एन-वेक्टर मॉडल: Difference between revisions
No edit summary |
m (added Category:Vigyan Ready using HotCat) |
||
Line 36: | Line 36: | ||
[[Category: Machine Translated Page]] | [[Category: Machine Translated Page]] | ||
[[Category:Created On 17/04/2023]] | [[Category:Created On 17/04/2023]] | ||
[[Category:Vigyan Ready]] |
Revision as of 14:51, 2 May 2023
सांख्यिकीय यांत्रिकी में, एन-सदिश प्रतिरूप या O(n) प्रतिरूप एक पारदर्शी जालक पर स्पाइन (भौतिकी) को परस्पर क्रिया करने की एक सरल प्रणाली है। इसे एच. यूजीन स्टेनली द्वारा आइसिंग प्रतिरूप, एक्सवाई प्रतिरूप और शास्त्रीय हाइजेनबर्ग प्रतिरूप के सामान्यीकरण के रूप में विकसित किया गया था।[1] n-सदिश प्रतिरूप में, n-घटक इकाई-लंबाई शास्त्रीय स्पाइन (भौतिकी) एक d-आयामी जाली के शीर्ष पर रखा गया है। n-सदिश प्रतिरूप का हैमिल्टनियन यांत्रिकी द्वारा दिया गया है:
जहां योग प्रतिवैस स्पाइन के सभी जोड़े पर चलता है और मानक यूक्लिडियन आंतरिक उत्पाद को दर्शाता है। n-सदिश प्रतिरूप के विशेष स्तिथियाँ हैं:
- : आत्म परिहार चलना [2][3]
- : आइसिंग निदर्श
- : एक्सवाई प्रतिरूप
- : प्राचीन हाइजेनबर्ग प्रतिरूप
- : मानक प्रतिरूप के हिग्स क्षेत्र के लिए खिलौना प्रतिरूप
n-सदिश प्रतिरूप का वर्णन करने और हल करने के लिए उपयोग की जाने वाली सामान्य गणितीय औपचारिकता और पॉट्स प्रतिरूप पर लेख में कुछ सामान्यीकरण विकसित किए गए हैं।
सातत्य सीमा
सातत्य सीमा को सिग्मा प्रतिरूप समझा जा सकता है। इसे उत्पाद के संदर्भ में हैमिल्टनियन लिखकर आसानी से प्राप्त किया जा सकता है
जहाँ थोक चुम्बकन अवधि है। इस शब्द को ऊर्जा में जोड़े गए एक समग्र स्थिर कारक के रूप में छोड़ते हुए, न्यूटन के परिमित अंतर को परिभाषित करके सीमा प्राप्त की जाती है
प्रतिवैस जाली स्थानों पर प्राप्त की जाती है। तब सीमा में, जहां दिशा में अनुप्रवण है। इस प्रकार, सीमा में,
जिसे क्षेत्र सिग्मा प्रतिरूप में की गतिज ऊर्जा के रूप में पहचाना जा सकता है। स्पाइन के लिए अभी भी दो संभावनाएं हैं: इसे या तो घुमावों के असतत सम्मुच्चय (पॉट्स प्रतिरूप) से लिया जाता है या इसे गोले पर एक बिंदु के रूप में लिया जाता है ; वह इकाई लंबाई का एक सतत-मूल्यवान सदिश है। बाद के स्तिथियाँ में, इसे के रूप में जाना जाता है। गैर रेखीय सिग्मा प्रतिरूप, क्रमावर्तन समूह के रूप में के सममितीय का समूह है, और स्पष्ट रुप से, समतल नहीं है, यानी एक क्षेत्र (भौतिकी) नहीं है।
संदर्भ
- ↑ Stanley, H. E. (1968). "स्पिन के आयाम पर महत्वपूर्ण गुणों की निर्भरता". Phys. Rev. Lett. 20 (12): 589–592. Bibcode:1968PhRvL..20..589S. doi:10.1103/PhysRevLett.20.589.
- ↑ de Gennes, P. G. (1972). "विल्सन विधि द्वारा निकाली गई अपवर्जित आयतन समस्या के प्रतिपादक". Phys. Lett. A. 38 (5): 339–340. Bibcode:1972PhLA...38..339D. doi:10.1016/0375-9601(72)90149-1.
- ↑ Gaspari, George; Rudnick, Joseph (1986). "n-vector model in the limit n→0 and the statistics of linear polymer systems: A Ginzburg–Landau theory". Phys. Rev. B. 33 (5): 3295–3305. Bibcode:1986PhRvB..33.3295G. doi:10.1103/PhysRevB.33.3295. PMID 9938709.