जैविक ऊष्मप्रवैगिकी: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 6: Line 6:
विकार से जैविक जीव कैसे विकसित हो सकते हैं, ज्ञात करने के लिए [[गैर-संतुलन ऊष्मप्रवैगिकी]] प्रारम्भ की गई है।<ref>{{Cite book|url=|title= Thermodynamics of Complex Systems: Principles and applications. |last= Pokrovskii |first=Vladimir|language=English | publisher= IOP Publishing, Bristol, UK.|year=2020|isbn=|pages=}}</ref><ref>{{Cite journal|last2=Pokrovskii|first2=Vladimir |last1= Zotin |first1=Alexei|year=2018|title= थर्मोडायनामिक दृष्टिकोण से जीवित जीवों की वृद्धि और विकास|url= |journal= Physica A: Statistical Mechanics and its Applications | volume=512|issue=|pages=359–366|bibcode=|doi= }}</ref> [[इल्या प्रिझोगिन]] ने ऐसी प्रणालियों के थर्मोडायनामिक उपचार के लिए प्रविधियां विकसित की गयी है। उन्होंने इन प्रणालियों को विघटनकारी प्रणालियां कहा, क्योंकि वे विघटनकारी प्रक्रियाओं द्वारा बनाई एवं बनाए रखी जाती हैं जो प्रणाली एवं उसके पर्यावरण के मध्य ऊर्जा का आदान-प्रदान करती हैं, एवं क्योंकि वे विलुप्त हो जाते हैं। यदि विनिमय बंद हो जाता है। यह कहा जा सकता है कि वे स्वयं पर्यावरण के साथ सहजीवन में रहते हैं। जीव विज्ञान में ऊर्जा परिवर्तन मुख्यतः [[प्रकाश संश्लेषण]] पर निर्भर हैं। सौर विकिरण से हरे पौधों में प्रकाश संश्लेषण द्वारा ग्रहण की गई कुल ऊर्जा लगभग 2 x 10<sup>23</sup> प्रति वर्ष ऊर्जा के जूल है।<ref>{{cite book|title=महासागर और भूमि पर वैश्विक पर्यावरण परिवर्तन|editor=M. Shiyomi|display-editors=etal|pages=343–358|chapter=Global Mapping of Terrestrial Primary Productivity and Light-Use Efficiency with a Process-Based Model|url=http://www.terrapub.co.jp/e-library/kawahata/pdf/343.pdf|author=Akihiko Ito|author2=Takehisa Oikawa|name-list-style=amp}}</ref> हरे पौधों में प्रकाश संश्लेषण द्वारा ग्रहण की गई वार्षिक ऊर्जा पृथ्वी तक पहुँचने वाली सूर्य की कुल ऊर्जा का लगभग 4% है। [[ हाइपोथर्मल वेंट | जल उष्मा]] के निकट के जैविक समुदायों में ऊर्जा परिवर्तन अपवाद हैं; वे प्रकाश संश्लेषण के अतिरिक्त रसायन संश्लेषण के माध्यम से स्वयं ऊर्जा प्राप्त करते हुए, [[ गंधक ]] को ऑक्सीकरण करते हैं।
विकार से जैविक जीव कैसे विकसित हो सकते हैं, ज्ञात करने के लिए [[गैर-संतुलन ऊष्मप्रवैगिकी]] प्रारम्भ की गई है।<ref>{{Cite book|url=|title= Thermodynamics of Complex Systems: Principles and applications. |last= Pokrovskii |first=Vladimir|language=English | publisher= IOP Publishing, Bristol, UK.|year=2020|isbn=|pages=}}</ref><ref>{{Cite journal|last2=Pokrovskii|first2=Vladimir |last1= Zotin |first1=Alexei|year=2018|title= थर्मोडायनामिक दृष्टिकोण से जीवित जीवों की वृद्धि और विकास|url= |journal= Physica A: Statistical Mechanics and its Applications | volume=512|issue=|pages=359–366|bibcode=|doi= }}</ref> [[इल्या प्रिझोगिन]] ने ऐसी प्रणालियों के थर्मोडायनामिक उपचार के लिए प्रविधियां विकसित की गयी है। उन्होंने इन प्रणालियों को विघटनकारी प्रणालियां कहा, क्योंकि वे विघटनकारी प्रक्रियाओं द्वारा बनाई एवं बनाए रखी जाती हैं जो प्रणाली एवं उसके पर्यावरण के मध्य ऊर्जा का आदान-प्रदान करती हैं, एवं क्योंकि वे विलुप्त हो जाते हैं। यदि विनिमय बंद हो जाता है। यह कहा जा सकता है कि वे स्वयं पर्यावरण के साथ सहजीवन में रहते हैं। जीव विज्ञान में ऊर्जा परिवर्तन मुख्यतः [[प्रकाश संश्लेषण]] पर निर्भर हैं। सौर विकिरण से हरे पौधों में प्रकाश संश्लेषण द्वारा ग्रहण की गई कुल ऊर्जा लगभग 2 x 10<sup>23</sup> प्रति वर्ष ऊर्जा के जूल है।<ref>{{cite book|title=महासागर और भूमि पर वैश्विक पर्यावरण परिवर्तन|editor=M. Shiyomi|display-editors=etal|pages=343–358|chapter=Global Mapping of Terrestrial Primary Productivity and Light-Use Efficiency with a Process-Based Model|url=http://www.terrapub.co.jp/e-library/kawahata/pdf/343.pdf|author=Akihiko Ito|author2=Takehisa Oikawa|name-list-style=amp}}</ref> हरे पौधों में प्रकाश संश्लेषण द्वारा ग्रहण की गई वार्षिक ऊर्जा पृथ्वी तक पहुँचने वाली सूर्य की कुल ऊर्जा का लगभग 4% है। [[ हाइपोथर्मल वेंट | जल उष्मा]] के निकट के जैविक समुदायों में ऊर्जा परिवर्तन अपवाद हैं; वे प्रकाश संश्लेषण के अतिरिक्त रसायन संश्लेषण के माध्यम से स्वयं ऊर्जा प्राप्त करते हुए, [[ गंधक ]] को ऑक्सीकरण करते हैं।


== जीव विज्ञान में ऊष्मप्रवैगिकी का ध्यान ==
== जीव विज्ञान में ऊष्मप्रवैगिकी का केंद्र ==


जैविक ऊष्मप्रवैगिकी का क्षेत्र जीव विज्ञान एवं जैव रसायन में [[रासायनिक ऊष्मप्रवैगिकी]] के सिद्धांतों पर केंद्रित है। कवर किए गए सिद्धांतों में [[ऊष्मप्रवैगिकी का पहला नियम|ऊष्मप्रवैगिकी का प्रथम नियम]], [[ऊष्मप्रवैगिकी का दूसरा नियम]], गिब्स मुक्त ऊर्जा, [[सांख्यिकीय ऊष्मप्रवैगिकी]], [[प्रतिक्रिया कैनेटीक्स|प्रतिक्रिया बलगति विज्ञान]] एवं जीवन की उत्पत्ति की परिकल्पना सम्मिलित हैं। वर्तमान में, जैविक ऊष्मप्रवैगिकी स्वयं को आंतरिक जैव रासायनिक गतिकी के अध्ययन से संबंधित करती है। एटीपी हाइड्रोलिसिस, प्रोटीन स्थिरता, डीएनए बंधन, झिल्ली प्रसार, एंजाइम कैनेटीक्स,<ref>{{cite book|url=http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookEnzym.html|chapter=Reactions and Enzymes|author=M.J. Farabee|title=ऑन लाइन बायोलॉजी बुक|publisher=Estrella Mountain Community College|access-date=2006-09-26|archive-url=https://web.archive.org/web/20121228002422/http://www.emc.maricopa.edu/faculty/farabee/biobk/biobookenzym.html|archive-date=2012-12-28|url-status=dead}}</ref> एवं ऐसे अन्य आवश्यक ऊर्जा नियंत्रित पथ ऊष्मप्रवैगिकी के संदर्भ में, रासायनिक प्रतिक्रिया के समय कार्य करने में सक्षम ऊर्जा की मात्रा को गिब्स मुक्त ऊर्जा में परिवर्तन द्वारा मात्रात्मक रूप से मापा जाता है। भौतिक जीव विज्ञानी [[अल्फ्रेड लोटका]] ने विकासवादी सिद्धांत के साथ गिब्स मुक्त ऊर्जा में परिवर्तन को एकीकृत करने का प्रयास किया।
जैविक ऊष्मप्रवैगिकी का क्षेत्र जीव विज्ञान एवं जैव रसायन में [[रासायनिक ऊष्मप्रवैगिकी]] के सिद्धांतों पर केंद्रित है। कवर किए गए सिद्धांतों में [[ऊष्मप्रवैगिकी का पहला नियम|ऊष्मप्रवैगिकी का प्रथम नियम]], [[ऊष्मप्रवैगिकी का दूसरा नियम]], गिब्स मुक्त ऊर्जा, [[सांख्यिकीय ऊष्मप्रवैगिकी]], [[प्रतिक्रिया कैनेटीक्स|प्रतिक्रिया बलगति विज्ञान]] एवं जीवन की उत्पत्ति की परिकल्पना सम्मिलित हैं। वर्तमान में, जैविक ऊष्मप्रवैगिकी स्वयं को आंतरिक जैव रासायनिक गतिकी के अध्ययन से संबंधित करती है। एटीपी हाइड्रोलिसिस, प्रोटीन स्थिरता, डीएनए बंधन, झिल्ली प्रसार, एंजाइम कैनेटीक्स,<ref>{{cite book|url=http://www.emc.maricopa.edu/faculty/farabee/BIOBK/BioBookEnzym.html|chapter=Reactions and Enzymes|author=M.J. Farabee|title=ऑन लाइन बायोलॉजी बुक|publisher=Estrella Mountain Community College|access-date=2006-09-26|archive-url=https://web.archive.org/web/20121228002422/http://www.emc.maricopa.edu/faculty/farabee/biobk/biobookenzym.html|archive-date=2012-12-28|url-status=dead}}</ref> एवं ऐसे अन्य आवश्यक ऊर्जा नियंत्रित पथ ऊष्मप्रवैगिकी के संदर्भ में, रासायनिक प्रतिक्रिया के समय कार्य करने में सक्षम ऊर्जा की मात्रा को गिब्स मुक्त ऊर्जा में परिवर्तन द्वारा मात्रात्मक रूप से मापा जाता है। भौतिक जीव विज्ञानी [[अल्फ्रेड लोटका]] ने विकासवादी सिद्धांत के साथ गिब्स मुक्त ऊर्जा में परिवर्तन को एकीकृत करने का प्रयास किया।
Line 12: Line 12:
=== जैविक प्रणालियों में ऊर्जा परिवर्तन ===
=== जैविक प्रणालियों में ऊर्जा परिवर्तन ===


सूर्य जीवित जीवों के लिए ऊर्जा का प्राथमिक स्रोत है। पौधों जैसे कुछ सजीवों को सीधे सूर्य के प्रकाश की आवश्यकता होती है जबकि मनुष्य जैसे अन्य जीव सूर्य से अप्रत्यक्ष रूप से ऊर्जा प्राप्त कर सकते हैं।<ref>{{cite book|last=Haynie|first=Donald T.|title=जैविक ऊष्मप्रवैगिकी|url=https://archive.org/details/biologicalthermo00dtha|url-access=limited|date=2001|publisher=Cambridge University Press|pages=[https://archive.org/details/biologicalthermo00dtha/page/n18 1]–16}}</ref> हालाँकि इस बात के सबूत हैं कि कुछ बैक्टीरिया अंटार्कटिका जैसे कठोर वातावरण में झीलों में बर्फ की मोटी परतों के नीचे नीले-हरे शैवाल के प्रमाण के रूप में पनप सकते हैं। कोई फर्क नहीं पड़ता कि जीवित प्रजातियों का प्रकार क्या है, सभी जीवित जीवों को जीवित रहने के लिए ऊर्जा को पकड़ना, ट्रांसड्यूस करना, स्टोर करना एवं उपयोग करना चाहिए।
सूर्य जीवित जीवों के लिए ऊर्जा का प्राथमिक स्रोत है। पौधों जैसे कुछ सजीवों को सीधे सूर्य के प्रकाश की आवश्यकता होती है, जबकि मनुष्य जैसे अन्य जीव सूर्य से अप्रत्यक्ष रूप से ऊर्जा प्राप्त कर सकते हैं।<ref>{{cite book|last=Haynie|first=Donald T.|title=जैविक ऊष्मप्रवैगिकी|url=https://archive.org/details/biologicalthermo00dtha|url-access=limited|date=2001|publisher=Cambridge University Press|pages=[https://archive.org/details/biologicalthermo00dtha/page/n18 1]–16}}</ref> चूंकि इस कथन के प्रमाण हैं, कि कुछ बैक्टीरिया अंटार्कटिका जैसे कठोर वातावरण में झीलों में बर्फ की मोटी परतों के नीचे नीले-हरे शैवाल के प्रमाण के रूप में पनप सकते हैं। कोई प्रभावनहीं पड़ता कि जीवित प्रजातियों का प्रकार क्या है, सभी जीवित जीवों को जीवित रहने के लिए ऊर्जा को पकड़ना, ट्रांसड्यूस करना, एकत्र करना एवं उपयोग करना चाहिए।


आने वाली धूप की ऊर्जा एवं उसकी तरंग दैर्ध्य के मध्य संबंध {{math|λ}} या आवृत्ति {{math|ν}} द्वारा दिया गया है
आने वाली धूप की ऊर्जा एवं उसकी तरंग दैर्ध्य के मध्य संबंध {{math|λ}} या आवृत्ति {{math|ν}} द्वारा दिया गया है
Line 28: Line 28:


=== ऊष्मप्रवैगिकी का प्रथम नियम ===
=== ऊष्मप्रवैगिकी का प्रथम नियम ===
ऊष्मप्रवैगिकी का प्रथम नियम ऊर्जा के संरक्षण का एक बयान है; हालांकि इसे एक रूप से दूसरे रूप में बदला जा सकता है, ऊर्जा को न तो बनाया जा सकता है एवं न ही नष्ट किया जा सकता है।<ref>{{cite book|author=Haynie, Donald T.|title=जैविक ऊष्मप्रवैगिकी|publisher=Cambridge UP|year= 2001|isbn=9780521795494}}</ref> प्रथम नियम से हेस का नियम नामक सिद्धांत उत्पन्न होता है। हेस का नियम कहता है कि दी गई प्रतिक्रिया में अवशोषित या विकसित होने वाली ऊष्मा हमेशा स्थिर होनी चाहिए एवं प्रतिक्रिया के प्रविधियां से स्वतंत्र होनी चाहिए। हालांकि कुछ मध्यवर्ती प्रतिक्रियाएं एंडोथर्मिक हो सकती हैं एवं अन्य एक्सोथर्मिक हो सकती हैं, अगर प्रक्रिया सीधे हुई होती तो कुल हीट एक्सचेंज हीट एक्सचेंज के बराबर होता है। यह सिद्धांत [[कैलोरीमीटर]] का आधार है, एक उपकरण जिसका उपयोग रासायनिक प्रतिक्रिया में गर्मी की मात्रा निर्धारित करने के लिए किया जाता है। चूंकि सभी आने वाली ऊर्जा भोजन के रूप में शरीर में प्रवेश करती है एवं अंततः ऑक्सीकृत होती है, कैलोरीमीटर में भोजन के ऑक्सीकरण द्वारा उत्पादित गर्मी को मापकर कुल ताप उत्पादन का अनुमान लगाया जा सकता है। यह ऊष्मा [[किलोकैलोरी]] में व्यक्त की जाती है, जो पोषण लेबल पर पाई जाने वाली खाद्य ऊर्जा की सामान्य इकाई है।<ref>Stacy, Ralph W., David T. Williams, Ralph E. Worden, and Rex O. McMorris. Essentials of Biological and Medical Physics. New York: McGraw-Hill Book, 1955. Print.</ref>
ऊष्मप्रवैगिकी का प्रथम नियम ऊर्जा के संरक्षण का एक बयान है; चूंकि इसे एक रूप से दूसरे रूप में बदला जा सकता है, ऊर्जा को न तो बनाया जा सकता है एवं न ही नष्ट किया जा सकता है।<ref>{{cite book|author=Haynie, Donald T.|title=जैविक ऊष्मप्रवैगिकी|publisher=Cambridge UP|year= 2001|isbn=9780521795494}}</ref> प्रथम नियम से हेस का नियम नामक सिद्धांत उत्पन्न होता है। हेस का नियम कहता है कि दी गई प्रतिक्रिया में अवशोषित या विकसित होने वाली ऊष्मा हमेशा स्थिर होनी चाहिए एवं प्रतिक्रिया के प्रविधियां से स्वतंत्र होनी चाहिए। चूंकि कुछ मध्यवर्ती प्रतिक्रियाएं एंडोथर्मिक हो सकती हैं एवं अन्य एक्सोथर्मिक हो सकती हैं, अगर प्रक्रिया सीधे हुई होती तो कुल हीट एक्सचेंज हीट एक्सचेंज के बराबर होता है। यह सिद्धांत [[कैलोरीमीटर]] का आधार है, एक उपकरण जिसका उपयोग रासायनिक प्रतिक्रिया में गर्मी की मात्रा निर्धारित करने के लिए किया जाता है। चूंकि सभी आने वाली ऊर्जा भोजन के रूप में शरीर में प्रवेश करती है एवं अंततः ऑक्सीकृत होती है, कैलोरीमीटर में भोजन के ऑक्सीकरण द्वारा उत्पादित गर्मी को मापकर कुल ताप उत्पादन का अनुमान लगाया जा सकता है। यह ऊष्मा [[किलोकैलोरी]] में व्यक्त की जाती है, जो पोषण लेबल पर पाई जाने वाली खाद्य ऊर्जा की सामान्य इकाई है।<ref>Stacy, Ralph W., David T. Williams, Ralph E. Worden, and Rex O. McMorris. Essentials of Biological and Medical Physics. New York: McGraw-Hill Book, 1955. Print.</ref>




=== ऊष्मप्रवैगिकी का दूसरा नियम ===
=== ऊष्मप्रवैगिकी का दूसरा नियम ===
ऊष्मप्रवैगिकी का दूसरा नियम मुख्य रूप से इस बात से संबंधित है कि दी गई प्रक्रिया संभव है या नहीं। दूसरा कानून कहता है कि कोई भी प्राकृतिक प्रक्रिया तब तक नहीं हो सकती जब तक कि ब्रह्मांड की एन्ट्रॉपी में वृद्धि न हो।<ref>Haynie, Donald T. Biological Thermodynamics. Cambridge: Cambridge UP, 2001. Print.</ref> अलग प्रविधियां से कहा गया है, एक पृथक प्रणाली हमेशा अव्यवस्था की ओर प्रवृत्त होगी। जीवित जीवों को अक्सर गलती से दूसरे कानून की अवहेलना माना जाता है क्योंकि वे स्वयं संगठन के स्तर को बढ़ाने में सक्षम होते हैं। इस गलत व्याख्या को ठीक करने के लिए, किसी को केवल [[ थर्मोडायनामिक प्रणाली ]] एवं [[सीमा (थर्मोडायनामिक)]] की परिभाषा का उल्लेख करना चाहिए। एक जीवित जीव एक खुली व्यवस्था है, जो स्वयं पर्यावरण के साथ पदार्थ एवं ऊर्जा दोनों का आदान-प्रदान करने में सक्षम है। उदाहरण के लिए, एक मनुष्य भोजन लेता है, इसे उसके घटकों में तोड़ता है, एवं फिर उनका उपयोग कोशिकाओं, ऊतकों, स्नायुबंधन आदि के निर्माण के लिए करता है। यह प्रक्रिया शरीर में क्रम को बढ़ाती है, एवं इस प्रकार एन्ट्रॉपी कम करती है। हालाँकि, मनुष्य भी 1) कपड़ों एवं अन्य वस्तुओं के संपर्क में गर्मी का संचालन करते हैं, 2) शरीर के तापमान एवं पर्यावरण में अंतर के कारण संवहन उत्पन्न करते हैं, 3) अंतरिक्ष में गर्मी विकीर्ण करते हैं, 4) ऊर्जा युक्त पदार्थों का उपभोग करते हैं (अर्थात, भोजन), एवं 5) अपशिष्ट (जैसे, कार्बन डाइऑक्साइड, पानी, एवं सांस, मूत्र, मल, पसीना, आदि के अन्य घटकों) को खत्म करें। जब इन सभी प्रक्रियाओं को ध्यान में रखा जाता है, तो बड़ी प्रणाली (यानी, मानव एवं उसका/उसका पर्यावरण) की कुल एन्ट्रॉपी बढ़ जाती है। जब मानव जीवित रहना बंद कर देता है, तो इनमें से कोई भी प्रक्रिया (1-5) नहीं होती है, एवं प्रक्रियाओं में कोई रुकावट (विशेषकर 4 या 5) जल्दी से रुग्णता एवं/या मृत्यु दर का कारण बनेगी।
ऊष्मप्रवैगिकी का दूसरा नियम मुख्य रूप से इस बात से संबंधित है कि दी गई प्रक्रिया संभव है या नहीं। दूसरा कानून कहता है कि कोई भी प्राकृतिक प्रक्रिया तब तक नहीं हो सकती जब तक कि ब्रह्मांड की एन्ट्रॉपी में वृद्धि न हो।<ref>Haynie, Donald T. Biological Thermodynamics. Cambridge: Cambridge UP, 2001. Print.</ref> अलग प्रविधियां से कहा गया है, एक पृथक प्रणाली हमेशा अव्यवस्था की ओर प्रवृत्त होगी। जीवित जीवों को अक्सर गलती से दूसरे कानून की अवहेलना माना जाता है क्योंकि वे स्वयं संगठन के स्तर को बढ़ाने में सक्षम होते हैं। इस गलत व्याख्या को ठीक करने के लिए, किसी को केवल [[ थर्मोडायनामिक प्रणाली ]] एवं [[सीमा (थर्मोडायनामिक)]] की परिभाषा का उल्लेख करना चाहिए। एक जीवित जीव एक खुली व्यवस्था है, जो स्वयं पर्यावरण के साथ पदार्थ एवं ऊर्जा दोनों का आदान-प्रदान करने में सक्षम है। उदाहरण के लिए, एक मनुष्य भोजन लेता है, इसे उसके घटकों में तोड़ता है, एवं फिर उनका उपयोग कोशिकाओं, ऊतकों, स्नायुबंधन आदि के निर्माण के लिए करता है। यह प्रक्रिया शरीर में क्रम को बढ़ाती है, एवं इस प्रकार एन्ट्रॉपी कम करती है। चूंकि, मनुष्य भी 1) कपड़ों एवं अन्य वस्तुओं के संपर्क में गर्मी का संचालन करते हैं, 2) शरीर के तापमान एवं पर्यावरण में अंतर के कारण संवहन उत्पन्न करते हैं, 3) अंतरिक्ष में गर्मी विकीर्ण करते हैं, 4) ऊर्जा युक्त पदार्थों का उपभोग करते हैं (अर्थात, भोजन), एवं 5) अपशिष्ट (जैसे, कार्बन डाइऑक्साइड, पानी, एवं सांस, मूत्र, मल, पसीना, आदि के अन्य घटकों) को खत्म करें। जब इन सभी प्रक्रियाओं को ध्यान में रखा जाता है, तो बड़ी प्रणाली (यानी, मानव एवं उसका/उसका पर्यावरण) की कुल एन्ट्रॉपी बढ़ जाती है। जब मानव जीवित रहना बंद कर देता है, तो इनमें से कोई भी प्रक्रिया (1-5) नहीं होती है, एवं प्रक्रियाओं में कोई रुकावट (विशेषकर 4 या 5) जल्दी से रुग्णता एवं/या मृत्यु दर का कारण बनेगी।


=== गिब्स मुक्त ऊर्जा ===
=== गिब्स मुक्त ऊर्जा ===

Revision as of 12:13, 14 April 2023

जैविक ऊष्मप्रवैगिकी ऊर्जा पारगमन (बायोफिजिक्स) का मात्रात्मक अध्ययन है जो जीवित जीवों, संरचनाओं, एवं कोशिका (जीव विज्ञान) में या उनके मध्य होता है एवं इन पारगमनों में अंतर्निहित जैव रसायन प्रक्रियाओं की प्रकृति एवं कार्य करता है। जैविक ऊष्मप्रवैगिकी इस समस्या का समाधान कर सकती है, कि क्या किसी विशेष प्ररूपी विशेषता से जुड़ा लाभ इसके लिए आवश्यक ऊर्जा निवेश के योग्य है।

इतिहास

जर्मन-ब्रिटिश चिकित्सा चिकित्सक एवं बायोकेमिस्ट हंस क्रेब्स (जैव रसायनज्ञ) की 1957 की पुस्तक जीवित पदार्थ में ऊर्जा परिवर्तन (हंस कोर्नबर्ग के साथ लिखित)[1] जैव रासायनिक प्रतिक्रियाओं के ऊष्मप्रवैगिकी पर प्रथम प्रमुख प्रकाशन था। इसके अतिरिक्त, परिशिष्ट में केनेथ बर्टन द्वारा लिखी गई प्रथम बार प्रकाशित थर्मोडायनामिक सारणी सम्मिलित थी, जिसमें रासायनिक प्रजातियों के लिए संतुलन स्थिरांक एवं गिब्स मुक्त ऊर्जा सम्मिलित थी, जो जैव रासायनिक प्रतिक्रियाओं की गणना करने में सक्षम थी जो अभी तक नहीं हुई थी।

विकार से जैविक जीव कैसे विकसित हो सकते हैं, ज्ञात करने के लिए गैर-संतुलन ऊष्मप्रवैगिकी प्रारम्भ की गई है।[2][3] इल्या प्रिझोगिन ने ऐसी प्रणालियों के थर्मोडायनामिक उपचार के लिए प्रविधियां विकसित की गयी है। उन्होंने इन प्रणालियों को विघटनकारी प्रणालियां कहा, क्योंकि वे विघटनकारी प्रक्रियाओं द्वारा बनाई एवं बनाए रखी जाती हैं जो प्रणाली एवं उसके पर्यावरण के मध्य ऊर्जा का आदान-प्रदान करती हैं, एवं क्योंकि वे विलुप्त हो जाते हैं। यदि विनिमय बंद हो जाता है। यह कहा जा सकता है कि वे स्वयं पर्यावरण के साथ सहजीवन में रहते हैं। जीव विज्ञान में ऊर्जा परिवर्तन मुख्यतः प्रकाश संश्लेषण पर निर्भर हैं। सौर विकिरण से हरे पौधों में प्रकाश संश्लेषण द्वारा ग्रहण की गई कुल ऊर्जा लगभग 2 x 1023 प्रति वर्ष ऊर्जा के जूल है।[4] हरे पौधों में प्रकाश संश्लेषण द्वारा ग्रहण की गई वार्षिक ऊर्जा पृथ्वी तक पहुँचने वाली सूर्य की कुल ऊर्जा का लगभग 4% है। जल उष्मा के निकट के जैविक समुदायों में ऊर्जा परिवर्तन अपवाद हैं; वे प्रकाश संश्लेषण के अतिरिक्त रसायन संश्लेषण के माध्यम से स्वयं ऊर्जा प्राप्त करते हुए, गंधक को ऑक्सीकरण करते हैं।

जीव विज्ञान में ऊष्मप्रवैगिकी का केंद्र

जैविक ऊष्मप्रवैगिकी का क्षेत्र जीव विज्ञान एवं जैव रसायन में रासायनिक ऊष्मप्रवैगिकी के सिद्धांतों पर केंद्रित है। कवर किए गए सिद्धांतों में ऊष्मप्रवैगिकी का प्रथम नियम, ऊष्मप्रवैगिकी का दूसरा नियम, गिब्स मुक्त ऊर्जा, सांख्यिकीय ऊष्मप्रवैगिकी, प्रतिक्रिया बलगति विज्ञान एवं जीवन की उत्पत्ति की परिकल्पना सम्मिलित हैं। वर्तमान में, जैविक ऊष्मप्रवैगिकी स्वयं को आंतरिक जैव रासायनिक गतिकी के अध्ययन से संबंधित करती है। एटीपी हाइड्रोलिसिस, प्रोटीन स्थिरता, डीएनए बंधन, झिल्ली प्रसार, एंजाइम कैनेटीक्स,[5] एवं ऐसे अन्य आवश्यक ऊर्जा नियंत्रित पथ ऊष्मप्रवैगिकी के संदर्भ में, रासायनिक प्रतिक्रिया के समय कार्य करने में सक्षम ऊर्जा की मात्रा को गिब्स मुक्त ऊर्जा में परिवर्तन द्वारा मात्रात्मक रूप से मापा जाता है। भौतिक जीव विज्ञानी अल्फ्रेड लोटका ने विकासवादी सिद्धांत के साथ गिब्स मुक्त ऊर्जा में परिवर्तन को एकीकृत करने का प्रयास किया।

जैविक प्रणालियों में ऊर्जा परिवर्तन

सूर्य जीवित जीवों के लिए ऊर्जा का प्राथमिक स्रोत है। पौधों जैसे कुछ सजीवों को सीधे सूर्य के प्रकाश की आवश्यकता होती है, जबकि मनुष्य जैसे अन्य जीव सूर्य से अप्रत्यक्ष रूप से ऊर्जा प्राप्त कर सकते हैं।[6] चूंकि इस कथन के प्रमाण हैं, कि कुछ बैक्टीरिया अंटार्कटिका जैसे कठोर वातावरण में झीलों में बर्फ की मोटी परतों के नीचे नीले-हरे शैवाल के प्रमाण के रूप में पनप सकते हैं। कोई प्रभावनहीं पड़ता कि जीवित प्रजातियों का प्रकार क्या है, सभी जीवित जीवों को जीवित रहने के लिए ऊर्जा को पकड़ना, ट्रांसड्यूस करना, एकत्र करना एवं उपयोग करना चाहिए।

आने वाली धूप की ऊर्जा एवं उसकी तरंग दैर्ध्य के मध्य संबंध λ या आवृत्ति ν द्वारा दिया गया है

जहाँ h प्लैंक स्थिरांक (6.63x10-34Js) एवं c प्रकाश की गति (2.998x108 मी/से)। पौधे इस ऊर्जा को सूर्य के प्रकाश से ग्रहण करते हैं एवं प्रकाश संश्लेषण से गुजरते हैं, प्रभावी रूप से सौर ऊर्जा को रासायनिक ऊर्जा में परिवर्तित करते हैं। ऊर्जा को एक बार फिर से स्थानांतरित करने के लिए, जानवर पौधों को खिलाएंगे एवं जैविक मैक्रोमोलेक्यूल्स बनाने के लिए पचे हुए पौधों की सामग्री की ऊर्जा का उपयोग करेंगे।

विकास का थर्मोडायनामिक सिद्धांत

जैविक विकास को थर्मोडायनामिक सिद्धांत के माध्यम से समझाया जा सकता है। ऊष्मप्रवैगिकी के दो कानूनों का उपयोग विकास के पीछे जैविक सिद्धांत को तैयार करने के लिए किया जाता है। ऊष्मप्रवैगिकी का प्रथम नियम कहता है कि ऊर्जा को न तो बनाया जा सकता है एवं न ही नष्ट किया जा सकता है। कोई भी जीवन ऊर्जा नहीं बना सकता है लेकिन इसे स्वयं पर्यावरण के माध्यम से प्राप्त करना चाहिए। ऊष्मप्रवैगिकी के दूसरे नियम में कहा गया है कि ऊर्जा को रूपांतरित किया जा सकता है एवं यह प्रतिदिन जीवन रूपों में होता है। चूंकि जीव स्वयं पर्यावरण से ऊर्जा लेते हैं, इसलिए वे इसे उपयोगी ऊर्जा में बदल सकते हैं। यह ट्रॉपिक की नींव है [क्या यह ट्रॉफिक होना चाहिए?] गतिकी।

सामान्य उदाहरण यह है कि खुली प्रणाली को किसी भी पारिस्थितिकी तंत्र के रूप में परिभाषित किया जा सकता है जो ऊर्जा के फैलाव को अधिकतम करने की ओर बढ़ता है। सभी चीजें अधिकतम एन्ट्रापी उत्पादन की दिशा में प्रयास करती हैं, जो जैव विविधता को बढ़ाने के लिए डीएनए में परिवर्तनों के विकास के संदर्भ में होता है। इस प्रकार, विविधता को ऊष्मप्रवैगिकी के दूसरे नियम से जोड़ा जा सकता है। विविधता को एक प्रसार प्रक्रिया के रूप में भी तर्क दिया जा सकता है जो एंट्रॉपी को अधिकतम करने के लिए गतिशील संतुलन की ओर फैलता है। इसलिए, ऊष्मप्रवैगिकी उत्तराधिकार की दिशा एवं दर के साथ-साथ विकास की दिशा एवं दर की व्याख्या कर सकती है।[7]


उदाहरण

ऊष्मप्रवैगिकी का प्रथम नियम

ऊष्मप्रवैगिकी का प्रथम नियम ऊर्जा के संरक्षण का एक बयान है; चूंकि इसे एक रूप से दूसरे रूप में बदला जा सकता है, ऊर्जा को न तो बनाया जा सकता है एवं न ही नष्ट किया जा सकता है।[8] प्रथम नियम से हेस का नियम नामक सिद्धांत उत्पन्न होता है। हेस का नियम कहता है कि दी गई प्रतिक्रिया में अवशोषित या विकसित होने वाली ऊष्मा हमेशा स्थिर होनी चाहिए एवं प्रतिक्रिया के प्रविधियां से स्वतंत्र होनी चाहिए। चूंकि कुछ मध्यवर्ती प्रतिक्रियाएं एंडोथर्मिक हो सकती हैं एवं अन्य एक्सोथर्मिक हो सकती हैं, अगर प्रक्रिया सीधे हुई होती तो कुल हीट एक्सचेंज हीट एक्सचेंज के बराबर होता है। यह सिद्धांत कैलोरीमीटर का आधार है, एक उपकरण जिसका उपयोग रासायनिक प्रतिक्रिया में गर्मी की मात्रा निर्धारित करने के लिए किया जाता है। चूंकि सभी आने वाली ऊर्जा भोजन के रूप में शरीर में प्रवेश करती है एवं अंततः ऑक्सीकृत होती है, कैलोरीमीटर में भोजन के ऑक्सीकरण द्वारा उत्पादित गर्मी को मापकर कुल ताप उत्पादन का अनुमान लगाया जा सकता है। यह ऊष्मा किलोकैलोरी में व्यक्त की जाती है, जो पोषण लेबल पर पाई जाने वाली खाद्य ऊर्जा की सामान्य इकाई है।[9]


ऊष्मप्रवैगिकी का दूसरा नियम

ऊष्मप्रवैगिकी का दूसरा नियम मुख्य रूप से इस बात से संबंधित है कि दी गई प्रक्रिया संभव है या नहीं। दूसरा कानून कहता है कि कोई भी प्राकृतिक प्रक्रिया तब तक नहीं हो सकती जब तक कि ब्रह्मांड की एन्ट्रॉपी में वृद्धि न हो।[10] अलग प्रविधियां से कहा गया है, एक पृथक प्रणाली हमेशा अव्यवस्था की ओर प्रवृत्त होगी। जीवित जीवों को अक्सर गलती से दूसरे कानून की अवहेलना माना जाता है क्योंकि वे स्वयं संगठन के स्तर को बढ़ाने में सक्षम होते हैं। इस गलत व्याख्या को ठीक करने के लिए, किसी को केवल थर्मोडायनामिक प्रणाली एवं सीमा (थर्मोडायनामिक) की परिभाषा का उल्लेख करना चाहिए। एक जीवित जीव एक खुली व्यवस्था है, जो स्वयं पर्यावरण के साथ पदार्थ एवं ऊर्जा दोनों का आदान-प्रदान करने में सक्षम है। उदाहरण के लिए, एक मनुष्य भोजन लेता है, इसे उसके घटकों में तोड़ता है, एवं फिर उनका उपयोग कोशिकाओं, ऊतकों, स्नायुबंधन आदि के निर्माण के लिए करता है। यह प्रक्रिया शरीर में क्रम को बढ़ाती है, एवं इस प्रकार एन्ट्रॉपी कम करती है। चूंकि, मनुष्य भी 1) कपड़ों एवं अन्य वस्तुओं के संपर्क में गर्मी का संचालन करते हैं, 2) शरीर के तापमान एवं पर्यावरण में अंतर के कारण संवहन उत्पन्न करते हैं, 3) अंतरिक्ष में गर्मी विकीर्ण करते हैं, 4) ऊर्जा युक्त पदार्थों का उपभोग करते हैं (अर्थात, भोजन), एवं 5) अपशिष्ट (जैसे, कार्बन डाइऑक्साइड, पानी, एवं सांस, मूत्र, मल, पसीना, आदि के अन्य घटकों) को खत्म करें। जब इन सभी प्रक्रियाओं को ध्यान में रखा जाता है, तो बड़ी प्रणाली (यानी, मानव एवं उसका/उसका पर्यावरण) की कुल एन्ट्रॉपी बढ़ जाती है। जब मानव जीवित रहना बंद कर देता है, तो इनमें से कोई भी प्रक्रिया (1-5) नहीं होती है, एवं प्रक्रियाओं में कोई रुकावट (विशेषकर 4 या 5) जल्दी से रुग्णता एवं/या मृत्यु दर का कारण बनेगी।

गिब्स मुक्त ऊर्जा

जैविक प्रणालियों में, सामान्य ऊर्जा एवं एन्ट्रापी में एक साथ परिवर्तन होता है। इसलिए, एक ऐसे राज्य कार्य को परिभाषित करने में सक्षम होना आवश्यक है जो इन परिवर्तनों के साथ-साथ खाता हो। यह स्टेट फंक्शन गिब्स फ्री एनर्जी, जी है।

जी = एच - टीएस

कहाँ:

गिब्स फ्री एनर्जी में परिवर्तन का उपयोग यह निर्धारित करने के लिए किया जा सकता है कि कोई रासायनिक प्रतिक्रिया अनायास हो सकती है या नहीं। यदि ∆G ऋणात्मक है, तो प्रतिक्रिया सहज प्रक्रिया हो सकती है। इसी प्रकार, यदि AG धनात्मक है, तो अभिक्रिया अनायास होती है।[11] यदि वे मध्यवर्ती साझा करते हैं तो रासायनिक प्रतिक्रियाएं एक साथ "युग्मित" हो सकती हैं। इस मामले में, समग्र गिब्स मुक्त ऊर्जा परिवर्तन प्रत्येक प्रतिक्रिया के लिए ∆G मानों का योग मात्र है। इसलिए, एक प्रतिकूल प्रतिक्रिया (सकारात्मक ∆G1) एक दूसरी, अत्यधिक अनुकूल प्रतिक्रिया (ऋणात्मक ∆G2 जहां ∆G का परिमाण2 > ∆G का परिमाण1). उदाहरण के लिए, सुक्रोज बनाने के लिए फ्रुक्टोज के साथ ग्लूकोज की प्रतिक्रिया का ∆G मान +5.5 किलो कैलोरी/मोल होता है। इसलिए, यह प्रतिक्रिया अनायास नहीं होगी। ADP एवं अकार्बनिक फॉस्फेट बनाने के लिए ATP के टूटने का -7.3 kcal/mol का ∆G मान होता है। इन दो प्रतिक्रियाओं को एक साथ जोड़ा जा सकता है, ताकि ग्लूकोज एटीपी के साथ मिलकर ग्लूकोज-1-फॉस्फेट एवं एडीपी बना सके। ग्लूकोज-1-फॉस्फेट तब फ्रुक्टोज देने वाले सुक्रोज एवं अकार्बनिक फॉस्फेट के साथ बंधन में सक्षम होता है। युग्मित अभिक्रिया का ∆G मान -1.8 kcal/mol है, जो दर्शाता है कि अभिक्रिया अनायास घटित होगी। गिब्स फ्री एनर्जी में परिवर्तन को बदलने के लिए युग्मन प्रतिक्रियाओं का यह सिद्धांत जैविक जीवों में सभी एंजाइमी क्रियाओं के पीछे मूल सिद्धांत है।[12]


यह भी देखें

संदर्भ

  1. Alberty R (2004). "एंजाइम-उत्प्रेरित प्रतिक्रियाओं के ऊष्मप्रवैगिकी का एक संक्षिप्त इतिहास". J Biol Chem. 279 (27): 27831–6. doi:10.1074/jbc.X400003200. PMID 15073189. Archived from the original on 2008-09-05. Retrieved 2007-03-04.
  2. Pokrovskii, Vladimir (2020). Thermodynamics of Complex Systems: Principles and applications (in English). IOP Publishing, Bristol, UK.
  3. Zotin, Alexei; Pokrovskii, Vladimir (2018). "थर्मोडायनामिक दृष्टिकोण से जीवित जीवों की वृद्धि और विकास". Physica A: Statistical Mechanics and its Applications. 512: 359–366.
  4. Akihiko Ito & Takehisa Oikawa. "Global Mapping of Terrestrial Primary Productivity and Light-Use Efficiency with a Process-Based Model". In M. Shiyomi; et al. (eds.). महासागर और भूमि पर वैश्विक पर्यावरण परिवर्तन (PDF). pp. 343–358.
  5. M.J. Farabee. "Reactions and Enzymes". ऑन लाइन बायोलॉजी बुक. Estrella Mountain Community College. Archived from the original on 2012-12-28. Retrieved 2006-09-26.
  6. Haynie, Donald T. (2001). जैविक ऊष्मप्रवैगिकी. Cambridge University Press. pp. 1–16.
  7. Skene, Keith (July 31, 2015). "Life's a Gas: A Thermodynamic Theory of Biological Evolution". Entropy. 17 (12): 5522–5548. doi:10.3390/e17085522. S2CID 2831061.
  8. Haynie, Donald T. (2001). जैविक ऊष्मप्रवैगिकी. Cambridge UP. ISBN 9780521795494.
  9. Stacy, Ralph W., David T. Williams, Ralph E. Worden, and Rex O. McMorris. Essentials of Biological and Medical Physics. New York: McGraw-Hill Book, 1955. Print.
  10. Haynie, Donald T. Biological Thermodynamics. Cambridge: Cambridge UP, 2001. Print.
  11. Bergethon, P. R. The Physical Basis of Biochemistry: The Foundations of Molecular Biophysics. New York: Springer, 1998. Print.
  12. Alberts, Bruce. Essential Cell Biology. New York: Garland Science, 2009. Print.


करीब से सुनना

  • हेनी, डी. (2001). जैविक ऊष्मप्रवैगिकी (पाठ्यपुस्तक)। कैम्ब्रिज: कैम्ब्रिज यूनिवर्सिटी प्रेस।
  • लेहिंगर, ए., नेल्सन, डी., एवं कॉक्स, एम. (1993)। जैव रसायन के सिद्धांत, दूसरा संस्करण (पाठ्यपुस्तक)। न्यूयॉर्क: वर्थ पब्लिशर्स।
  • रॉबर्ट ए. अल्बर्टी|अल्बर्टी, रॉबर्ट, ए. (2006). जैव रासायनिक ऊष्मप्रवैगिकी: गणित के अनुप्रयोग (जैव रासायनिक विश्लेषण के प्रविधियां), विली-इंटरसाइंस।

बाहरी संबंध