विकिरणी स्थानांतरण: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(8 intermediate revisions by 4 users not shown)
Line 1: Line 1:
{{Short description|Energy transfer in the form of electromagnetic radiation}}
{{Short description|Energy transfer in the form of electromagnetic radiation}}
विकिरणकारी स्थानांतरण को विकिरण परिवहन भी कहा जाता है ऊर्जा [[विद्युत चुम्बकीय विकिरण]] के रूप में ऊर्जा हस्तांतरण की भौतिक घटना है। एक माध्यम से विकिरण का प्रसारण [[अवशोषण]], उत्सर्जन और प्रकीर्णन प्रक्रियाओं द्वारा प्रभावित होता है। विकिरणकारी स्थानांतरण का समीकरण गणितीय रूप में इन अंतःक्रियाओं का वर्णन करता है.और इस प्रकार विकिरणकारी स्थानांतरण समीकरणों में प्रकाशिकी, खगोल भौतिकी, वायुमंडलीय विज्ञान तथा सुदूर संवेदन सहित अनेक विषयों में अनुप्रयोग है। विकिरणकारी स्थानांतरण समीकरण (आरटीई) का विश्लेषणात्मक समाधान सरल मामलों के लिए होता है परंतु जटिल [[बहु-प्रकीर्णन]] प्रभावों के साथ अधिक वास्तविक मीडिया के लिए, संख्यात्मक विधियों की आवश्यकता होती है.वर्तमान लेख मुख्य रूप से [[विकिरण संतुलन की स्थिति]] पर केंद्रित होता है।<ref name="chandrasekhar">
रेडिएटिव ट्रांसफर जिसे रेडिएशन ट्रांसपोर्ट भी कहा जाता है, [[विद्युत चुम्बकीय विकिरण]] के रूप में ऊर्जा हस्तांतरण की भौतिक घटना होती है। एक माध्यम से विकिरण का प्रसार अवशोषण, उत्सर्जन और प्रकीर्णन प्रक्रियाओं से प्रभावित होता है। विकिरण अंतरण का समीकरण गणितीय रूप से इन अंतःक्रियाओं का वर्णन करता है। प्रकाशिकी, खगोल भौतिकी, वायुमंडलीय विज्ञान और सुदूर संवेदन सहित विभिन्न प्रकार के विषयों में विकिरण अंतरण के समीकरणों का अनुप्रयोग होता है। रेडियेटिव ट्रांसफर समीकरण (आरटीई) के विश्लेषणात्मक समाधान सरल स्थितियो के लिए उपस्थित हैं, लेकिन अधिक यथार्थवादी माध्यम के लिए जटिल एकाधिक [[बहु-प्रकीर्णन]] वाले प्रभावों के लिए संख्यात्मक विधियों की आवश्यकता होती है। और इस प्रकार वर्तमान लेख मुख्य रूप से [[विकिरण संतुलन की स्थिति]] पर केंद्रित होता है।<ref name="chandrasekhar">
{{cite book  
{{cite book  
  | author=S. Chandrasekhar
  | author=S. Chandrasekhar
Line 20: Line 20:
</ref>
</ref>
== परिभाषाएँ ==
== परिभाषाएँ ==
विकिरण क्षेत्र को व्यक्त करने वाले मौलिक मान को अन्य क्षेत्रों में विकिरणमापीय दशा मे [[वर्णक्रमीय]] [[वर्णक्रमीय चमक|चमक]] कहा जाता है जिसे प्रायः [[विशिष्ट विकिरण तीव्रता]] कहा जाता है। विकिरण क्षेत्र में अति लघु तत्वों के लिए दोनों इंद्रियों में विद्युतचुंबकीय विकिरण हो सकता है जो प्रत्येक स्थानिक दिशा में गुजर सकता है। रेडियो-मेट्रिक शब्दावली में पारगमन को इस प्रकार पहचाना जा सकता है कि प्रत्येक स्थानिक दिशा में दो इंद्रियों में ऊर्जा की मात्रा प्रति इकाई समय सोर्सिंग मार्ग की सतह के प्रति इकाई क्षेत्र, दूरी पर रिसेप्शन के प्रति इकाई [[ठोस कोण]] द्वारा प्रति इकाई तरंगदैर्ध्य अंतराल विचार किया जा रहा है जिसे ध्रुवीकरण माना जाता है, फिलहाल इन क्षणों के उपेक्षा की जाती है।
विकिरण के एक क्षेत्र का वर्णन करने वाली मौलिक मान को विकिरणमापी शब्दों में [[वर्णक्रमीय चमक]] कहा जाता है जिसे प्रायः अन्य क्षेत्रों में अधिकांशतः [[विशिष्ट विकिरण तीव्रता]] कहा जाता है। विकिरण क्षेत्र में अति लघु तत्वों के लिए विद्युत चुम्बकीय विकिरण दोनों इंद्रियों में इसके माध्यम से प्रत्येक स्थानिक दिशा में गुजर सकता है। विकिरणमापी शब्दों में मार्ग को पूरी तरह से प्रति यूनिट समय में प्रत्येक स्थानिक दिशा में दो इंद्रियों में से प्रत्येक में विकिरणित ऊर्जा की मात्रा से चित्रित किया जा सकता है और इस प्रकार इकाई समय सोर्सिंग मार्ग की सतह के प्रति यूनिट क्षेत्र की दूरी पर रिसेप्शन के प्रति [[ठोस कोण]] द्वारा प्रति इकाई तरंगदैर्ध्य अंतराल पर विचार किया जाता है जिसे ध्रुवीकरण माने जाने पर, फिलहाल इन क्षणों के उपेक्षा की जाती है।


वर्णक्रमीय चमक के संदर्भ में, <math>I_\nu</math>, क्षेत्र के एक क्षेत्र तत्व में बहने वाली ऊर्जा <math>da\,</math> पर स्थित <math>\mathbf{r}</math> समय के भीतर <math>dt\,</math> ठोस कोण में <math>d\Omega</math> दिशा के बारे में <math>\hat{\mathbf{n}}</math> आवृत्ति अंतराल में <math>\nu\,</math> को <math>\nu+d\nu\,</math> होती है
वर्णक्रमीय चमक के संदर्भ में, <math>I_\nu</math>, क्षेत्र के एक क्षेत्र तत्व में बहने वाली ऊर्जा <math>da\,</math> पर स्थित <math>\mathbf{r}</math> समय के भीतर <math>dt\,</math> ठोस कोण में <math>d\Omega</math> दिशा के बारे में <math>\hat{\mathbf{n}}</math> आवृत्ति अंतराल में <math>\nu\,</math> को <math>\nu+d\nu\,</math> होती है
Line 44: Line 44:


=== [[स्थानीय थर्मोडायनामिक संतुलन|स्थानीय ऊष्मागतिक संतुलन]] ===
=== [[स्थानीय थर्मोडायनामिक संतुलन|स्थानीय ऊष्मागतिक संतुलन]] ===
विकिरणी स्थानांतरण के समीकरण का एक विशेष रूप से उपयोगी सरलीकरण स्थानीय ऊष्मागतिक संतुलन एलटीई की शर्तों के तहत होता है। यह ध्यान रखना महत्वपूर्ण है कि स्थानीय संतुलन केवल प्रणाली में कणों के एक निश्चित उपसमुच्चय पर लागू हो सकता है। उदाहरण के लिए एलटीई सामान्यतः केवल भारी कणों पर लागू होता है। एक विकिरण गैस में, गैस द्वारा उत्सर्जित और अवशोषित किए जा रहे फोटॉनों को एलटीई के अस्तित्व के लिए एक दूसरे के साथ या गैस के बड़े कणों के साथ ऊष्मागतिक संतुलन में होने की आवश्यकता नहीं होती है।
विकिरणी स्थानांतरण के समीकरण का एक विशेष रूप से उपयोगी सरलीकरण स्थानीय ऊष्मागतिक संतुलन एलटीई की शर्तों के अनुसार होता है। यह ध्यान रखना महत्वपूर्ण है कि स्थानीय संतुलन केवल प्रणाली में कणों के एक निश्चित उपसमुच्चय पर लागू हो सकता है। उदाहरण के लिए एलटीई सामान्यतः केवल भारी कणों पर लागू होता है। एक विकिरण गैस में, गैस द्वारा उत्सर्जित और अवशोषित किए जा रहे फोटॉनों को एलटीई के अस्तित्व के लिए एक दूसरे के साथ या गैस के बड़े कणों के साथ ऊष्मागतिक संतुलन में होने की आवश्यकता नहीं होती है।


इस स्थिति में, अवशोषित/उत्सर्जक माध्यम में बड़े पैमाने पर कण होते हैं जो स्थानीय रूप से एक दूसरे के साथ संतुलन में होते हैं, और इसलिए एक निश्चित तापमान ([[ऊष्मप्रवैगिकी का शून्य नियम]] होता है। चूंकि, विकिरण क्षेत्र संतुलन में नहीं होता है और पूरी तरह से बड़े कणों की उपस्थिति से संचालित होता है। और इस प्रकार एलटीई में एक माध्यम के लिए उत्सर्जन गुणांक और अवशोषण गुणांक केवल तापमान और घनत्व के कार्य के रूप में होते है और जिसे इस प्रकार दिखाया जाता है
इस स्थिति में, अवशोषित/उत्सर्जक माध्यम में बड़े पैमाने पर कण होते हैं जो स्थानीय रूप से एक दूसरे के साथ संतुलन में होते हैं, और इसलिए एक निश्चित तापमान ([[ऊष्मप्रवैगिकी का शून्य नियम]] होता है। चूंकि, विकिरण क्षेत्र संतुलन में नहीं होता है और पूरी तरह से बड़े कणों की उपस्थिति से संचालित होता है। और इस प्रकार एलटीई में एक माध्यम के लिए उत्सर्जन गुणांक और अवशोषण गुणांक केवल तापमान और घनत्व के कार्य के रूप में होते है और जिसे इस प्रकार दिखाया जाता है
Line 168: Line 168:
  |isbn=9780521865562}}
  |isbn=9780521865562}}
{{Authority control}}
{{Authority control}}
[[Category: रेडियोमेट्री]] [[Category: विद्युत चुम्बकीय विकिरण]] [[Category: वायुमंडलीय विकिरण]]


[[Category: Machine Translated Page]]
[[Category:Created On 18/04/2023]]
[[Category:Created On 18/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:रेडियोमेट्री]]
[[Category:वायुमंडलीय विकिरण]]
[[Category:विद्युत चुम्बकीय विकिरण]]

Latest revision as of 18:10, 3 May 2023

रेडिएटिव ट्रांसफर जिसे रेडिएशन ट्रांसपोर्ट भी कहा जाता है, विद्युत चुम्बकीय विकिरण के रूप में ऊर्जा हस्तांतरण की भौतिक घटना होती है। एक माध्यम से विकिरण का प्रसार अवशोषण, उत्सर्जन और प्रकीर्णन प्रक्रियाओं से प्रभावित होता है। विकिरण अंतरण का समीकरण गणितीय रूप से इन अंतःक्रियाओं का वर्णन करता है। प्रकाशिकी, खगोल भौतिकी, वायुमंडलीय विज्ञान और सुदूर संवेदन सहित विभिन्न प्रकार के विषयों में विकिरण अंतरण के समीकरणों का अनुप्रयोग होता है। रेडियेटिव ट्रांसफर समीकरण (आरटीई) के विश्लेषणात्मक समाधान सरल स्थितियो के लिए उपस्थित हैं, लेकिन अधिक यथार्थवादी माध्यम के लिए जटिल एकाधिक बहु-प्रकीर्णन वाले प्रभावों के लिए संख्यात्मक विधियों की आवश्यकता होती है। और इस प्रकार वर्तमान लेख मुख्य रूप से विकिरण संतुलन की स्थिति पर केंद्रित होता है।[1][2]

परिभाषाएँ

विकिरण के एक क्षेत्र का वर्णन करने वाली मौलिक मान को विकिरणमापी शब्दों में वर्णक्रमीय चमक कहा जाता है जिसे प्रायः अन्य क्षेत्रों में अधिकांशतः विशिष्ट विकिरण तीव्रता कहा जाता है। विकिरण क्षेत्र में अति लघु तत्वों के लिए विद्युत चुम्बकीय विकिरण दोनों इंद्रियों में इसके माध्यम से प्रत्येक स्थानिक दिशा में गुजर सकता है। विकिरणमापी शब्दों में मार्ग को पूरी तरह से प्रति यूनिट समय में प्रत्येक स्थानिक दिशा में दो इंद्रियों में से प्रत्येक में विकिरणित ऊर्जा की मात्रा से चित्रित किया जा सकता है और इस प्रकार इकाई समय सोर्सिंग मार्ग की सतह के प्रति यूनिट क्षेत्र की दूरी पर रिसेप्शन के प्रति ठोस कोण द्वारा प्रति इकाई तरंगदैर्ध्य अंतराल पर विचार किया जाता है जिसे ध्रुवीकरण माने जाने पर, फिलहाल इन क्षणों के उपेक्षा की जाती है।

वर्णक्रमीय चमक के संदर्भ में, , क्षेत्र के एक क्षेत्र तत्व में बहने वाली ऊर्जा पर स्थित समय के भीतर ठोस कोण में दिशा के बारे में आवृत्ति अंतराल में को होती है

जहाँ वह कोण है, जो इकाई दिशा सदिश है और इस प्रकार क्षेत्र तत्व के लिए एक सामान्य रूप में होता है। वर्णक्रमीय चमक की इकाइयों को ऊर्जा/समय/क्षेत्र/ठोस कोण/आवृत्ति के रूप में देखा जाता है। एमकेएस इकाइयों में यह W·m−2·sr−1·Hz−1 वाट प्रति वर्ग मीटर-स्टेरेडियन-हर्ट्ज़ के रूप में होता है।

विकिरणी स्थानांतरण का समीकरण

विकिरण हस्तांतरण का समीकरण बस इतना कहता है कि विकिरण की किरण यात्रा करती है, तो यह अवशोषण के लिए ऊर्जा खो देती है और इस प्रकार उत्सर्जन प्रक्रियाओं द्वारा ऊर्जा प्राप्त करती है और प्रकीर्णन से ऊर्जा का पुनर्वितरण करती है। विकिरण अंतरण के लिए समीकरण का विभेदक रूप है

जहाँ प्रकाश की गति है, उत्सर्जन गुणांक है, प्रकीर्णन की अस्पष्टता है, अवशोषण अस्पष्टता है, द्रव्यमान घनत्व है और शब्द एक सतह पर अन्य दिशाओं से बिखरे हुए विकिरण का प्रतिनिधित्व करता है।

विकिरणी स्थानांतरण के समीकरण का समाधान

विकिरण हस्तांतरण के समीकरण के समाधान कार्य का एक विशाल निकाय बनाते हैं। चूंकि, अंतर अनिवार्य रूप से उत्सर्जन और अवशोषण गुणांक के विभिन्न रूपों के कारण हैं। यदि प्रकीर्णन पर ध्यान नहीं दिया जाता है, तो उत्सर्जन और अवशोषण गुणांक के संदर्भ में एक सामान्य स्थिर अवस्था समाधान के रूप में लिखा जा सकता है

जहाँ पदों के बीच माध्यम की ऑप्टिकल गहराई और :के रूप में है


स्थानीय ऊष्मागतिक संतुलन

विकिरणी स्थानांतरण के समीकरण का एक विशेष रूप से उपयोगी सरलीकरण स्थानीय ऊष्मागतिक संतुलन एलटीई की शर्तों के अनुसार होता है। यह ध्यान रखना महत्वपूर्ण है कि स्थानीय संतुलन केवल प्रणाली में कणों के एक निश्चित उपसमुच्चय पर लागू हो सकता है। उदाहरण के लिए एलटीई सामान्यतः केवल भारी कणों पर लागू होता है। एक विकिरण गैस में, गैस द्वारा उत्सर्जित और अवशोषित किए जा रहे फोटॉनों को एलटीई के अस्तित्व के लिए एक दूसरे के साथ या गैस के बड़े कणों के साथ ऊष्मागतिक संतुलन में होने की आवश्यकता नहीं होती है।

इस स्थिति में, अवशोषित/उत्सर्जक माध्यम में बड़े पैमाने पर कण होते हैं जो स्थानीय रूप से एक दूसरे के साथ संतुलन में होते हैं, और इसलिए एक निश्चित तापमान (ऊष्मप्रवैगिकी का शून्य नियम होता है। चूंकि, विकिरण क्षेत्र संतुलन में नहीं होता है और पूरी तरह से बड़े कणों की उपस्थिति से संचालित होता है। और इस प्रकार एलटीई में एक माध्यम के लिए उत्सर्जन गुणांक और अवशोषण गुणांक केवल तापमान और घनत्व के कार्य के रूप में होते है और जिसे इस प्रकार दिखाया जाता है

जहाँ तापमान T पर कृष्णिका वर्णक्रमीय चमक के रूप में होती है। और इस प्रकार विकिरणी स्थानांतरण के समीकरण का समाधान इस प्रकार दिखाया जाता है

विकिरण हस्तांतरण के समीकरण के समाधान की गणना करने के लिए तापमान प्रोफ़ाइल और माध्यम के घनत्व प्रोफ़ाइल को जानना पर्याप्त है।

एडिंगटन सन्निकटन

एडिंग्टन सन्निकटन दो धारा सन्निकटन (विकिरण स्थानांतरण) का एक विशेष स्थिति के रूप में है। इसका उपयोग समतल-समानांतर माध्यम में वर्णक्रमीय चमक प्राप्त करने के लिए किया जा सकता है, जिसमें गुण केवल लंबवत दिशा में भिन्न होते हैं और इस प्रकार आइसोट्रोपिक आवृत्ति-स्वतंत्र प्रकीर्णन के साथ होता है। यह मानता है कि तीव्रता का एक रैखिक कार्य के रूप में है , अर्थात।

जहाँ स्लैब जैसे माध्यम की सामान्य दिशा है। ध्यान दें कि के संदर्भ में कोणीय अभिन्न व्यक्त करता है चीजों को सरल करता है क्योंकि गोलाकार समन्वय प्रणाली में जेकोबियन मैट्रिक्स और इंटीग्रल के निर्धारक में प्रकट होता है।

K संबंध में वर्णक्रमीय चमक के पहले कुछ क्षण रूप में उत्पन्न होते है

इस प्रकार एडिंगटन सन्निकटन सेटिंग के बराबर होते है . एडिंगटन सन्निकटन के उच्च क्रम के संस्करण भी उपस्थित हैं और तीव्रता के क्षणों के अधिक जटिल रैखिक संबंध के रूप में सम्मलित हैं। इस अतिरिक्त समीकरण का उपयोग क्षणों की काट-छाँट प्रणाली के लिए एक समापन संबंध के रूप में किया जा सकता है।

ध्यान दें कि पहले दो क्षणों के सरल भौतिक अर्थ हैं। एक बिंदु पर आइसोटोपिक तीव्रता है और में उस बिंदु के माध्यम से प्रवाह दिशा में होता है।

प्रकीर्णन वाले गुणांक के साथ एक आइसोट्रोपिक प्रकीर्णन के माध्यम से विकिरण स्थानांतरण स्थानीय ऊष्मागतिक संतुलन द्वारा दिया जाता है

सभी कोणों पर एकीकरण से उत्पन्न होते है

द्वारा पूर्वगुणन करना , और फिर सभी कोणों पर एकीकरण करता है

समापन संबंध में प्रतिस्थापन और संबंध में अंतर करना विकिरण प्रसार समीकरण बनाने के लिए उपरोक्त दो समीकरणों को संयोजित करने की अनुमति देता है

यह समीकरण दिखाता है कि यदि प्रकीर्णन वाली अपारदर्शिता छोटी है तो प्रकीर्णन वाली प्रणालियों में प्रभावी ऑप्टिकल गहराई प्रकीर्णन वाली अपारदर्शिता भिन्न रूप से अलग हो सकती है।

यह भी देखें

संदर्भ

  1. S. Chandrasekhar (1960). Radiative Transfer. Dover Publications Inc. p. 393. ISBN 978-0-486-60590-6.
  2. Jacqueline Lenoble (1985). Radiative Transfer in Scattering and Absorbing Atmospheres: Standard Computational Procedures. A. Deepak Publishing. p. 583. ISBN 978-0-12-451451-5.


अग्रिम पठन