दो समानांतर रेखाओं के बीच की दूरी: Difference between revisions

From Vigyanwiki
No edit summary
 
(One intermediate revision by one other user not shown)
Line 54: Line 54:
*Florian Modler: [http://www.emath.de/Referate/Zusammenfassung-wichtiger-Formeln.pdf ''Vektorprodukte, Abstandsaufgaben, Lagebeziehungen, Winkelberechnung – Wann welche Formel?''], pp. 44-59 (German)
*Florian Modler: [http://www.emath.de/Referate/Zusammenfassung-wichtiger-Formeln.pdf ''Vektorprodukte, Abstandsaufgaben, Lagebeziehungen, Winkelberechnung – Wann welche Formel?''], pp. 44-59 (German)
*A. J. Hobson: [https://archive.uea.ac.uk/jtm/8/Lec8p5.pdf ''“JUST THE MATHS” - UNIT NUMBER 8.5 - VECTORS 5 (Vector equations of straight lines)''], pp. 8-9
*A. J. Hobson: [https://archive.uea.ac.uk/jtm/8/Lec8p5.pdf ''“JUST THE MATHS” - UNIT NUMBER 8.5 - VECTORS 5 (Vector equations of straight lines)''], pp. 8-9
[[Category: यूक्लिडियन ज्यामिति]] [[Category: दूरी]]


 
[[Category:Articles with hatnote templates targeting a nonexistent page]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 05/04/2023]]
[[Category:Created On 05/04/2023]]
[[Category:Vigyan Ready]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Missing redirects]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:दूरी]]
[[Category:यूक्लिडियन ज्यामिति]]

Latest revision as of 13:22, 3 May 2023

समतल ज्यामिति में दो समानांतर (ज्यामिति) रेखाओं (ज्यामिति) के बीच की दूरी मुख्य रूप से दो बिंदुओं के बीच की न्यूनतम दूरी के समान होती है।

सूत्र और प्रमाण

क्योंकि रेखाएँ समानांतर होती हैं, तथा उनके बीच लंबवत दूरी स्थिर रहती है, इसलिए इस स्थिति में यह मायने नहीं रखता कि दूरी को मापने के लिए कौन सा बिंदु चुना गया है। इस प्रकार दो गैर-लंबवत समांतर रेखाओं के समीकरण दिए गए हैं।

इस प्रकार दो रेखाओं के बीच की दूरी लंब रेखा के साथ इन रेखाओं के दो प्रतिच्छेदन बिंदुओं के बीच की दूरी है।

इस दूरी को पहले लीनियर प्रणाली को हल करके पाया जा सकता है।

और

प्रतिच्छेदन बिंदुओं के निर्देशांक प्राप्त करने के लिए रैखिक प्रणालियों के समाधान बिंदु हैं।

और

इस प्रकार यह बिंदुओं के बीच की दूरी है।

जो कम हो जाता है।

जब पंक्तियों द्वारा दिया जाता है।

उनके बीच की दूरी को व्यक्त किया जा सकता है।

यह भी देखें

  • बिंदु से रेखा तक की दूरी

संदर्भ

  • Abstand In: Schülerduden – Mathematik II. Bibliographisches Institut & F. A. Brockhaus, 2004, ISBN 3-411-04275-3, pp. 17-19 (German)
  • Hardt Krämer, Rolf Höwelmann, Ingo Klemisch: Analytische Geometrie und Lineare Akgebra. Diesterweg, 1988, ISBN 3-425-05301-9, p. 298 (German)


बाहरी संबंध