जेट (कण भौतिकी): Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(3 intermediate revisions by 3 users not shown)
Line 1: Line 1:
[[Image:CDF Top Event.jpg|thumb|right|240px|[[ शीर्ष क्वार्क |शीर्ष क्वार्क]] और प्रति शीर्ष क्वार्क की युगल जेट में क्षय हो रही है, [[टेवाट्रॉन]] में फर्मिलैब संसूचक में कोलाइडर संसूचक में कण ट्रैक और अन्य फर्मों के समांतरित संग्रह के रूप में दिखाई दे रही है।]]एक जेट एक [[कण भौतिकी]] या भारी [[आयन]] प्रयोग में [[क्वार्क]] या ग्लूऑन के [[ haronization |हैड्रोजनीकरण]] द्वारा उत्पादित [[हैड्रोन]] और अन्य कणों का एक संकीर्ण शंकु है। [[क्वांटम क्रोमोडायनामिक्स|क्वांटम क्रोमोगतिकी]] (क्यूसीडी) बंधन के कारण क्वार्क जैसे रंगीन आवेश वाले कण मुक्त रूप में स्थित नहीं हो सकते हैं, जो मात्र रंगहीन अवस्थाओं की अनुमति देते है। जब रंग आवेश युक्त कोई वस्तु खंडित होती है, तो प्रत्येक खंड कुछ रंग आवेश को अपने साथ ले जाते है। परिरोधन का पालन करने के लिए, ये खंड रंगहीन वस्तुओं का निर्माण करने के लिए अपने चारों ओर अन्य रंगीन वस्तुओं का निर्माण करते हैं। इन वस्तुओं के संयोजन को एक जेट कहा जाता है, चूंकि सभी खंड एक ही दिशा में यात्रा करते हैं, जिससे कणों का एक संकीर्ण जेट बनता है। मूल क्वार्क के गुणों को निर्धारित करने के लिए जेट को [[कण डिटेक्टर|कण संसूचक]] में मापा जाता है और अध्ययन किया जाता है।
[[Image:CDF Top Event.jpg|thumb|right|240px|[[ शीर्ष क्वार्क |शीर्ष क्वार्क]] और प्रति शीर्ष क्वार्क की युगल जेट में क्षय हो रही है, [[टेवाट्रॉन]] में फर्मिलैब संसूचक में कोलाइडर संसूचक में कण ट्रैक और अन्य फर्मों के समांतरित संग्रह के रूप में दिखाई दे रही है।]]एक जेट [[कण भौतिकी]] या भारी [[आयन]] प्रयोग में [[क्वार्क]] या ग्लूऑन के [[ haronization |हैड्रोजनीकरण]] द्वारा उत्पादित [[हैड्रोन]] और अन्य कणों का एक संकीर्ण शंकु है। [[क्वांटम क्रोमोडायनामिक्स|क्वांटम क्रोमोगतिकी]] (क्यूसीडी) बंधन के कारण क्वार्क जैसे रंगीन आवेश वाले कण मुक्त रूप में स्थित नहीं हो सकते हैं, जो मात्र रंगहीन अवस्थाओं की अनुमति देते है। जब रंग आवेश युक्त कोई वस्तु खंडित होती है, तो प्रत्येक खंड कुछ रंग आवेश को अपने साथ ले जाते है। परिरोधन का पालन करने के लिए, ये खंड रंगहीन वस्तुओं का निर्माण करने के लिए अपने चारों ओर अन्य रंगीन वस्तुओं का निर्माण करते हैं। इन वस्तुओं के संयोजन को जेट कहा जाता है, चूंकि सभी खंड एक ही दिशा में यात्रा करते हैं, जिससे कणों के संकीर्ण जेट बनते है। मूल क्वार्क के गुणों को निर्धारित करने के लिए जेट को [[कण डिटेक्टर|कण संसूचक]] में मापा जाता है और अध्ययन किया जाता है।


एक जेट परिभाषा में जेट आल्गोरिदम और एक पुनर्संयोजन योजना सम्मिलित है।<ref>{{Cite journal|last=Salam|first=Gavin P.|date=2010-06-01|title=जेटोग्राफी की ओर|url=https://doi.org/10.1140/epjc/s10052-010-1314-6|journal=The European Physical Journal C|language=en|volume=67|issue=3|pages=637–686|doi=10.1140/epjc/s10052-010-1314-6|issn=1434-6052|arxiv=0906.1833}}</ref> पूर्व परिभाषित करते है कि कैसे कुछ निवेश, उदा. कण या संसूचक वस्तु, जेट में समूहीकृत होते हैं, जबकि बाद वाला निर्दिष्ट करता है कि जेट को गति कैसे दी जाती है। उदाहरण के लिए, जेट को क्षेपण (कण भौतिकी) द्वारा चित्रित किया जा सकता है। जेट दिशा (जेट अक्ष) को क्षेपण (कण भौतिकी) के रूप में परिभाषित किया जा सकता है। कण भौतिकी प्रयोगों में, जेट सामान्यतः संसूचक [[कैलोरीमीटर (कण भौतिकी)|कैलोरीमीटर (कण भौतिकी]]) में ऊर्जा निक्षेपण के समूहों से निर्मित होते हैं। अनुकारित प्रक्रियाओं का अध्ययन करते समय, अनुकारित संसूचक प्रतिक्रिया के आधार पर कैलोरीमीटर जेट का पुनर्निर्माण किया जा सकता है। यद्यपि, अनुकारित प्रतिदर्शों में, विखंडन प्रक्रियाओं से निकलने वाले स्थिर कणों से सीधे जेट का पुनर्निर्माण भी किया जा सकता है। कण-स्तर जेट को प्रायः यथार्थता-जेट कहा जाता है। एक ठीक जेट आल्गोरिदम सामान्यतः घटना के विकास में विभिन्न स्तरों पर जेट के समान समूह प्राप्त करने की अनुमति देते है। विशिष्ट जेट पुनर्निर्माण एल्गोरिदम हैं, उदाहरण के लिए, प्रति-''k''<sub>T</sub> आल्गोरिदम, k<sub>T</sub> आल्गोरिदम, शंकु आल्गोरिदम। एक विशिष्ट पुनर्संयोजन योजना ई-योजना या 4-सदिश योजना है, जिसमें एक जेट के 4-सदिश को उसके सभी घटकों के 4-सदिश के योग के रूप में परिभाषित किया गया है।
जेट परिभाषा में जेट आल्गोरिदम और पुनर्संयोजन योजना सम्मिलित है।<ref>{{Cite journal|last=Salam|first=Gavin P.|date=2010-06-01|title=जेटोग्राफी की ओर|url=https://doi.org/10.1140/epjc/s10052-010-1314-6|journal=The European Physical Journal C|language=en|volume=67|issue=3|pages=637–686|doi=10.1140/epjc/s10052-010-1314-6|issn=1434-6052|arxiv=0906.1833}}</ref> पूर्व परिभाषित करते है कि कैसे कुछ निवेश, उदा. कण या संसूचक वस्तु, जेट में समूहीकृत होते हैं, जबकि बाद वाला निर्दिष्ट करता है कि जेट को गति कैसे दी जाती है। उदाहरण के लिए, जेट को क्षेपण (कण भौतिकी) द्वारा चित्रित किया जा सकता है। जेट दिशा (जेट अक्ष) को क्षेपण (कण भौतिकी) के रूप में परिभाषित किया जा सकता है। कण भौतिकी प्रयोगों में, जेट सामान्यतः संसूचक [[कैलोरीमीटर (कण भौतिकी)|कैलोरीमीटर (कण भौतिकी]]) में ऊर्जा निक्षेपण के समूहों से निर्मित होते हैं। अनुकारित प्रक्रियाओं का अध्ययन करते समय, अनुकारित संसूचक प्रतिक्रिया के आधार पर कैलोरीमीटर जेट का पुनर्निर्माण किया जा सकता है। यद्यपि, अनुकारित प्रतिदर्शों में, विखंडन प्रक्रियाओं से निकलने वाले स्थिर कणों से सीधे जेट का पुनर्निर्माण भी किया जा सकता है। कण-स्तर जेट को प्रायः यथार्थता-जेट कहा जाता है। ठीक जेट आल्गोरिदम सामान्यतः घटना के विकास में विभिन्न स्तरों पर जेट के समान समूह प्राप्त करने की अनुमति देते है। विशिष्ट जेट पुनर्निर्माण एल्गोरिदम हैं, उदाहरण के लिए, प्रति-''k''<sub>T</sub> आल्गोरिदम, k<sub>T</sub> आल्गोरिदम, शंकु आल्गोरिदम। एक विशिष्ट पुनर्संयोजन योजना ई-योजना या 4-सदिश योजना है, जिसमें जेट के 4-सदिश को उसके सभी घटकों के 4-सदिश के योग के रूप में परिभाषित किया गया है।






आपेक्षिकीय भारी आयन भौतिकी में, जेट महत्वपूर्ण हैं क्योंकि प्रारंभिक कठोर प्रकीर्णन टकराव में निर्मित क्यूसीडी पदार्थ के लिए एक प्राकृतिक जांच है, और इसके चरण को इंगित करते है। जब क्यूसीडी पदार्थ [[क्वार्क ग्लूऑन प्लाज्मा]] में एक चरण विनिमय से गुजरते है, तो माध्यम में ऊर्जा हानि अत्यधिक बढ़ जाती है, प्रभावी रूप से बाहर जाने वाले जेट का शमन करती है (तीव्रता को कम करना)।
आपेक्षिकीय भारी आयन भौतिकी में, जेट महत्वपूर्ण हैं क्योंकि प्रारंभिक कठोर प्रकीर्णन टकराव में निर्मित क्यूसीडी पदार्थ के लिए प्राकृतिक जांच है, और इसके चरण को इंगित करते है। जब क्यूसीडी पदार्थ [[क्वार्क ग्लूऑन प्लाज्मा]] में एक चरण विनिमय से गुजरते है, तो माध्यम में ऊर्जा हानि अत्यधिक बढ़ जाती है, प्रभावी रूप से बाहर जाने वाले जेट का शमन करती है (तीव्रता को कम करना)।


जेट विश्लेषण तकनीकों के उदाहरण हैं:
जेट विश्लेषण तकनीकों के उदाहरण हैं:
Line 19: Line 19:
क्यूसीडी दृढ़ प्रकीर्णन प्रक्रियाओं में जेट का उत्पादन किया जाता है, जो उच्च अनुप्रस्थ गति वाले क्वार्क या ग्लून्स बनाते हैं, या सामूहिक रूप से पार्टोनिक चित्र में [[पार्टन (कण भौतिकी)|पार्टन (कण भौतिकी]]) कहलाते हैं।
क्यूसीडी दृढ़ प्रकीर्णन प्रक्रियाओं में जेट का उत्पादन किया जाता है, जो उच्च अनुप्रस्थ गति वाले क्वार्क या ग्लून्स बनाते हैं, या सामूहिक रूप से पार्टोनिक चित्र में [[पार्टन (कण भौतिकी)|पार्टन (कण भौतिकी]]) कहलाते हैं।


जेट के एक निश्चित समूह को बनाने की संभावना को जेट उत्पादन अनुप्रस्थ काट द्वारा वर्णित किया गया है, जो [[पार्टन वितरण समारोह|पार्टन वितरण फलन]] द्वारा भारित प्राथमिक प्रक्षोभ क्यूसीडी क्वार्क, प्रतिक्वार्क और ग्लूऑन प्रक्रियाओं का औसत है। सबसे निरंतर जेट युगल उत्पादन प्रक्रिया के लिए, दो कण प्रकीर्णन, एक हैड्रोनिक टक्कर में जेट उत्पादन अनुप्रस्थ काट द्वारा दिया जाता है
जेट के निश्चित समूह को बनाने की संभावना को जेट उत्पादन अनुप्रस्थ काट द्वारा वर्णित किया गया है, जो [[पार्टन वितरण समारोह|पार्टन वितरण फलन]] द्वारा भारित प्राथमिक प्रक्षोभ क्यूसीडी क्वार्क, प्रतिक्वार्क और ग्लूऑन प्रक्रियाओं का औसत है। सबसे निरंतर जेट युगल उत्पादन प्रक्रिया के लिए, दो कण प्रकीर्णन, एक हैड्रोनिक टक्कर में जेट उत्पादन अनुप्रस्थ काट द्वारा दिया जाता है


:<math>
:<math>
Line 36: Line 36:
प्रक्षोभ क्यूसीडी गणनाओं में अंतिम अवस्था में रंगीन भाग हो सकते हैं, परन्तु मात्र बेरंग हैड्रोन जो अंततः उत्पादित होते हैं, प्रयोगात्मक रूप से देखे जाते हैं। इस प्रकार, एक दी गई प्रक्रिया के परिणामस्वरूप एक संसूचक में क्या देखा गया है, इसका वर्णन करने के लिए, सभी बाहर जाने वाले रंगीन पार्टन को पहले पार्टन बौछार से गुजरना होगा और फिर उत्पादित पार्टन के हैड्रॉन में संयोजन करना होगा। मृदु क्यूसीडी विकिरण, हैड्रॉन के गठन, या दोनों प्रक्रियाओं को एक साथ वर्णित करने के लिए पद विखंडन और हैड्रोजनीकरण प्रायः साहित्य में एक दूसरे के स्थान पर उपयोग किया जाता है।
प्रक्षोभ क्यूसीडी गणनाओं में अंतिम अवस्था में रंगीन भाग हो सकते हैं, परन्तु मात्र बेरंग हैड्रोन जो अंततः उत्पादित होते हैं, प्रयोगात्मक रूप से देखे जाते हैं। इस प्रकार, एक दी गई प्रक्रिया के परिणामस्वरूप एक संसूचक में क्या देखा गया है, इसका वर्णन करने के लिए, सभी बाहर जाने वाले रंगीन पार्टन को पहले पार्टन बौछार से गुजरना होगा और फिर उत्पादित पार्टन के हैड्रॉन में संयोजन करना होगा। मृदु क्यूसीडी विकिरण, हैड्रॉन के गठन, या दोनों प्रक्रियाओं को एक साथ वर्णित करने के लिए पद विखंडन और हैड्रोजनीकरण प्रायः साहित्य में एक दूसरे के स्थान पर उपयोग किया जाता है।


जैसा कि दृढ़ प्रकीर्णन में उत्पन्न पार्टन अन्योन्यक्रिया से बाहर निकलता है, इसके पृथक्करण के साथ दृढ़ युग्मन स्थिरांक बढ़ेगा। यह क्यूसीडी विकिरण की संभावना को बढ़ाते है, जो मुख्य रूप से प्रारंभिक भाग के संबंध में अल्पकोणीय-कोण है। इस प्रकार, एक पार्टन ग्लून्स विकीर्ण करेगा, जो बदले में {{SubatomicParticle|Quark}}{{SubatomicParticle|Antiquark}} जोड़े को विकीर्ण करेगा और इसी प्रकार प्रत्येक नवीन पार्टन अपने मूल के साथ लगभग संरेखित होगा। पार्टन घनत्व कार्यों के विखंडन फलनों <math>P_{ji}\!\left(\frac{x}{z}, Q^2\right)</math> के साथ स्पाइनर को हल करके इसका वर्णन किया जा सकता है। यह एक {{ill|Yuri Dokshitzer|de|Juri Lwowitsch Dokschizer|lt=डॉकशिट्ज़र}}-[[व्लादिमीर ग्रिबोव]]-[[लेव लिपाटोव]]-अल्टारिली-पैरिसि (डीजीएलएपी) प्रकार समीकरण
जैसा कि दृढ़ प्रकीर्णन में उत्पन्न पार्टन अन्योन्यक्रिया से बाहर निकलते है, इसके पृथक्करण के साथ दृढ़ युग्मन स्थिरांक बढ़ेगा। यह क्यूसीडी विकिरण की संभावना को बढ़ाते है, जो मुख्य रूप से प्रारंभिक भाग के संबंध में अल्पकोणीय-कोण है। इस प्रकार, एक पार्टन ग्लून्स विकीर्ण करेगा, जो बदले में {{SubatomicParticle|Quark}}{{SubatomicParticle|Antiquark}} जोड़े को विकीर्ण करेगा और इसी प्रकार प्रत्येक नवीन पार्टन अपने मूल के साथ लगभग संरेखित होगा। पार्टन घनत्व कार्यों के विखंडन फलनों <math>P_{ji}\!\left(\frac{x}{z}, Q^2\right)</math> के साथ स्पाइनर को हल करके इसका वर्णन किया जा सकता है। यह एक {{ill|Yuri Dokshitzer|de|Juri Lwowitsch Dokschizer|lt=डॉकशिट्ज़र}}-[[व्लादिमीर ग्रिबोव]]-[[लेव लिपाटोव]]-अल्टारिली-पैरिसि (डीजीएलएपी) प्रकार समीकरण


:<math>\frac{\partial}{\partial\ln Q^2} D_{i}^{h}(x, Q^2) = \sum_{j} \int_{x}^{1} \frac{dz}{z} \frac{\alpha_S}{4\pi} P_{ji}\!\left(\frac{x}{z}, Q^2\right) D_{j}^{h}(z, Q^2)</math> द्वारा वर्णित है
:<math>\frac{\partial}{\partial\ln Q^2} D_{i}^{h}(x, Q^2) = \sum_{j} \int_{x}^{1} \frac{dz}{z} \frac{\alpha_S}{4\pi} P_{ji}\!\left(\frac{x}{z}, Q^2\right) D_{j}^{h}(z, Q^2)</math> द्वारा वर्णित है
पार्टन बौछार क्रमिक रूप से कम ऊर्जा के भाग उत्पन्न करते है, और इसलिए प्रक्षोभ क्यूसीडी के लिए वैधता के क्षेत्र से बाहर निकलना चाहिए। परिघटनात्मक मॉडल को उस समय की लंबाई का वर्णन करने के लिए लागू किया जाना चाहिए जब बौछार होती है, और फिर रंगहीन हैड्रोन की बाध्य अवस्था में रंगीन पार्टन का संयोजन होता है, जो स्वाभाविक रूप से गैर-प्रक्षोभ करने वाला होता है। लुंड स्ट्रिंग मॉडल एक उदाहरण है, जिसे कई आधुनिक [[घटना जनरेटर|घटना उत्पादक]] में लागू किया गया है।
पार्टन बौछार क्रमिक रूप से कम ऊर्जा के भाग उत्पन्न करते है, और इसलिए प्रक्षोभ क्यूसीडी के लिए वैधता के क्षेत्र से बाहर निकलना चाहिए। परिघटनात्मक मॉडल को उस समय की लंबाई का वर्णन करने के लिए लागू किया जाना चाहिए जब बौछार होती है, और फिर रंगहीन हैड्रोन की बाध्य अवस्था में रंगीन पार्टन के संयोजन होते है, जो स्वाभाविक रूप से गैर-प्रक्षोभ करने वाले होते है। लुंड स्ट्रिंग मॉडल एक उदाहरण है, जिसे कई आधुनिक [[घटना जनरेटर|घटना उत्पादक]] में लागू किया गया है।


== अवरक्त और सरेख सुरक्षा ==
== अवरक्त और सरेख सुरक्षा ==
एक जेट एल्गोरिद्म अवरक्त सुरक्षित होते है यदि यह एक मृदु विकिरक जोड़ने के लिए एक घटना को संशोधित करने के बाद जेट के समान समूह का उत्पादन करते है। इसी प्रकार, एक जेट आल्गोरिदम संरेख सुरक्षित है यदि किसी एक निवेश के संरेखीय विभाजन को प्रारम्भ करने के बाद जेट के अंतिम समूह को नहीं बदला जाता है। जेट आल्गोरिदम को इन दो आवश्यकताओं को पूरा करने के कई कारण हैं। प्रायोगिक रूप से, जेट उपयोगी होते हैं यदि वे बीज पार्टन के विषय में जानकारी रखते हैं। जब उत्पादन किया जाता है, तो बीज पार्टन के पार्टन बौछार से गुजरने की अपेक्षा की जाती है, जिसमें हैड्रोजनीकरण प्रारम्भ होने से पहले लगभग-समरेख विभाजन की एक श्रृंखला सम्मिलित हो सकती है। इसके अतिरिक्त, जब संसूचक प्रतिक्रिया में अस्थिरता की बात आती है तो जेट एल्गोरिदम दृढ़ होना चाहिए। सैद्धांतिक रूप से, यदि कोई जेट एल्गोरिद्म अवरक्त और सरेख सुरक्षित नहीं है, तो यह गारंटी नहीं दी जा सकती है कि प्रक्षोभ सिद्धांत के किसी भी क्रम पर एक परिमित अनुप्रस्थ काट प्राप्त किया जा सकता है।
जेट एल्गोरिद्म अवरक्त सुरक्षित होते है यदि यह मृदु विकिरक जोड़ने के लिए एक घटना को संशोधित करने के बाद जेट के समान समूह का उत्पादन करते है। इसी प्रकार, जेट आल्गोरिदम संरेख सुरक्षित है यदि किसी एक निवेश के संरेखीय विभाजन को प्रारम्भ करने के बाद जेट के अंतिम समूह को नहीं बदला जाता है। जेट आल्गोरिदम को इन दो आवश्यकताओं को पूरा करने के कई कारण हैं। प्रायोगिक रूप से, जेट उपयोगी होते हैं यदि वे बीज पार्टन के विषय में जानकारी रखते हैं। जब उत्पादन किया जाता है, तो बीज पार्टन के पार्टन बौछार से गुजरने की अपेक्षा की जाती है, जिसमें हैड्रोजनीकरण प्रारम्भ होने से पहले लगभग-समरेख विभाजन की श्रृंखला सम्मिलित हो सकती है। इसके अतिरिक्त, जब संसूचक प्रतिक्रिया में अस्थिरता की बात आती है तो जेट एल्गोरिदम दृढ़ होना चाहिए। सैद्धांतिक रूप से, यदि कोई जेट एल्गोरिद्म अवरक्त और सरेख सुरक्षित नहीं है, तो यह गारंटी नहीं दी जा सकती है कि प्रक्षोभ सिद्धांत के किसी भी क्रम पर एक परिमित अनुप्रस्थ काट प्राप्त किया जा सकता है।


== यह भी देखें ==
== यह भी देखें ==
Line 62: Line 62:
* [http://www.thep.lu.se/~torbjorn/Pythia.html The Pythia/Jetset Monte Carlo event generator]
* [http://www.thep.lu.se/~torbjorn/Pythia.html The Pythia/Jetset Monte Carlo event generator]
* The [http://fastjet.fr/ FastJet] jet clustering program
* The [http://fastjet.fr/ FastJet] jet clustering program
[[Category: प्रायोगिक कण भौतिकी]]


 
[[Category:CS1 English-language sources (en)]]
 
[[Category: Machine Translated Page]]
[[Category:Created On 29/03/2023]]
[[Category:Created On 29/03/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:प्रायोगिक कण भौतिकी]]

Latest revision as of 17:26, 3 May 2023

शीर्ष क्वार्क और प्रति शीर्ष क्वार्क की युगल जेट में क्षय हो रही है, टेवाट्रॉन में फर्मिलैब संसूचक में कोलाइडर संसूचक में कण ट्रैक और अन्य फर्मों के समांतरित संग्रह के रूप में दिखाई दे रही है।

एक जेट कण भौतिकी या भारी आयन प्रयोग में क्वार्क या ग्लूऑन के हैड्रोजनीकरण द्वारा उत्पादित हैड्रोन और अन्य कणों का एक संकीर्ण शंकु है। क्वांटम क्रोमोगतिकी (क्यूसीडी) बंधन के कारण क्वार्क जैसे रंगीन आवेश वाले कण मुक्त रूप में स्थित नहीं हो सकते हैं, जो मात्र रंगहीन अवस्थाओं की अनुमति देते है। जब रंग आवेश युक्त कोई वस्तु खंडित होती है, तो प्रत्येक खंड कुछ रंग आवेश को अपने साथ ले जाते है। परिरोधन का पालन करने के लिए, ये खंड रंगहीन वस्तुओं का निर्माण करने के लिए अपने चारों ओर अन्य रंगीन वस्तुओं का निर्माण करते हैं। इन वस्तुओं के संयोजन को जेट कहा जाता है, चूंकि सभी खंड एक ही दिशा में यात्रा करते हैं, जिससे कणों के संकीर्ण जेट बनते है। मूल क्वार्क के गुणों को निर्धारित करने के लिए जेट को कण संसूचक में मापा जाता है और अध्ययन किया जाता है।

जेट परिभाषा में जेट आल्गोरिदम और पुनर्संयोजन योजना सम्मिलित है।[1] पूर्व परिभाषित करते है कि कैसे कुछ निवेश, उदा. कण या संसूचक वस्तु, जेट में समूहीकृत होते हैं, जबकि बाद वाला निर्दिष्ट करता है कि जेट को गति कैसे दी जाती है। उदाहरण के लिए, जेट को क्षेपण (कण भौतिकी) द्वारा चित्रित किया जा सकता है। जेट दिशा (जेट अक्ष) को क्षेपण (कण भौतिकी) के रूप में परिभाषित किया जा सकता है। कण भौतिकी प्रयोगों में, जेट सामान्यतः संसूचक कैलोरीमीटर (कण भौतिकी) में ऊर्जा निक्षेपण के समूहों से निर्मित होते हैं। अनुकारित प्रक्रियाओं का अध्ययन करते समय, अनुकारित संसूचक प्रतिक्रिया के आधार पर कैलोरीमीटर जेट का पुनर्निर्माण किया जा सकता है। यद्यपि, अनुकारित प्रतिदर्शों में, विखंडन प्रक्रियाओं से निकलने वाले स्थिर कणों से सीधे जेट का पुनर्निर्माण भी किया जा सकता है। कण-स्तर जेट को प्रायः यथार्थता-जेट कहा जाता है। ठीक जेट आल्गोरिदम सामान्यतः घटना के विकास में विभिन्न स्तरों पर जेट के समान समूह प्राप्त करने की अनुमति देते है। विशिष्ट जेट पुनर्निर्माण एल्गोरिदम हैं, उदाहरण के लिए, प्रति-kT आल्गोरिदम, kT आल्गोरिदम, शंकु आल्गोरिदम। एक विशिष्ट पुनर्संयोजन योजना ई-योजना या 4-सदिश योजना है, जिसमें जेट के 4-सदिश को उसके सभी घटकों के 4-सदिश के योग के रूप में परिभाषित किया गया है।


आपेक्षिकीय भारी आयन भौतिकी में, जेट महत्वपूर्ण हैं क्योंकि प्रारंभिक कठोर प्रकीर्णन टकराव में निर्मित क्यूसीडी पदार्थ के लिए प्राकृतिक जांच है, और इसके चरण को इंगित करते है। जब क्यूसीडी पदार्थ क्वार्क ग्लूऑन प्लाज्मा में एक चरण विनिमय से गुजरते है, तो माध्यम में ऊर्जा हानि अत्यधिक बढ़ जाती है, प्रभावी रूप से बाहर जाने वाले जेट का शमन करती है (तीव्रता को कम करना)।

जेट विश्लेषण तकनीकों के उदाहरण हैं:

  • जेट सहसंबंध
  • सुरुचि लेबल (जैसे, बी- लेबल)
  • जेट उपसंरचना।

लुंड स्ट्रिंग मॉडल जेट विखंडन मॉडल का एक उदाहरण है।

जेट उत्पादन

क्यूसीडी दृढ़ प्रकीर्णन प्रक्रियाओं में जेट का उत्पादन किया जाता है, जो उच्च अनुप्रस्थ गति वाले क्वार्क या ग्लून्स बनाते हैं, या सामूहिक रूप से पार्टोनिक चित्र में पार्टन (कण भौतिकी) कहलाते हैं।

जेट के निश्चित समूह को बनाने की संभावना को जेट उत्पादन अनुप्रस्थ काट द्वारा वर्णित किया गया है, जो पार्टन वितरण फलन द्वारा भारित प्राथमिक प्रक्षोभ क्यूसीडी क्वार्क, प्रतिक्वार्क और ग्लूऑन प्रक्रियाओं का औसत है। सबसे निरंतर जेट युगल उत्पादन प्रक्रिया के लिए, दो कण प्रकीर्णन, एक हैड्रोनिक टक्कर में जेट उत्पादन अनुप्रस्थ काट द्वारा दिया जाता है

द्वारा

  • x, Q2: अनुदैर्ध्य संवेग भिन्न और संवेग स्थानांतरण
  • : प्रतिक्रिया ij → k के लिए प्रक्षोभ क्यूसीडी अनुप्रस्थ काट
  • : बीम a में कण प्रजातियों को खोजने के लिए पार्टन वितरण फलन।

प्राथमिक अनुप्रस्थ काट उदा. पेस्किन एंड श्रोएडर (1995), खंड 17.4 में प्रक्षोभ सिद्धांत के अग्रणी क्रम की गणना। पार्टन वितरण फलन के विभिन्न मानकीकरण की समीक्षा और मोंटे कार्लो घटना उत्पादक के संदर्भ में गणना टी. सोजोस्ट्रैंड एट अल (2003), खंड 7.4.1 में चर्चा की गई है।

जेट विखंडन

प्रक्षोभ क्यूसीडी गणनाओं में अंतिम अवस्था में रंगीन भाग हो सकते हैं, परन्तु मात्र बेरंग हैड्रोन जो अंततः उत्पादित होते हैं, प्रयोगात्मक रूप से देखे जाते हैं। इस प्रकार, एक दी गई प्रक्रिया के परिणामस्वरूप एक संसूचक में क्या देखा गया है, इसका वर्णन करने के लिए, सभी बाहर जाने वाले रंगीन पार्टन को पहले पार्टन बौछार से गुजरना होगा और फिर उत्पादित पार्टन के हैड्रॉन में संयोजन करना होगा। मृदु क्यूसीडी विकिरण, हैड्रॉन के गठन, या दोनों प्रक्रियाओं को एक साथ वर्णित करने के लिए पद विखंडन और हैड्रोजनीकरण प्रायः साहित्य में एक दूसरे के स्थान पर उपयोग किया जाता है।

जैसा कि दृढ़ प्रकीर्णन में उत्पन्न पार्टन अन्योन्यक्रिया से बाहर निकलते है, इसके पृथक्करण के साथ दृढ़ युग्मन स्थिरांक बढ़ेगा। यह क्यूसीडी विकिरण की संभावना को बढ़ाते है, जो मुख्य रूप से प्रारंभिक भाग के संबंध में अल्पकोणीय-कोण है। इस प्रकार, एक पार्टन ग्लून्स विकीर्ण करेगा, जो बदले में
q

q
जोड़े को विकीर्ण करेगा और इसी प्रकार प्रत्येक नवीन पार्टन अपने मूल के साथ लगभग संरेखित होगा। पार्टन घनत्व कार्यों के विखंडन फलनों के साथ स्पाइनर को हल करके इसका वर्णन किया जा सकता है। यह एक डॉकशिट्ज़र [de]-व्लादिमीर ग्रिबोव-लेव लिपाटोव-अल्टारिली-पैरिसि (डीजीएलएपी) प्रकार समीकरण

द्वारा वर्णित है

पार्टन बौछार क्रमिक रूप से कम ऊर्जा के भाग उत्पन्न करते है, और इसलिए प्रक्षोभ क्यूसीडी के लिए वैधता के क्षेत्र से बाहर निकलना चाहिए। परिघटनात्मक मॉडल को उस समय की लंबाई का वर्णन करने के लिए लागू किया जाना चाहिए जब बौछार होती है, और फिर रंगहीन हैड्रोन की बाध्य अवस्था में रंगीन पार्टन के संयोजन होते है, जो स्वाभाविक रूप से गैर-प्रक्षोभ करने वाले होते है। लुंड स्ट्रिंग मॉडल एक उदाहरण है, जिसे कई आधुनिक घटना उत्पादक में लागू किया गया है।

अवरक्त और सरेख सुरक्षा

जेट एल्गोरिद्म अवरक्त सुरक्षित होते है यदि यह मृदु विकिरक जोड़ने के लिए एक घटना को संशोधित करने के बाद जेट के समान समूह का उत्पादन करते है। इसी प्रकार, जेट आल्गोरिदम संरेख सुरक्षित है यदि किसी एक निवेश के संरेखीय विभाजन को प्रारम्भ करने के बाद जेट के अंतिम समूह को नहीं बदला जाता है। जेट आल्गोरिदम को इन दो आवश्यकताओं को पूरा करने के कई कारण हैं। प्रायोगिक रूप से, जेट उपयोगी होते हैं यदि वे बीज पार्टन के विषय में जानकारी रखते हैं। जब उत्पादन किया जाता है, तो बीज पार्टन के पार्टन बौछार से गुजरने की अपेक्षा की जाती है, जिसमें हैड्रोजनीकरण प्रारम्भ होने से पहले लगभग-समरेख विभाजन की श्रृंखला सम्मिलित हो सकती है। इसके अतिरिक्त, जब संसूचक प्रतिक्रिया में अस्थिरता की बात आती है तो जेट एल्गोरिदम दृढ़ होना चाहिए। सैद्धांतिक रूप से, यदि कोई जेट एल्गोरिद्म अवरक्त और सरेख सुरक्षित नहीं है, तो यह गारंटी नहीं दी जा सकती है कि प्रक्षोभ सिद्धांत के किसी भी क्रम पर एक परिमित अनुप्रस्थ काट प्राप्त किया जा सकता है।

यह भी देखें

  • डिजेट घटना

संदर्भ

  1. Salam, Gavin P. (2010-06-01). "जेटोग्राफी की ओर". The European Physical Journal C (in English). 67 (3): 637–686. arXiv:0906.1833. doi:10.1140/epjc/s10052-010-1314-6. ISSN 1434-6052.


बाहरी संबंध