सरल मॉड्यूल: Difference between revisions
m (added Category:Vigyan Ready using HotCat) |
No edit summary |
||
(One intermediate revision by one other user not shown) | |||
Line 51: | Line 51: | ||
{{Reflist}} | {{Reflist}} | ||
{{DEFAULTSORT:Simple Module}} | {{DEFAULTSORT:Simple Module}} | ||
[[Category:Articles with hatnote templates targeting a nonexistent page|Simple Module]] | |||
[[Category:Created On 18/04/2023|Simple Module]] | |||
[[Category: | [[Category:Machine Translated Page|Simple Module]] | ||
[[Category:Created On 18/04/2023]] | [[Category:Pages with script errors|Simple Module]] | ||
[[Category:Vigyan Ready]] | [[Category:Templates Vigyan Ready|Simple Module]] | ||
[[Category:प्रतिनिधित्व सिद्धांत|Simple Module]] | |||
[[Category:मॉड्यूल सिद्धांत|Simple Module]] |
Latest revision as of 11:51, 3 May 2023
गणित में, विशेष रूप से रिंग सिद्धांत में, रिंग (गणित)R पर सरल मॉड्यूल R पर (बाएं या दाएं) मॉड्यूल (गणित) होते हैं जो गैर-शून्य होते हैं | शून्य मॉड्यूल और गैर-शून्य उचित सबमॉड्यूल नहीं होते है । सामान्यतः, m मॉड्यूल सरल है यदि और केवल यदि 'm' के गैर शून्य द्वारा उत्पन्न प्रत्येक चक्रीय मॉड्यूल m के सामान होता है सरल मॉड्यूल एक मॉड्यूल की परिमित लंबाई के मॉड्यूल के लिए बिल्डिंग ब्लॉक्स बनाते हैं, और वे समूह सिद्धांत में सरल समूहों के अनुरूप होते हैं।
इस लेख में, सभी मॉड्यूलों को रिंग R के ऊपर सही एकात्मक मॉड्यूल माना जाएगा।
उदाहरण
पूर्णांक-मॉड्यूल एबेलियन समूह के समान हैं, इसलिए साधारण जेड-मॉड्यूल एक एबेलियन समूह है जिसमें गैर-शून्य उचित उपसमूह नहीं हैं। ये अभाज्य संख्या क्रम (समूह सिद्धांत) के चक्रीय समूह हैं।
यदि I R का एक सही आदर्श (रिंग थ्योरी) है, तो I एक सही मॉड्यूल के रूप में सरल है यदि और केवल यदि I एक न्यूनतम आदर्श गैर-शून्य सही आदर्श है : यदि m I का गैर-शून्य उचित उपमॉड्यूल है, तो यह सही आदर्श भी है, इसलिए I न्यूनतम नहीं है। विलोम (तर्क), यदि 'I' न्यूनतम नहीं है, तो एक गैर-शून्य सही आदर्श J है | जो 'I' में उचित रूप से निहित है। जे I का एक राइट सबमॉड्यूल है, इसलिए I सरल नहीं है।
प्रत्येक सरल R-मॉड्यूल एक भागफल R/m के लिए मॉड्यूल समरूपता शब्दावली है, जहां m, R का अधिकतम आदर्श सही आदर्श है। [1] उपरोक्त अनुच्छेद द्वारा, कोई भागफल R/m एक साधारण मॉड्यूल है। इसके विपरीत, मान लीजिए कि m एक साधारण R-मॉड्यूल है। फिर, M के किसी भी गैर-शून्य तत्व x के लिए, चक्रीय सबमॉड्यूल xR को M के सामान होना चाहिए। ऐसे x को ठीक करें। बयान है कि {{नाउरैप प्रारंभ}एक्सआर = m मॉड्यूल समरूपता के विशेषण के समतुल्य है R → M जो R को xr भेजता है। इस समरूपता का मूल R का एक सही आदर्श I है, और मानक प्रमेय कहता है कि M, R/I के लिए समरूप है। उपरोक्त पैराग्राफ से, हम पाते हैं कि I एक अधिकतम सही आदर्श है। इसलिए, M अधिकतम सही आदर्श द्वारा R के भागफल के लिए समरूप है।
यदि k एक क्षेत्र (गणित) है और G एक समूह (गणित) है, तो G का एक समूह प्रतिनिधित्व समूह रिंग k G पर बायाँ मॉड्यूल है (विवरण के लिए, परिमित समूहों का प्रतिनिधित्व सिद्धांत देखें अभ्यावेदन.2C मॉड्यूल और दृढ़ बीजगणित) है। [2] साधारण k G-मॉड्यूल्स को 'इरेड्यूसिबल ' प्रस्तुतियों के रूप में भी जाना जाता है। प्रतिनिधित्व सिद्धांत का एक प्रमुख उद्देश्य समूहों के अलघुकरणीय प्रस्तुतियों को समझना है।
सरल मॉड्यूल के मूल गुण
सरल मॉड्यूल ठीक मॉड्यूल 1 की लंबाई के मॉड्यूल हैं; यह परिभाषा का एक सुधार है।
प्रत्येक साधारण मॉड्यूल अविघटनीय मॉड्यूल है, किन्तु इसका विलोम सामान्य रूप से सत्य नहीं है।
प्रत्येक सरल मॉड्यूल चक्रीय मॉड्यूल है, अर्थात यह एक तत्व द्वारा उत्पन्न होता है।
प्रत्येक मॉड्यूल में एक साधारण सबमॉड्यूल नहीं होता है; उदाहरण के लिए ऊपर दिए गए पहले उदाहरण Z-मॉड्यूल Z पर विचार करें।
m और N एक ही रिंग पर (बाएं या दाएं) मॉड्यूल होने दे , और f : M → N मॉड्यूल समरूपता होने दे । यदि M सरल है, तो f या तो शून्य समरूपता या अंतःक्षेपी है क्योंकि f का कर्नेल M का एक सबमॉड्यूल है। यदि N सरल है, तो f या तो शून्य समरूपता या विशेषण है क्योंकि f की छवि (गणित) N का सबमॉड्यूल है। यदि {{नाउरैप प्रारंभ}m = N, तो f, M का एक एंडोमोर्फिज़्म है, और यदि M सरल है, तो पिछले दो कथनों का अर्थ है कि f या तो शून्य समरूपता या एक समरूपता है। परिणाम स्वरुप, किसी भी साधारण मॉड्यूल की एंडोमोर्फिज्म रिंग एक डिवीजन रिंग है। इस परिणाम को 'शूर की लेम्मा' के रूप में जाना जाता है।
शूर की लेम्मा का विलोम सामान्य रूप से सत्य नहीं है। उदाहरण के लिए, 'जेड'-मॉड्यूल 'Q' सरल नहीं है, किन्तु इसकी एंडोमोर्फिज्म रिंग 'Q' क्षेत्र के लिए समरूप है।
सरल मॉड्यूल और रचना श्रृंखला
यदि m एक मॉड्यूल है जिसमें गैर-शून्य उचित सबमिशन N है, तो एक छोटा स्पष्ट अनुक्रम होता है
m के बारे में एक तथ्य गणितीय प्रमाण के लिए एक सामान्य दृष्टिकोण यह दिखाना है कि तथ्य छोटे स्पष्ट अनुक्रम के केंद्र पद के लिए सत्य है जब यह बाएँ और दाएँ शब्दों के लिए सत्य है, फिर N और m/N के लिए तथ्य को सिद्ध करने के लिए। यदि N में एक गैर-शून्य उचित सबमॉड्यूल है, तो इस प्रक्रिया को दोहराया जा सकता है। यह सबमॉड्यूल की एक श्रृंखला का निर्माण करता है |
तथ्य को इस तरह सिद्ध करने के लिए, इस क्रम पर और मॉड्यूल Mi/Mi + 1 पर शर्तों की आवश्यकता होती है. विशेष रूप से उपयोगी स्थिति यह है कि अनुक्रम की लंबाई परिमित है और प्रत्येक भागफल मॉड्यूल Mi/Mi + 1 साधारण है। इस स्थितियों में अनुक्रम को m के लिए संयोजन श्रृंखला कहा जाता है। रचना श्रृंखला का उपयोग करते हुए किसी कथन को आगमनात्मक रूप से सिद्ध करने के लिए, कथन को पहले सरल मॉड्यूल के लिए सिद्ध किया जाता है, जो प्रेरण का आधार स्थिति बनाता है, और फिर एक साधारण मॉड्यूल द्वारा मॉड्यूल के विस्तार के अनुसार कथन को सही सिद्ध किया जाता है। उदाहरण के लिए, फिटिंग लेम्मा से पता चलता है कि एक परिमित लंबाई मॉड्यूल की एंडोमोर्फिज्म रिंग अविघटनीय मॉड्यूल स्थानीय रिंग है, जिससे कि शक्तिशाली क्रुल-श्मिट प्रमेय धारण करता है और परिमित लंबाई मॉड्यूल की श्रेणी (गणित) एक क्रुल-श्मिट श्रेणी है।
जॉर्डन-होल्डर प्रमेय और श्रेयर शोधन प्रमेय एकल मॉड्यूल की सभी रचना श्रृंखलाओं के बीच संबंधों का वर्णन करते हैं। ग्रोथेंडिक समूह रचना श्रृंखला में क्रम की उपेक्षा करता है और प्रत्येक परिमित लंबाई मॉड्यूल को सरल मॉड्यूल के औपचारिक योग के रूप में देखता है। अर्ध-सरल छल्लों पर, यह कोई हानि नहीं है क्योंकि प्रत्येक मॉड्यूल एक अर्ध-सरल मॉड्यूल है और इसलिए सरल मॉड्यूल के मॉड्यूल का सीधा योग है। साधारण चरित्र सिद्धांत बेहतर अंकगणितीय नियंत्रण प्रदान करता है, और परिमित समूह जी की संरचना को समझने के लिए सरल c G मॉड्यूल का उपयोग करता है। मॉड्यूलर प्रतिनिधित्व सिद्धांत मॉड्यूल को सरल मॉड्यूल के औपचारिक योग के रूप में देखने के लिए ब्राउर वर्णों का उपयोग करता है, किन्तु यह भी रुचि रखता है कि संरचना श्रृंखला के भीतर उन सरल मॉड्यूल को एक साथ कैसे जोड़ा जाता है। यह एक्सट्रीम फ़ैक्टर का अध्ययन करके और क्विवर (गणित) (जिनके नोड सरल मॉड्यूल हैं और जिनके किनारे लंबाई के गैर-अर्ध-सरल मॉड्यूल की रचना श्रृंखला हैं) और ऑस्लैंडर-रीटेन सिद्धांत सहित विभिन्न तरीकों से मॉड्यूल श्रेणी का वर्णन करके औपचारिक रूप दिया गया है। संबद्ध ग्राफ़ में प्रत्येक अविघटनीय मॉड्यूल के लिए शीर्ष होता है।
जैकबसन घनत्व प्रमेय
सरल मॉड्यूल के सिद्धांत में एक महत्वपूर्ण प्रगति जैकबसन घनत्व प्रमेय थी। जैकबसन घनत्व प्रमेय कहता है:
- U को एक साधारण सही R-मॉड्यूल और D = EndR U होने दें | U पर A को कोई D-रैखिक प्रारंभ होने दें और x को U के एक परिमित D-रैखिक रूप से स्वतंत्र उपसमुच्चय होने दें। फिर R का एक तत्व R उपस्थित है जैसे x·A = x·R x में सभी x के लिए है।[3]
विशेष रूप से, किसी भी डिवीजन रिंग को कुछ D-स्पेस पर D-रैखिक ऑपरेटरों की रिंग के रूप में देखा जा सकता है (अर्थात, समरूप)।
जैकबसन घनत्व प्रमेय का एक परिणाम वेडरबर्न का प्रमेय है; अर्थात् कोई भी सही आर्टिनियन रिंग साधारण रिंग कुछ N के लिए एक डिवीजन रिंग के ऊपर N-बाय-N मैट्रिसेस के पूर्ण आव्युह रिंग के लिए समरूप है। इसे आर्टिन-वेडरबर्न प्रमेय के परिणाम के रूप में भी स्थापित किया जा सकता है।
यह भी देखें
- अर्धसधारण मॉड्यूल ऐसे मॉड्यूल होते हैं जिन्हें सरल सबमॉड्यूल के योग के रूप में लिखा जा सकता है
- अपरिवर्तनीय आदर्श
- अपरिवर्तनीय प्रतिनिधित्व