शिफ्ट प्रमेय: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 5: Line 5:


:<math>P(D)(e^{ax}y)\equiv e^{ax}P(D+a)y.</math>
:<math>P(D)(e^{ax}y)\equiv e^{ax}P(D+a)y.</math>
और इस प्रकार परिणाम को सिद्ध करने के लिए प्रेरण द्वारा आगे बढ़ते है और ध्यान दें कि केवल विशेष स्थिति के लिए इस रूप में दिखाया जाता  
और इस प्रकार परिणाम को सिद्ध करने के लिए प्रेरण द्वारा आगे बढ़ते है और ध्यान दें कि केवल विशेष स्थिति के लिए इस रूप में होता है,  
 
है
:<math>P(D)=D^n</math>
:<math>P(D)=D^n</math>
सिद्ध  करने की जरूरत है, क्योंकि सामान्य परिणाम डी-ऑपरेटरों के [[भेदभाव की रैखिकता]] के बाद होता है।
और इस प्रकार डी ऑपरेटरों की [[रैखिकता]] के बाद सामान्य परिणाम के रूप में से इसे सिद्ध करने की आवश्यकता होती है।


परिणाम n = 1 के लिए स्पष्ट रूप से सत्य है
परिणाम n = 1 के लिए यह स्पष्ट रूप से सत्य है


:<math>D(e^{ax}y)=e^{ax}(D+a)y.</math>
:<math>D(e^{ax}y)=e^{ax}(D+a)y.</math>
Line 27: Line 25:
यह प्रमाण को पूरा करता है।
यह प्रमाण को पूरा करता है।


शिफ्ट प्रमेय को व्युत्क्रम संचालकों के लिए समान रूप से अच्छी तरह से लागू किया जा सकता है:
शिफ्ट प्रमेय को व्युत्क्रम संचालकों के लिए समान रूप से अच्छी तरह से प्रयुक्त किया जा सकता है


:<math>\frac{1}{P(D)}(e^{ax}y)=e^{ax}\frac{1}{P(D+a)}y.</math>
:<math>\frac{1}{P(D)}(e^{ax}y)=e^{ax}\frac{1}{P(D+a)}y.</math>
Line 34: Line 32:
== संबंधित ==
== संबंधित ==


लाप्लास परिवर्तन के लिए शिफ्ट प्रमेय का एक समान संस्करण है (<math>t<a</math>):
लाप्लास परिवर्तन (<math>t<a</math>) के लिए शिफ्ट प्रमेय एक समान संस्करण के रूप में है


:<math>e^{-as}\mathcal{L}\{f(t)\} = \mathcal{L}\{f(t-a)\}.</math>
:<math>e^{-as}\mathcal{L}\{f(t)\} = \mathcal{L}\{f(t-a)\}.</math>

Revision as of 12:52, 29 April 2023

गणित में, घातांकी बदलाव प्रमेय बहुपद अवकल ऑपरेटरों (डी-संचालकों) और चरघातांकी फलन के बारे में एक प्रमेय के रूप में है। और इस प्रकार यह कुछ स्थितियों में डी-ऑपरेटरों के अनुसार घातांक प्रकार्य को खत्म करने की अनुमति देता है।

कथन

प्रमेय कहता है कि, यदि P(D) एक बहुपद D-संचालक के रूप में है, तो किसी भी पर्याप्त रूप से भिन्न फलन y के लिए इस रूप में दिखाया जाता है,

और इस प्रकार परिणाम को सिद्ध करने के लिए प्रेरण द्वारा आगे बढ़ते है और ध्यान दें कि केवल विशेष स्थिति के लिए इस रूप में होता है,

और इस प्रकार डी ऑपरेटरों की रैखिकता के बाद सामान्य परिणाम के रूप में से इसे सिद्ध करने की आवश्यकता होती है।

परिणाम n = 1 के लिए यह स्पष्ट रूप से सत्य है

अब मान लीजिए कि परिणाम n = k के लिए सही है, अर्थात,

तब,

यह प्रमाण को पूरा करता है।

शिफ्ट प्रमेय को व्युत्क्रम संचालकों के लिए समान रूप से अच्छी तरह से प्रयुक्त किया जा सकता है


संबंधित

लाप्लास परिवर्तन () के लिए शिफ्ट प्रमेय एक समान संस्करण के रूप में है


उदाहरण

एक्सपोनेंशियल शिफ्ट प्रमेय का उपयोग फ़ंक्शन के उच्च डेरिवेटिव की गणना को गति देने के लिए किया जा सकता है जो एक एक्सपोनेंशियल और अन्य फ़ंक्शन के उत्पाद द्वारा दिया जाता है। उदाहरण के लिए, यदि , एक के पास है

एक्सपोनेंशियल शिफ्ट प्रमेय का एक अन्य अनुप्रयोग रेखीय अंतर समीकरणों को हल करना है, जिनकी विशेषता समीकरण (कैलकुलस) में बार-बार जड़ें होती हैं।[1]


टिप्पणियाँ

  1. See the article homogeneous equation with constant coefficients for more details.


संदर्भ

  • Morris, Tenenbaum; Pollard, Harry (1985). Ordinary differential equations : an elementary textbook for students of mathematics, engineering, and the sciences. New York: Dover Publications. ISBN 0486649407. OCLC 12188701.