\sigma_{\mathrm{d}}(A)</math>.<br>उदाहरण: ऑपरेटर पर विचार करें <math>T:\,l^2(\Z)\to l^2(\Z)</math>, <math>T:\,e_j\mapsto e_{j-1}</math> के लिए <math>j\ne 0</math>, <math>T:\,e_0\mapsto 0</math>. तब से <math>\Vert T\Vert=1</math>, किसी के पास <math>\sigma(T)\subset\overline{\mathbb{D}_1}</math>. किसी के लिए <math>z\in\Complex</math> साथ <math>|z|=1</math>, की सीमा <math>T-z I</math> घना है लेकिन बंद नहीं है, इसलिए यूनिट डिस्क की सीमा पहले प्रकार के आवश्यक स्पेक्ट्रम में है: <math>\partial\mathbb{D}_1\subset\sigma_{\mathrm{ess},1}(T)</math>. किसी के लिए <math>z\in\Complex</math> साथ <math>|z|<1</math>, <math>T-z I</math>   बंद रेंज,   आयामी कर्नेल और   आयामी कोकर्नेल है, इसलिए <math>z\in\sigma(T)</math> यद्यपि <math>z\not\in\sigma_{\mathrm{ess},k}(T)</math> के लिए <math>1\le k\le 4</math>; इस प्रकार, <math>\sigma_{\mathrm{ess},k}(T)=\partial\mathbb{D}_1</math> के लिए <math>1\le k\le 4</math>. के दो घटक होते हैं <math>\Complex\setminus\sigma_{\mathrm{ess},1}(T)</math>: <math>\{z\in\Complex:\,|z|>1\}</math> और <math>\{z\in\Complex:\,|z|<1\}</math>. घटक <math>\{|z|<1\}</math> विलायक सेट के साथ कोई प्रतिच्छेदन नहीं है; परिभाषा से, <math>\sigma_{\mathrm{ess},5}(T)=\sigma_{\mathrm{ess},1}(T)\cup\{z\in\Complex:\,|z|<1\}=\{z\in\Complex:\,|z|\le 1\}</math>.


== उदाहरण: [[हाइड्रोजन परमाणु]] ==
== उदाहरण: [[हाइड्रोजन परमाणु]] ==


हाइड्रोजन परमाणु विभिन्न प्रकार के स्पेक्ट्रा का एक उदाहरण प्रदान करता है। [[आणविक हैमिल्टन]] <math>H=-\Delta-\frac{Z}{|x|}</math>, <math>Z > 0</math>, डोमेन के साथ <math>D(H) = H^1(\R^3)</math> eigenvalues ​​​​का असतत सेट है (असतत स्पेक्ट्रम <math>\sigma_{\mathrm{d}}(H)</math>, जो इस मामले में बिंदु स्पेक्ट्रम के साथ मेल खाता है <math>\sigma_{\mathrm{p}}(H)</math> चूंकि निरंतर स्पेक्ट्रम में कोई ईजेनवेल्यूज सन्निहित नहीं है) जिसकी गणना Rydberg सूत्र द्वारा की जा सकती है। उनके संबंधित [[eigenfunction]]s eigenstates, या बाध्य राज्यों कहा जाता है। [[आयनीकरण]] प्रक्रिया का परिणाम स्पेक्ट्रम के निरंतर भाग द्वारा वर्णित है (टक्कर/आयनीकरण की ऊर्जा मात्राबद्ध नहीं है), द्वारा दर्शाया गया है <math>\sigma_{\mathrm{cont}}(H)=[0,+\infty)</math> (यह आवश्यक स्पेक्ट्रम के साथ भी मेल खाता है, <math>\sigma_{\mathrm{ess}}(H)=[0,+\infty)</math>).
हाइड्रोजन परमाणु विभिन्न प्रकार के स्पेक्ट्रा का   उदाहरण प्रदान करता है। [[आणविक हैमिल्टन]] <math>H=-\Delta-\frac{Z}{|x|}</math>, <math>Z > 0</math>, डोमेन के साथ <math>D(H) = H^1(\R^3)</math> eigenvalues ​​​​का असतत सेट है (असतत स्पेक्ट्रम <math>\sigma_{\mathrm{d}}(H)</math>, जो इस मामले में बिंदु स्पेक्ट्रम के साथ मेल खाता है <math>\sigma_{\mathrm{p}}(H)</math> चूंकि निरंतर स्पेक्ट्रम में कोई ईजेनवेल्यूज सन्निहित नहीं है) जिसकी गणना Rydberg सूत्र द्वारा की जा सकती है। उनके संबंधित [[eigenfunction]]s eigenstates, या बाध्य राज्यों कहा जाता है। [[आयनीकरण]] प्रक्रिया का परिणाम स्पेक्ट्रम के निरंतर भाग द्वारा वर्णित है (टक्कर/आयनीकरण की ऊर्जा मात्राबद्ध नहीं है), द्वारा दर्शाया गया है <math>\sigma_{\mathrm{cont}}(H)=[0,+\infty)</math> (यह आवश्यक स्पेक्ट्रम के साथ भी मेल खाता है, <math>\sigma_{\mathrm{ess}}(H)=[0,+\infty)</math>).
{{Citation needed|date=August 2019}}
{{Citation needed|date=August 2019}}


== आसन्न ऑपरेटर का स्पेक्ट्रम ==
== आसन्न ऑपरेटर का स्पेक्ट्रम ==


बता दें कि X एक Banach स्पेस है और <math>T:\,X\to X</math> एक असीमित ऑपरेटर#घने डोमेन के साथ बंद रैखिक ऑपरेटर <math>D(T)\subset X</math>.
बता दें कि X   Banach स्पेस है और <math>T:\,X\to X</math>   असीमित ऑपरेटर#घने डोमेन के साथ बंद रैखिक ऑपरेटर <math>D(T)\subset X</math>.
यदि X * X की दोहरी जगह है, और <math>T^*:\, X^* \to X^*</math> तब T का हर्मिटियन सन्निकट है
यदि X * X की दोहरी जगह है, और <math>T^*:\, X^* \to X^*</math> तब T का हर्मिटियन सन्निकट है


Line 203: Line 203:


हमें भी मिलता है  <math>\sigma_{\mathrm{p}}(T)\subset\overline{\sigma_{\mathrm{r}}(T^*)\cup \sigma_{\mathrm{p}}(T^*)}</math> निम्नलिखित तर्क द्वारा: X आइसोमेट्रिक रूप से X** में एम्बेड होता है।
हमें भी मिलता है  <math>\sigma_{\mathrm{p}}(T)\subset\overline{\sigma_{\mathrm{r}}(T^*)\cup \sigma_{\mathrm{p}}(T^*)}</math> निम्नलिखित तर्क द्वारा: X आइसोमेट्रिक रूप से X** में एम्बेड होता है।
इसलिए, के कर्नेल में प्रत्येक गैर-शून्य तत्व के लिए <math>T-\lambda I</math> X** में एक गैर-शून्य तत्व मौजूद है जो गायब हो जाता है <math>\mathrm{Ran}(T^* - \bar{\lambda}I)</math>.
इसलिए, के कर्नेल में प्रत्येक गैर-शून्य तत्व के लिए <math>T-\lambda I</math> X** में   गैर-शून्य तत्व मौजूद है जो गायब हो जाता है <math>\mathrm{Ran}(T^* - \bar{\lambda}I)</math>.
इस प्रकार <math>\mathrm{Ran}(T^* -\bar{\lambda} I)</math> घना नहीं हो सकता।
इस प्रकार <math>\mathrm{Ran}(T^* -\bar{\lambda} I)</math> घना नहीं हो सकता।


Line 212: Line 212:
=== कॉम्पैक्ट ऑपरेटर ===
=== कॉम्पैक्ट ऑपरेटर ===


यदि टी एक कॉम्पैक्ट ऑपरेटर है, या अधिक आम तौर पर, एक [[सख्ती से एकवचन ऑपरेटर]] है, तो यह दिखाया जा सकता है कि स्पेक्ट्रम गणना योग्य है, शून्य ही एकमात्र संभावित [[संचय बिंदु]] है, और स्पेक्ट्रम में कोई भी गैर-शून्य λ एक आइगेनवैल्यू है।
यदि टी   कॉम्पैक्ट ऑपरेटर है, या अधिक आम तौर पर,   [[सख्ती से एकवचन ऑपरेटर]] है, तो यह दिखाया जा सकता है कि स्पेक्ट्रम गणना योग्य है, शून्य ही एकमात्र संभावित [[संचय बिंदु]] है, और स्पेक्ट्रम में कोई भी गैर-शून्य λ   आइगेनवैल्यू है।


===Quasinilpotent संचालक===
===Quasinilpotent संचालक===
Line 219: Line 219:


:<math>\sigma(A)=\{0\}.</math>
:<math>\sigma(A)=\{0\}.</math>
ऐसे ऑपरेटर का एक उदाहरण है <math>A:\,l^2(\N)\to l^2(\N)</math>, <math>e_j\mapsto e_{j+1}/2^j</math> के लिए <math>j\in\N</math>.
ऐसे ऑपरेटर का   उदाहरण है <math>A:\,l^2(\N)\to l^2(\N)</math>, <math>e_j\mapsto e_{j+1}/2^j</math> के लिए <math>j\in\N</math>.


=== [[स्व-आसन्न ऑपरेटर]] ===
=== [[स्व-आसन्न ऑपरेटर]] ===


यदि X एक हिल्बर्ट स्थान है और T एक स्व-संबद्ध संकारक है (या, अधिक सामान्यतः, एक सामान्य संकारक), तो वर्णक्रमीय प्रमेय के रूप में जाना जाने वाला एक उल्लेखनीय परिणाम सामान्य परिमित-आयामी संचालकों के लिए विकर्ण प्रमेय का एक एनालॉग देता है (हर्मिटियन मैट्रिसेस) , उदाहरण के लिए)।
यदि X   हिल्बर्ट स्थान है और T   स्व-संबद्ध संकारक है (या, अधिक सामान्यतः,   सामान्य संकारक), तो वर्णक्रमीय प्रमेय के रूप में जाना जाने वाला   उल्लेखनीय परिणाम सामान्य परिमित-आयामी संचालकों के लिए विकर्ण प्रमेय का   एनालॉग देता है (हर्मिटियन मैट्रिसेस) , उदाहरण के लिए)।


स्व-आसन्न ऑपरेटरों के लिए, [[वर्णक्रमीय माप]] अपघटन (कार्यात्मक विश्लेषण) को पूरी तरह से निरंतर, शुद्ध बिंदु और एकवचन भागों में परिभाषित करने के लिए वर्णक्रमीय उपायों का उपयोग कर सकते हैं।
स्व-आसन्न ऑपरेटरों के लिए, [[वर्णक्रमीय माप]] अपघटन (कार्यात्मक विश्लेषण) को पूरी तरह से निरंतर, शुद्ध बिंदु और एकवचन भागों में परिभाषित करने के लिए वर्णक्रमीय उपायों का उपयोग कर सकते हैं।
Line 229: Line 229:
== एक वास्तविक ऑपरेटर का स्पेक्ट्रम ==
== एक वास्तविक ऑपरेटर का स्पेक्ट्रम ==


विलायक और स्पेक्ट्रम की परिभाषाओं को किसी भी निरंतर रैखिक ऑपरेटर तक बढ़ाया जा सकता है <math>T</math> बनच स्थान पर अभिनय <math>X</math> वास्तविक क्षेत्र के ऊपर <math>\mathbb{R}</math> (जटिल क्षेत्र के बजाय <math>\mathbb{C}</math>) इसकी [[जटिलता]] के माध्यम से <math>T_\mathbb{C}</math>. इस मामले में हम विलायक सेट को परिभाषित करते हैं <math>\rho(T)</math> सभी के सेट के रूप में <math>\lambda\in\mathbb{C}</math> ऐसा है कि <math>T_\mathbb{C}-\lambda I</math> जटिल स्थान पर कार्यरत एक ऑपरेटर के रूप में उलटा है <math>X_\mathbb{C}</math>; फिर हम परिभाषित करते हैं <math>\sigma(T)=\mathbb{C}\setminus\rho(T)</math>.
विलायक और स्पेक्ट्रम की परिभाषाओं को किसी भी निरंतर रैखिक ऑपरेटर तक बढ़ाया जा सकता है <math>T</math> बनच स्थान पर अभिनय <math>X</math> वास्तविक क्षेत्र के ऊपर <math>\mathbb{R}</math> (जटिल क्षेत्र के बजाय <math>\mathbb{C}</math>) इसकी [[जटिलता]] के माध्यम से <math>T_\mathbb{C}</math>. इस मामले में हम विलायक सेट को परिभाषित करते हैं <math>\rho(T)</math> सभी के सेट के रूप में <math>\lambda\in\mathbb{C}</math> ऐसा है कि <math>T_\mathbb{C}-\lambda I</math> जटिल स्थान पर कार्यरत   ऑपरेटर के रूप में उलटा है <math>X_\mathbb{C}</math>; फिर हम परिभाषित करते हैं <math>\sigma(T)=\mathbb{C}\setminus\rho(T)</math>.


=== वास्तविक स्पेक्ट्रम ===
=== वास्तविक स्पेक्ट्रम ===


एक सतत रैखिक ऑपरेटर का वास्तविक स्पेक्ट्रम <math>T</math> एक वास्तविक बनच स्थान पर अभिनय करना <math>X</math>, निरूपित <math>\sigma_\mathbb{R}(T)</math>, सभी के सेट के रूप में परिभाषित किया गया है <math>\lambda\in\mathbb{R}</math> जिसके लिए <math>T-\lambda I</math> परिबद्ध रैखिक संचालकों के वास्तविक बीजगणित में उलटा होने में विफल रहता है <math>X</math>. इस मामले में हमारे पास है <math>\sigma(T)\cap\mathbb{R}=\sigma_\mathbb{R}(T)</math>. ध्यान दें कि वास्तविक स्पेक्ट्रम जटिल स्पेक्ट्रम के साथ मेल खा सकता है या नहीं भी हो सकता है। विशेष रूप से, वास्तविक स्पेक्ट्रम खाली हो सकता है।
एक सतत रैखिक ऑपरेटर का वास्तविक स्पेक्ट्रम <math>T</math>   वास्तविक बनच स्थान पर अभिनय करना <math>X</math>, निरूपित <math>\sigma_\mathbb{R}(T)</math>, सभी के सेट के रूप में परिभाषित किया गया है <math>\lambda\in\mathbb{R}</math> जिसके लिए <math>T-\lambda I</math> परिबद्ध रैखिक संचालकों के वास्तविक बीजगणित में उलटा होने में विफल रहता है <math>X</math>. इस मामले में हमारे पास है <math>\sigma(T)\cap\mathbb{R}=\sigma_\mathbb{R}(T)</math>. ध्यान दें कि वास्तविक स्पेक्ट्रम जटिल स्पेक्ट्रम के साथ मेल खा सकता है या नहीं भी हो सकता है। विशेष रूप से, वास्तविक स्पेक्ट्रम खाली हो सकता है।


== एक इकाई बनच बीजगणित का स्पेक्ट्रम ==
== एक इकाई बनच बीजगणित का स्पेक्ट्रम ==
{{Expand section|date=June 2009}}
{{Expand section|date=June 2009}}
बी को एक इकाई (रिंग थ्योरी) ई युक्त एक जटिल बनच बीजगणित होने दें। फिर हम स्पेक्ट्रम σ(x) (या अधिक स्पष्ट रूप से σ<sub>''B''</sub>(x)) बी के एक तत्व x का उन जटिल संख्याओं का सेट होना λ जिसके लिए λe − x बी में व्युत्क्रमणीय नहीं है। यह बानाच स्पेस एक्स पर बंधे रैखिक ऑपरेटरों बी (एक्स) के लिए परिभाषा का विस्तार करता है, क्योंकि बी (एक्स) एक इकाई बनच बीजगणित है।
बी को   इकाई (रिंग थ्योरी) ई युक्त   जटिल बनच बीजगणित होने दें। फिर हम स्पेक्ट्रम σ(x) (या अधिक स्पष्ट रूप से σ<sub>''B''</sub>(x)) बी के   तत्व x का उन जटिल संख्याओं का सेट होना λ जिसके लिए λe − x बी में व्युत्क्रमणीय नहीं है। यह बानाच स्पेस एक्स पर बंधे रैखिक ऑपरेटरों बी (एक्स) के लिए परिभाषा का विस्तार करता है, क्योंकि बी (एक्स)   इकाई बनच बीजगणित है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 21:55, 6 April 2023

गणित में, विशेष रूप से कार्यात्मक विश्लेषण में, परिबद्ध संचालिका (या, अधिक सामान्यतः, असीमित ऑपरेटर) का स्पेक्ट्रम मैट्रिक्स (गणित) के eigenvalues ​​​​के सेट का सामान्यीकरण है। विशेष रूप से, जटिल संख्या परिबद्ध रैखिक संकारक के स्पेक्ट्रम में होना कहा जाता है अगर

  • या तो कोई सेट-सैद्धांतिक प्रतिलोम फलन नहीं है;
  • या सेट-सैद्धांतिक व्युत्क्रम या तो असीमित है या गैर-सघन उपसमुच्चय पर परिभाषित है।[1]

यहाँ, पहचान ऑपरेटर है।

बंद ग्राफ प्रमेय द्वारा, स्पेक्ट्रम में है अगर और केवल अगर बाध्य ऑपरेटर गैर-विशेषण पर है .

स्पेक्ट्रा और संबंधित गुणों के अध्ययन को स्पेक्ट्रल सिद्धांत के रूप में जाना जाता है, जिसमें कई अनुप्रयोग हैं, विशेष रूप से क्वांटम यांत्रिकी का गणितीय सूत्रीकरण

डायमेंशन (सदिश स्थल ) पर ऑपरेटर का स्पेक्ट्रम | आयाम (वेक्टर स्थान) ठीक आइगेनवैल्यू का सेट है। हालांकि अनंत-आयामी अंतरिक्ष पर ऑपरेटर के स्पेक्ट्रम में अतिरिक्त तत्व हो सकते हैं, और हो सकता है कि कोई आइगेनवैल्यू न हो। उदाहरण के लिए, हिल्बर्ट अंतरिक्ष एलपी स्पेस|ℓ पर एकतरफा शिफ्ट ऑपरेटर आर पर विचार करें2</सुप>,

इसका कोई eigenvalues ​​नहीं है, क्योंकि यदि Rx=λx तो इस व्यंजक का विस्तार करके हम देखते हैं कि x1= 0, एक्स2=0, आदि। दूसरी ओर, 0 स्पेक्ट्रम में है क्योंकि यद्यपि ऑपरेटर R − 0 (अर्थात स्वयं R) व्युत्क्रमणीय है, व्युत्क्रम को सेट पर परिभाषित किया गया है जो Lp स्थान में सघन नहीं है|ℓ2</उप>। वास्तव में जटिल संख्या बनच स्थान पर प्रत्येक परिबद्ध रैखिक संचालिका के पास गैर-खाली स्पेक्ट्रम होना चाहिए।

स्पेक्ट्रम की धारणा अनबाउंड ऑपरेटर (अर्थात् आवश्यक रूप से बाध्य नहीं) ऑपरेटरों तक फैली हुई है। सम्मिश्र संख्या λ को असीमित संकारक के स्पेक्ट्रम में कहा जाता है डोमेन पर परिभाषित यदि कोई परिबद्ध व्युत्क्रम नहीं है समग्र रूप से परिभाषित यदि टी बंद ऑपरेटर है (जिसमें टी बाध्य होने पर मामला शामिल है), की बाध्यता इसके अस्तित्व से स्वचालित रूप से अनुसरण करता है।

बानाच स्पेस एक्स पर परिबद्ध रैखिक ऑपरेटरों बी (एक्स) की जगह यूनिटल बीजगणित बनच बीजगणित का उदाहरण है। चूंकि स्पेक्ट्रम की परिभाषा में बी (एक्स) के किसी भी गुण का उल्लेख नहीं है, सिवाय इसके कि ऐसे किसी भी बीजगणित में है, स्पेक्ट्रम की धारणा को इस संदर्भ में उसी परिभाषा शब्दशः का उपयोग करके सामान्यीकृत किया जा सकता है।

एक बंधे हुए ऑपरेटर का स्पेक्ट्रम

परिभाषा

होने देना बनच स्थान पर अभिनय करने वाला परिबद्ध रेखीय संचालिका हो जटिल अदिश क्षेत्र पर , और पहचान ऑपरेटर ऑन रहें . का स्पेक्ट्रम सभी का सेट है जिसके लिए आपरेटर व्युत्क्रम नहीं है जो परिबद्ध रैखिक संकारक है।

तब से रेखीय संकारक है, यदि व्युत्क्रम मौजूद है तो रेखीय है; और, परिबद्ध व्युत्क्रम प्रमेय द्वारा, यह परिबद्ध है। इसलिए, स्पेक्ट्रम में सटीक रूप से वे अदिश होते हैं जिसके लिए विशेषण नहीं है।

किसी दिए गए ऑपरेटर का स्पेक्ट्रम अक्सर निरूपित किया जाता है , और इसके पूरक, विलायक सेट को निरूपित किया जाता है . ( कभी-कभी वर्णक्रमीय त्रिज्या को निरूपित करने के लिए उपयोग किया जाता है )

आइगेनवैल्यू से संबंध

अगर का आइगेनवैल्यू है , फिर ऑपरेटर एक-से-एक नहीं है, और इसलिए इसका उलटा है परिभाषित नहीं है। हालांकि, विपरीत कथन सत्य नहीं है: ऑपरेटर व्युत्क्रम नहीं हो सकता है, भले ही आइगेनवैल्यू नहीं है। इस प्रकार ऑपरेटर के स्पेक्ट्रम में हमेशा उसके सभी आइगेनवेल्यू होते हैं, लेकिन यह उन तक सीमित नहीं है।

उदाहरण के लिए, हिल्बर्ट स्पेस पर विचार करें , जिसमें वास्तविक संख्याओं के सभी अनुक्रम#परिमित और अनंत|द्वि-अनंत अनुक्रम शामिल हैं

जिनके पास वर्गों का परिमित योग है . द्विपक्षीय शिफ्ट ऑपरेटर बस अनुक्रम के प्रत्येक तत्व को स्थिति से विस्थापित कर देता है; अर्थात् यदि तब प्रत्येक पूर्णांक के लिए . आइगेनवैल्यू समीकरण इस स्थान में कोई अशून्य समाधान नहीं है, क्योंकि इसका तात्पर्य है कि सभी मान समान निरपेक्ष मूल्य है (यदि ) या ज्यामितीय प्रगति है (यदि ); किसी भी तरह से, उनके वर्गों का योग परिमित नहीं होगा। हालांकि, ऑपरेटर उलटा नहीं है अगर . उदाहरण के लिए, अनुक्रम ऐसा है कि में है ; लेकिन कोई क्रम नहीं है में ऐसा है कि (वह है, सभी के लिए ).

बुनियादी गुण

परिबद्ध संकारक T का वर्णक्रम हमेशा संवृत्त समुच्चय, परिबद्ध समुच्चय और रिक्त समुच्चय होता है। जटिल तल का अरिक्त उपसमुच्चय।

यदि स्पेक्ट्रम खाली था, तो रिज़ॉल्वेंट औपचारिकता

जटिल विमान पर हर जगह परिभाषित किया जाएगा और घिरा होगा। लेकिन यह दिखाया जा सकता है कि रिज़ॉल्वेंट फ़ंक्शन R अपने डोमेन पर होलोमॉर्फिक फ़ंक्शन है। लिउविल के प्रमेय (जटिल विश्लेषण) | लिउविल के प्रमेय के वेक्टर-मूल्यवान संस्करण द्वारा, यह फ़ंक्शन स्थिर है, इस प्रकार हर जगह शून्य है क्योंकि यह अनंत पर शून्य है। यह विरोधाभास होगा।

स्पेक्ट्रम की सीमा λ में न्यूमैन श्रृंखला से आती है; स्पेक्ट्रम σ(T) ||T|| से घिरा है। समान परिणाम स्पेक्ट्रम की निकटता को दर्शाता है।

बाउंड ||टी|| स्पेक्ट्रम पर कुछ हद तक परिष्कृत किया जा सकता है। T का वर्णक्रमीय त्रिज्या, r(T), जटिल तल में सबसे छोटे वृत्त की त्रिज्या है जो मूल पर केंद्रित है और इसके अंदर स्पेक्ट्रम σ(T) समाहित करता है, अर्थात

वर्णक्रमीय त्रिज्या सूत्र कहता है[2] कि किसी भी तत्व के लिए बनच बीजगणित का,


एक असीमित ऑपरेटर का स्पेक्ट्रम

एक बनच स्पेस एक्स पर असीमित ऑपरेटरों के लिए स्पेक्ट्रम की परिभाषा का विस्तार कर सकते हैं। ये ऑपरेटर जो बनच बीजगणित बी (एक्स) में अब तत्व नहीं हैं।

परिभाषा

बता दें कि X Banach स्पेस है और डोमेन पर परिभाषित असीमित ऑपरेटर बनें . एक जटिल संख्या λ को 'रिज़ॉल्वेंट सेट' (जिसे 'नियमित सेट' भी कहा जाता है) में कहा जाता है अगर ऑपरेटर

हर जगह परिभाषित उलटा है, यानी अगर कोई बाध्य ऑपरेटर मौजूद है

ऐसा है कि

एक जटिल संख्या λ तब 'स्पेक्ट्रम' में होती है यदि λ विलायक सेट में नहीं है।

λ के लिए विलायक में होना (अर्थात स्पेक्ट्रम में नहीं), जैसे बंधे हुए मामले में, वस्तुनिष्ठ होना चाहिए, क्योंकि इसमें दो तरफा व्युत्क्रम होना चाहिए। पहले की तरह, यदि कोई व्युत्क्रम मौजूद है, तो इसकी रैखिकता तत्काल है, लेकिन सामान्य तौर पर यह बाध्य नहीं हो सकता है, इसलिए इस स्थिति को अलग से जांचा जाना चाहिए।

बंद ग्राफ प्रमेय द्वारा, की सीमा T बंद संकारक होने पर अपने अस्तित्व से सीधे अनुसरण करता है। फिर, बंधे हुए मामले की तरह, सम्मिश्र संख्या λ बंद संकारक T के स्पेक्ट्रम में निहित है यदि और केवल यदि विशेषण नहीं है। ध्यान दें कि बंद ऑपरेटरों की श्रेणी में सभी बंधे हुए ऑपरेटर शामिल हैं।

मूल गुण

एक असीमित ऑपरेटर का स्पेक्ट्रम सामान्य रूप से जटिल विमान का बंद, संभवतः खाली, सबसेट है। यदि संकारक T संवृत्त रैखिक संकारक नहीं है, तब .

स्पेक्ट्रम में बिंदुओं का वर्गीकरण

बानाच स्थान पर बंधा हुआ ऑपरेटर टी उलटा है, यानी बाध्य उलटा है, अगर और केवल अगर टी नीचे घिरा हुआ है, यानी। कुछ के लिए और सघन सीमा है। तदनुसार, T के स्पेक्ट्रम को निम्नलिखित भागों में विभाजित किया जा सकता है:

  1. अगर नीचे बाध्य नहीं है। विशेष रूप से, यदि ऐसा होता है अंतःक्षेपी नहीं है, अर्थात λ आइगेनमान है। आइगेनवैल्यू के सेट को T का 'पॉइंट स्पेक्ट्रम' कहा जाता है और इसे σ द्वारा निरूपित किया जाता हैp(टी)। वैकल्पिक रूप से, एक-से-एक हो सकता है लेकिन अभी भी नीचे बाध्य नहीं है। इस तरह के λ eigenvalue नहीं है, लेकिन फिर भी T का अनुमानित eigenvalue है (स्वयं eigenvalues ​​भी अनुमानित eigenvalues ​​​​हैं)। अनुमानित eigenvalues ​​​​के सेट (जिसमें बिंदु स्पेक्ट्रम शामिल है) को T का 'अनुमानित बिंदु स्पेक्ट्रम' कहा जाता है, जिसे σ द्वारा निरूपित किया जाता है।ap(टी)।
  2. अगर सघन सीमा नहीं है। ऐसे λ के सेट को T का 'संपीड़न स्पेक्ट्रम' कहा जाता है, जिसे निरूपित किया जाता है . अगर सघन रेंज नहीं है, लेकिन इंजेक्शन है, λ को टी के 'अवशिष्ट स्पेक्ट्रम' में कहा जाता है, जिसे निरूपित किया जाता है .

ध्यान दें कि अनुमानित बिंदु स्पेक्ट्रम और अवशिष्ट स्पेक्ट्रम अनिवार्य रूप से अलग नहीं हैं (हालांकि, बिंदु स्पेक्ट्रम और अवशिष्ट स्पेक्ट्रम हैं)।

निम्नलिखित उपखंड ऊपर स्केच किए गए σ(T) के तीन भागों पर अधिक विवरण प्रदान करते हैं।

बिंदु स्पेक्ट्रम

यदि कोई ऑपरेटर इंजेक्टिव नहीं है (इसलिए T(x) = 0 के साथ कुछ गैर-शून्य x है), तो यह स्पष्ट रूप से उलटा नहीं है। तो अगर λ टी का eigenvalue है, तो जरूरी है कि λ ∈ σ(T) हो। T के eigenvalues ​​​​के सेट को T का 'पॉइंट स्पेक्ट्रम' भी कहा जाता है, जिसे σ द्वारा निरूपित किया जाता है।p(टी)।

अनुमानित बिंदु स्पेक्ट्रम

अधिक सामान्यतः, परिबद्ध व्युत्क्रम प्रमेय द्वारा, T उलटा नहीं है यदि यह नीचे परिबद्ध नहीं है; यानी, अगर ऐसा कोई c > 0 नहीं है कि ||Tx|| ≥ सी||एक्स|| सभी के लिए xX. तो स्पेक्ट्रम में अनुमानित eigenvalues ​​​​का सेट शामिल है, जो कि λ जैसे हैं T - λI नीचे बाध्य नहीं है; समतुल्य रूप से, यह λ का समुच्चय है जिसके लिए इकाई सदिशों x का क्रम है1, एक्स2, ... जिसके लिए

.

अनुमानित eigenvalues ​​​​के सेट को अनुमानित बिंदु स्पेक्ट्रम के रूप में जाना जाता है, जिसे निरूपित किया जाता है .

यह देखना आसान है कि eigenvalues ​​​​अनुमानित बिंदु स्पेक्ट्रम में हैं।

उदाहरण के लिए, राइट शिफ्ट आर ऑन पर विचार करें द्वारा परिभाषित

कहाँ में मानक ऑर्थोनॉर्मल आधार है . प्रत्यक्ष गणना से पता चलता है कि R का कोई आइगेनमान नहीं है, लेकिन प्रत्येक λ |λ| के साथ है = 1 अनुमानित आइगेनवैल्यू है; एक्स दे रहा हैn वेक्टर हो

कोई देख सकता है कि ||xn|| = 1 सभी n के लिए, लेकिन

चूँकि R एकात्मक संकारक है, इसका स्पेक्ट्रम इकाई वृत्त पर स्थित है। इसलिए, R का अनुमानित बिंदु स्पेक्ट्रम इसका संपूर्ण स्पेक्ट्रम है।

यह निष्कर्ष ऑपरेटरों के अधिक सामान्य वर्ग के लिए भी सही है। एकात्मक संकारक सामान्य संकारक होता है। वर्णक्रमीय प्रमेय द्वारा, हिल्बर्ट स्पेस एच पर बाध्य ऑपरेटर सामान्य है अगर और केवल अगर यह समतुल्य है (एच की पहचान के बाद स्पेस) गुणा ऑपरेटर के लिए। यह दिखाया जा सकता है कि परिबद्ध गुणन संकारक का अनुमानित बिंदु स्पेक्ट्रम उसके स्पेक्ट्रम के बराबर होता है।

सतत स्पेक्ट्रम

जिसके लिए सभी λ का सेट इंजेक्शन है और इसकी सघन सीमा है, लेकिन विशेषण नहीं है, इसे 'टी' का निरंतर स्पेक्ट्रम कहा जाता है, जिसे इसके द्वारा दर्शाया गया है . निरंतर स्पेक्ट्रम इसलिए उन अनुमानित eigenvalues ​​​​से बना होता है जो eigenvalues ​​​​नहीं होते हैं और अवशिष्ट स्पेक्ट्रम में नहीं होते हैं। वह है,

.

उदाहरण के लिए, , , , इंजेक्शन है और इसकी सघन सीमा है, फिर भी . दरअसल, अगर साथ ऐसा है कि , किसी के पास जरूरी नहीं है , और तब .

संपीड़न स्पेक्ट्रम

के समुच्चय जिसके लिए सघन परास नहीं होता है जिसे T के संपीडन स्पेक्ट्रम के रूप में जाना जाता है और इसके द्वारा निरूपित किया जाता है .

अवशिष्ट स्पेक्ट्रम

के समुच्चय जिसके लिए इंजेक्शन है लेकिन इसमें सघन सीमा नहीं है जिसे 'टी' के अवशिष्ट स्पेक्ट्रम के रूप में जाना जाता है और इसे निरूपित किया जाता है :

एक ऑपरेटर इंजेक्शन हो सकता है, यहां तक ​​​​कि नीचे भी घिरा हुआ है, लेकिन अभी भी उलटा नहीं है। दाहिनी ओर शिफ्ट , , , ऐसा ही उदाहरण है। यह शिफ्ट ऑपरेटर आइसोमेट्री है, इसलिए नीचे 1 से घिरा है। लेकिन यह व्युत्क्रमणीय नहीं है क्योंकि यह विशेषण नहीं है (), और इसके अलावा में घना नहीं है ().

परिधीय स्पेक्ट्रम

एक ऑपरेटर के परिधीय स्पेक्ट्रम को उसके स्पेक्ट्रम में बिंदुओं के सेट के रूप में परिभाषित किया जाता है, जिसमें इसके वर्णक्रमीय त्रिज्या के बराबर मापांक होता है।[3]


असतत स्पेक्ट्रम

असतत स्पेक्ट्रम (गणित) को सामान्य eigenvalues ​​​​के सेट के रूप में परिभाषित किया गया है। समतुल्य रूप से, इसे स्पेक्ट्रम के पृथक बिंदुओं के सेट के रूप में चित्रित किया जा सकता है, जैसे कि संबंधित रिज प्रोजेक्टर परिमित रैंक का है।

आवश्यक स्पेक्ट्रम

बंद घनी परिभाषित रैखिक ऑपरेटर के आवश्यक स्पेक्ट्रम की पांच समान परिभाषाएं हैं जो संतुष्ट करता है

ये सभी स्पेक्ट्रा , स्व-आसन्न संकारकों के मामले में संपाती है।

  1. आवश्यक स्पेक्ट्रम बिंदुओं के समूह के रूप में परिभाषित किया गया है स्पेक्ट्रम का ऐसा है फ्रेडहोम संचालिका नहीं है|सेमी-फ्रेडहोम। (ऑपरेटर अर्ध-फ्रेडहोम है यदि इसकी सीमा बंद है और इसका कर्नेल या कोकर्नेल (या दोनों) परिमित-आयामी है।)
    'उदाहरण 1:' ऑपरेटर के लिए , (क्योंकि इस ऑपरेटर की सीमा बंद नहीं है: श्रेणी में सभी शामिल नहीं हैं हालांकि इसका समापन होता है)।
    उदाहरण 2: के लिए , किसी के लिए (क्योंकि इस ऑपरेटर के कर्नेल और कोकर्नेल दोनों अनंत-आयामी हैं)।
  2. आवश्यक स्पेक्ट्रम बिंदुओं के समूह के रूप में परिभाषित किया गया है स्पेक्ट्रम के ऐसे कि ऑपरेटर या तो अनंत-आयामी कर्नेल है या सीमा है जो बंद नहीं है। इसे वेइल की कसौटी के संदर्भ में भी चित्रित किया जा सकता है: अनुक्रम मौजूद है स्पेस एक्स में ऐसा है , और ऐसा है कोई अभिसरण अनुवर्ती नहीं है। इस तरह के अनुक्रम को एकवचन अनुक्रम (या विलक्षण वेइल अनुक्रम) कहा जाता है।
    'उदाहरण:' ऑपरेटर के लिए , यदि j सम है और जब j विषम होता है (कर्नेल अनंत-आयामी होता है; कोकर्नेल शून्य-आयामी होता है)। ध्यान दें कि .
  3. आवश्यक स्पेक्ट्रम बिंदुओं के समूह के रूप में परिभाषित किया गया है स्पेक्ट्रम का ऐसा है फ्रेडहोम ऑपरेटर नहीं है। (संचालक फ्रेडहोम है यदि इसकी सीमा बंद है और इसके कर्नेल और कोकर्नेल दोनों परिमित-आयामी हैं।)
    'उदाहरण:' ऑपरेटर के लिए , (कर्नेल शून्य-आयामी है, कोकर्नेल अनंत-आयामी है)। ध्यान दें कि .
  4. आवश्यक स्पेक्ट्रम बिंदुओं के समूह के रूप में परिभाषित किया गया है स्पेक्ट्रम का ऐसा है इंडेक्स जीरो का फ्रेडहोम ऑपरेटर नहीं है। इसे ए के स्पेक्ट्रम के सबसे बड़े हिस्से के रूप में भी चित्रित किया जा सकता है जो कॉम्पैक्ट ऑपरेटर गड़बड़ी द्वारा संरक्षित है। दूसरे शब्दों में, ; यहाँ एक्स पर सभी कॉम्पैक्ट ऑपरेटरों के सेट को दर्शाता है।
    'उदाहरण:' कहाँ सही शिफ्ट ऑपरेटर है, , के लिए (इसका कर्नेल शून्य है, इसका कोकर्नेल आयामी है)। ध्यान दें कि .
  5. आवश्यक स्पेक्ट्रम का संघ है के सभी घटकों के साथ जो रिज़ॉल्वेंट सेट के साथ प्रतिच्छेद नहीं करता है . इसकी विशेषता भी हो सकती है .
    उदाहरण: ऑपरेटर पर विचार करें , के लिए , . तब से , किसी के पास . किसी के लिए साथ , की सीमा घना है लेकिन बंद नहीं है, इसलिए यूनिट डिस्क की सीमा पहले प्रकार के आवश्यक स्पेक्ट्रम में है: . किसी के लिए साथ , बंद रेंज, आयामी कर्नेल और आयामी कोकर्नेल है, इसलिए यद्यपि के लिए ; इस प्रकार, के लिए . के दो घटक होते हैं : और . घटक विलायक सेट के साथ कोई प्रतिच्छेदन नहीं है; परिभाषा से, .

उदाहरण: हाइड्रोजन परमाणु

हाइड्रोजन परमाणु विभिन्न प्रकार के स्पेक्ट्रा का उदाहरण प्रदान करता है। आणविक हैमिल्टन , , डोमेन के साथ eigenvalues ​​​​का असतत सेट है (असतत स्पेक्ट्रम , जो इस मामले में बिंदु स्पेक्ट्रम के साथ मेल खाता है चूंकि निरंतर स्पेक्ट्रम में कोई ईजेनवेल्यूज सन्निहित नहीं है) जिसकी गणना Rydberg सूत्र द्वारा की जा सकती है। उनके संबंधित eigenfunctions eigenstates, या बाध्य राज्यों कहा जाता है। आयनीकरण प्रक्रिया का परिणाम स्पेक्ट्रम के निरंतर भाग द्वारा वर्णित है (टक्कर/आयनीकरण की ऊर्जा मात्राबद्ध नहीं है), द्वारा दर्शाया गया है (यह आवश्यक स्पेक्ट्रम के साथ भी मेल खाता है, ).[citation needed]

आसन्न ऑपरेटर का स्पेक्ट्रम

बता दें कि X Banach स्पेस है और असीमित ऑपरेटर#घने डोमेन के साथ बंद रैखिक ऑपरेटर . यदि X * X की दोहरी जगह है, और तब T का हर्मिटियन सन्निकट है

Theorem — For a bounded (or, more generally, closed and densely defined) operator T,

.

In particular, .

Proof

Suppose that is not dense in X. By the Hahn–Banach theorem, there exists a non-zero that vanishes on . For all xX,

Therefore, and is an eigenvalue of T*.

Conversely, suppose that is an eigenvalue of T*. Then there exists a non-zero such that , i.e.

If is dense in X, then φ must be the zero functional, a contradiction. The claim is proved.

हमें भी मिलता है निम्नलिखित तर्क द्वारा: X आइसोमेट्रिक रूप से X** में एम्बेड होता है। इसलिए, के कर्नेल में प्रत्येक गैर-शून्य तत्व के लिए X** में गैर-शून्य तत्व मौजूद है जो गायब हो जाता है . इस प्रकार घना नहीं हो सकता।

इसके अलावा, अगर एक्स रिफ्लेक्सिव है, तो हमारे पास है .

ऑपरेटरों के विशेष वर्गों का स्पेक्ट्रा

कॉम्पैक्ट ऑपरेटर

यदि टी कॉम्पैक्ट ऑपरेटर है, या अधिक आम तौर पर, सख्ती से एकवचन ऑपरेटर है, तो यह दिखाया जा सकता है कि स्पेक्ट्रम गणना योग्य है, शून्य ही एकमात्र संभावित संचय बिंदु है, और स्पेक्ट्रम में कोई भी गैर-शून्य λ आइगेनवैल्यू है।

Quasinilpotent संचालक

एक बंधा हुआ ऑपरेटर क्वैसिनिलपोटेंट है अगर जैसा (दूसरे शब्दों में, यदि A का वर्णक्रमीय त्रिज्या शून्य के बराबर है)। ऐसे ऑपरेटरों को समान रूप से स्थिति की विशेषता हो सकती है

ऐसे ऑपरेटर का उदाहरण है , के लिए .

स्व-आसन्न ऑपरेटर

यदि X हिल्बर्ट स्थान है और T स्व-संबद्ध संकारक है (या, अधिक सामान्यतः, सामान्य संकारक), तो वर्णक्रमीय प्रमेय के रूप में जाना जाने वाला उल्लेखनीय परिणाम सामान्य परिमित-आयामी संचालकों के लिए विकर्ण प्रमेय का एनालॉग देता है (हर्मिटियन मैट्रिसेस) , उदाहरण के लिए)।

स्व-आसन्न ऑपरेटरों के लिए, वर्णक्रमीय माप अपघटन (कार्यात्मक विश्लेषण) को पूरी तरह से निरंतर, शुद्ध बिंदु और एकवचन भागों में परिभाषित करने के लिए वर्णक्रमीय उपायों का उपयोग कर सकते हैं।

एक वास्तविक ऑपरेटर का स्पेक्ट्रम

विलायक और स्पेक्ट्रम की परिभाषाओं को किसी भी निरंतर रैखिक ऑपरेटर तक बढ़ाया जा सकता है बनच स्थान पर अभिनय वास्तविक क्षेत्र के ऊपर (जटिल क्षेत्र के बजाय ) इसकी जटिलता के माध्यम से . इस मामले में हम विलायक सेट को परिभाषित करते हैं सभी के सेट के रूप में ऐसा है कि जटिल स्थान पर कार्यरत ऑपरेटर के रूप में उलटा है ; फिर हम परिभाषित करते हैं .

वास्तविक स्पेक्ट्रम

एक सतत रैखिक ऑपरेटर का वास्तविक स्पेक्ट्रम वास्तविक बनच स्थान पर अभिनय करना , निरूपित , सभी के सेट के रूप में परिभाषित किया गया है जिसके लिए परिबद्ध रैखिक संचालकों के वास्तविक बीजगणित में उलटा होने में विफल रहता है . इस मामले में हमारे पास है . ध्यान दें कि वास्तविक स्पेक्ट्रम जटिल स्पेक्ट्रम के साथ मेल खा सकता है या नहीं भी हो सकता है। विशेष रूप से, वास्तविक स्पेक्ट्रम खाली हो सकता है।

एक इकाई बनच बीजगणित का स्पेक्ट्रम

बी को इकाई (रिंग थ्योरी) ई युक्त जटिल बनच बीजगणित होने दें। फिर हम स्पेक्ट्रम σ(x) (या अधिक स्पष्ट रूप से σB(x)) बी के तत्व x का उन जटिल संख्याओं का सेट होना λ जिसके लिए λe − x बी में व्युत्क्रमणीय नहीं है। यह बानाच स्पेस एक्स पर बंधे रैखिक ऑपरेटरों बी (एक्स) के लिए परिभाषा का विस्तार करता है, क्योंकि बी (एक्स) इकाई बनच बीजगणित है।

यह भी देखें

  • आवश्यक स्पेक्ट्रम
  • असतत स्पेक्ट्रम (गणित)
  • स्वयं संलग्न संचालिका
  • स्यूडोस्पेक्ट्रम
  • समाधान सेट

संदर्भ

  1. Kreyszig, Erwin. Introductory Functional Analysis with Applications.
  2. Theorem 3.3.3 of Kadison & Ringrose, 1983, Fundamentals of the Theory of Operator Algebras, Vol. I: Elementary Theory, New York: Academic Press, Inc.
  3. Zaanen, Adriaan C. (2012). रिज़्ज़ स्पेस में ऑपरेटर थ्योरी का परिचय (in English). Springer Science & Business Media. p. 304. ISBN 9783642606373. Retrieved 8 September 2017.