अम्बिलिकल पॉइंट: Difference between revisions
No edit summary |
m (12 revisions imported from alpha:अम्बिलिकल_पॉइंट) |
(No difference)
|
Revision as of 10:30, 3 May 2023
तीन आयामों में सतहों की विभेदक ज्यामिति में, नाभि या नाभि बिंदु सतह पर बिंदु होते हैं जो स्थानीय रूप से गोलाकार होते हैं। ऐसे बिंदुओं पर सभी दिशाओं में सामान्य वक्रताएँ समान होती हैं, इसलिए, दोनों प्रमुख वक्रताएँ समान होती हैं, और प्रत्येक स्पर्शरेखा सदिश एक प्रमुख दिशा होती है। नाभि नाम लैटिन नाभि (नाभि) से आया है।
नाभि बिंदु सामान्यतः सतह के अण्डाकार क्षेत्र में पृथक बिंदुओं के रूप में होते हैं; अर्थात, जहां गाऊसी वक्रता धनात्मक है।
गोला गैर-शून्य वक्रता वाली एकमात्र सतह है जहां हर बिंदु नाभि है। सपाट नाभि शून्य गाऊसी वक्रता वाली नाभि है। मंकी सैडल समतल नाभि वाली सतह का उदाहरण है और समतल (गणित) पर प्रत्येक बिंदु एक सपाट नाभि है। टोरस्र्स में नाभि नहीं हो सकती है, किन्तु यूक्लिडियन अंतरिक्ष में सुचारू रूप से एम्बेडेड गैर-शून्य यूलर विशेषता की प्रत्येक बंद सतह में कम से कम एक नाभि होती है। कॉन्स्टेंटिन कैराथियोडोरी के कैराथियोडोरी अनुमान में कहा गया है कि यूक्लिडियन अंतरिक्ष में हर चिकनी टोपोलॉजिकल क्षेत्र में कम से कम दो नाभि हैं।[1]
नाभि बिंदुओं के तीन मुख्य प्रकार हैं अण्डाकार नाभि, परवलयिक नाभि और अतिपरवलय नाभि होती है। अण्डाकार नाभि में तीन रिज (अंतर ज्यामिति) रेखाएँ होती हैं जो नाभि से होकर गुजरती हैं और अतिपरवलय नाभि में सिर्फ एक होती है। परवलयिक नाभि एक संक्रमणकालीन स्थिति है जिसमें दो रेखाए होती हैं जिनमें से विलक्षण होती है। संक्रमणकालीन स्थितियों के लिए अन्य विन्यास संभव हैं। ये स्थिति रेने थॉम के आपदा सिद्धांत की D4-, D5 और D4+ प्रारंभिक आपदाओं के अनुरूप हैं |
नाभि को नाभि के चारों ओर प्रमुख दिशा सदिश क्षेत्र के स्वरूप द्वारा भी चित्रित किया जा सकता है जो सामान्यतः तीन विन्यासों में से एक का निर्माण करता है: स्टार, लेमन, और लेमनस्टार (या मोनस्टार)। सदिश क्षेत्र के सदिश क्षेत्र का सूचकांक या तो −½ (स्टार) या ½ (लेमन, मोनस्टार) है। अण्डाकार और परवलयिक नाभि में सदैव स्टार स्वरूप होता है, जबकि अतिपरवलय नाभि स्टार, लेमन या मोनस्टार हो सकती है। यह वर्गीकरण पहले डार्बौक्स के कारण था और नाम हन्ने से आए थे। [2]
पृथक नाभि के साथ जीनस (गणित) 0 वाली सतहों के लिए , उदाहरण दीर्घवृत्ताभ, मुख्य दिशा सदिश क्षेत्र का सूचकांक पॉइंकेयर-हॉफ प्रमेय द्वारा 2 होना चाहिए। सामान्य जीनस 0 सतहों में सूची ½ के कम से कम चार नाभि होते हैं। परिक्रमण के एक दीर्घवृत्त में दो गैर-जेनेरिक नाभि होते हैं जिनमें से प्रत्येक का सूचकांक 1 होता है।[3]
- Index.php?title=File:TensorStar.png
स्टार
- Index.php?title=File:TensorMonstar.png
मोनस्टार
- Index.php?title=File:TensorLemon.png
लेमन
नाभि का वर्गीकरण
घन रूप
नाभि का वर्गीकरण वास्तविक घन रूपों के वर्गीकरण से निकटता से जुड़ा हुआ है . घन फॉर्म में कई मूल रेखाएँ होंगी जैसे कि सभी वास्तविक के लिए घन रूप शून्य है . इसमें कई संभावनाएं हैं जिनमें निम्न सम्मिलित हैं:
- तीन विशिष्ट रेखाएँ: अण्डाकार घन रूप, मानक मॉडल .
- तीन रेखाएँ, जिनमें से दो संपाती हैं: परवलयिक घन रूप, मानक मॉडल .
- एक वास्तविक रेखा: अतिपरवलय घन रूप, मानक मॉडल .
- तीन संपाती रेखाएँ, मानक मॉडल .[4]
एकसमान स्केलिंग के अनुसार ऐसे घनों की तुल्यता कक्षाएं त्रि-आयामी वास्तविक प्रक्षेप्य स्थान बनाती हैं और परवलयिक रूपों का सबसमुच्चय एक सतह को परिभाषित करता है - जिसे क्रिस्टोफर ज़िमन द्वारा नाभि कंगन कहा जाता है। [4] समन्वय प्रणाली के घुमाव के अनुसार समतुल्य वर्ग लेना एक और मापदण्ड को हटा देता है और एक घन रूपों को जटिल घन रूप से प्रदर्शित किया जा सकता है जटिल मापदण्ड के साथ . परवलयिक रूप तब होते हैं जब , आंतरिक त्रिभुजाकार, अण्डाकार रूप त्रिभुजाकार के अंदर और अतिपरवलय एक बाहर हैं। यदि और एकता का घनमूल नहीं है तो घन रूप एक समकोण घन रूप है जो नाभि के लिए एक विशेष भूमिका निभाता है। यदि दो रूट रेखा ऑर्थोगोनल हैं। [5]
एक दूसरा घन रूप, जैकोबियन सदिश मूल फलन के जैकोबियन निर्धारक को लेकर बनता है , . स्थिर गुणक तक यह घन रूप है . जटिल संख्याओं का उपयोग करते हुए जब , वर्गीकरण आरेख में बाहरी त्रिभुजाकार जैकोबियन परवलयिक घन रूप है । [5]
नाभि वर्गीकरण
उत्पत्ति पर एक पृथक नाभि बिंदु वाली कोई भी सतह को मोंज रूप मापदण्ड के रूप में व्यक्त किया जा सकता है , जहाँ अद्वितीय प्रमुख वक्रता है। नाभि के प्रकार को घन भाग से घन रूप और संबंधित जैकोबियन घन फॉर्म द्वारा वर्गीकृत किया जाता है। जबकि मुख्य दिशाओं को नाभि पर विशिष्ट रूप से परिभाषित नहीं किया जाता है, जब सतह पर रिज का अनुसरण करते हुए प्रमुख दिशाओं की सीमाएं पाई जा सकती हैं और ये घन रूप की जड़-रेखाओं के अनुरूप होती हैं। वक्रता रेखाओं का स्वरूप जैकोबियन द्वारा निर्धारित किया जाता है। [5]
नाभि बिंदुओं का वर्गीकरण इस प्रकार है: [5]
- आंतरिक त्रिभुजाकार - अण्डाकार नाभि
- आंतरिक वृत्त पर - दो रिज रेखाएँ स्पर्शरेखा
- आंतरिक तिकोने भाग पर - परवलयिक नाभि
- आंतरिक तिकोने भाग के बाहर - अतिपरवलयिक नाभि
- बाहरी सर्कल के अंदर - स्टार स्वरूप
- बाहरी घेरे पर - नाभि का जन्म
- बाहरी सर्कल और बाहरी डेल्टॉइड के बीच - मोनस्टार स्वरूप
- बाहरी डेल्टॉइड - लेमन स्वरूप
- आंतरिक त्रिभुजाकार पुच्छल (विलक्षणता) - घन (प्रतीकात्मक) नाभि
- विकर्णों और क्षैतिज रेखा पर - दर्पण समरूपता के साथ सममित नाभि
सतहों के एक सामान्य परिवार में नाभि को जोड़े में बनाया या नष्ट किया जा सकता है: नाभि संक्रमण का जन्म दोनों नाभि अतिपरवलय होंगी, एक स्टार स्वरूप के साथ और एक मोनस्टार स्वरूप के साथ आरेख में बाहरी वृत्त, एक समकोण घन रूप, इन संक्रमणकालीन स्थितियों को देता है। प्रतीकात्मक नाभि इसका विशेष स्थिति है। [5]
फोकल सतह
अण्डाकार नाभि और अतिपरवलय नाभि में अलग-अलग फोकल सतह होती हैं। सतह पर रिज एक पुच्छल किनारों से मेल खाती है, इसलिए अण्डाकार फोकल सतह की प्रत्येक शीट में तीन पुच्छल किनारे होंगे जो नाभि पर एक साथ आते हैं और फिर दूसरी शीट पर स्विच करते हैं। अतिपरवलय नाभि के लिए एकल पुच्छल किनारा होता है जो एक शीट से दूसरी शीट पर स्विच करता है।[5]
रिमेंनियन मेनिफोल्ड में उच्च आयाम में परिभाषा
रीमैनियन सबमेनिफोल्ड में एक बिंदु p नाभि है यदि, p पर, (सदिश-मूलवान) दूसरा मौलिक रूप कुछ सामान्य सदिश टेन्सर प्रेरित मीट्रिक (पहला मौलिक रूप) है। सामान्यतः, सभी सदिशों के लिए U, V at p, II(U, V) = gp(यू, वी) , जहाँ पी पर औसत वक्रता सदिश है।
सबमेनिफोल्ड को नाभि (या ऑल-नाम्बिलिक) कहा जाता है यदि यह स्थिति प्रत्येक बिंदु p पर होती है। यह कहने के बराबर है कि आसपास के (परिवेश) मैनिफोल्ड के मीट्रिक के उपयुक्त अनुरूप परिवर्तन द्वारा सबमनीफोल्ड को पूरी तरह से जियोडेसिक बनाया जा सकता है। उदाहरण के लिए, यूक्लिडियन अंतरिक्ष में सतह नाभि है यदि और केवल यदि यह एक गोले का टुकड़ा है।
यह भी देखें
- विक्ट: नाभि - एक संरचनात्मक शब्द जिसका अर्थ है, या नाभि से संबंधित
संदर्भ
- ↑ Berger, Marcel (2010), "The Caradéodory conjecture", Geometry revealed, Springer, Heidelberg, pp. 389–390, doi:10.1007/978-3-540-70997-8, ISBN 978-3-540-70996-1, MR 2724440.
- ↑ Berry, M V; Hannay, J H (1977). "गाऊसी यादृच्छिक सतहों पर नाभि बिंदु". J. Phys. A. 10: 1809–21.
- ↑ Porteous, p 208
- ↑ 4.0 4.1 Poston, Tim; Stewart, Ian (1978), Catastrophe Theory and its Applications, Pitman, ISBN 0-273-01029-8
- ↑ 5.0 5.1 5.2 5.3 5.4 5.5 Porteous, Ian R. (2001), Geometric Differentiation, Cambridge University Press, pp. 198–213, ISBN 0-521-00264-8
- Darboux, Gaston (1896) [1887], Leçons sur la théorie génerale des surfaces: Volume I, Volume II, Volume III, Volume IV, Gauthier-Villars
{{citation}}
: External link in
(help)|title=
- Pictures of star, lemon, monstar, and further references