वियोज्य बहुपद: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(9 intermediate revisions by 3 users not shown)
Line 1: Line 1:
गणित में, एक दिए गए [[क्षेत्र (गणित)]] K पर एक [[बहुपद]] P(X) 'पृथक्करणीय' होता है, यदि बहुपद की इसकी जड़ K के [[बीजगणितीय समापन]] में भिन्न (गणित) होती है, अर्थात भिन्न -भिन्न जड़ों की संख्या बराबर होती है बहुपद के बहुपद की डिग्री।<ref>Pages 240-241 of {{Lang Algebra|edition=3}}</ref>
गणित में, किसी दिए गए [[क्षेत्र (गणित)|क्षेत्र]] K पर एक [[बहुपद]] P(X) 'पृथक्करणीय' रूप में होता है, यदि बहुपद के रुट K के [[बीजगणितीय समापन]] में भिन्न रूप में होता है, अर्थात भिन्न -भिन्न रुटो की संख्या बहुपद की कोटि के बराबर होती है।<ref>Pages 240-241 of {{Lang Algebra|edition=3}}</ref>
यह अवधारणा वर्ग-मुक्त बहुपद से निकटता से संबंधित है। यदि K एक पूर्ण क्षेत्र है तो दो अवधारणाएँ मेल खाती हैं। सामान्यतः , P(X) वियोज्य है यदि  और मात्र  यदि यह K युक्त किसी भी क्षेत्र पर वर्ग-मुक्त है,
 
जो धारण करता है यदि और मात्र  यदि P(X) इसके [[औपचारिक व्युत्पन्न]] D P(X) के सहअभाज्य बहुपद हैं।
यह अवधारणा वर्ग-मुक्त बहुपद के निकटता से संबंधित है। यदि K एक पूर्ण क्षेत्र के रूप में है तो दो अवधारणाएँ मेल खाती हैं। सामान्यतः P(X) पृथक्करणीय रूप में होता है और यदि यह K युक्त किसी भी क्षेत्र पर वर्ग मुक्त होता है, जिसमें यह सम्मलित रूप में होता है यदि और केवल P(X) अपने [[औपचारिक व्युत्पन्न]] D P(X) के सहअभाज्य बहुपद के रूप में होता है।


== पुरानी परिभाषा ==
== पुरानी परिभाषा ==
एक पुरानी परिभाषा में, पी(एक्स) को वियोज्य माना जाता था यदि के [एक्स] में इसके प्रत्येक अप्रासंगिक बहुपद कारक आधुनिक परिभाषा में वियोज्य हैं।<ref>N. Jacobson, Basic Algebra I, p. 233</ref> इस परिभाषा में, पृथक्करणीयता क्षेत्र K पर निर्भर करती है; उदाहरण के लिए, किसी पूर्ण क्षेत्र पर किसी भी बहुपद को वियोज्य माना जाएगा। यह परिभाषा, चूंकि  यह गैलोज़ सिद्धांत के लिए सुविधाजनक हो सकती है, अब उपयोग में नहीं है।
एक पुरानी परिभाषा में, ''P''(''X'') को वियोज्य माना जाता है। यदि ''K''[''X''] में इसके प्रत्येक अप्रासंगिक बहुपद कारक आधुनिक परिभाषा के रूप में वियोज्य हैं।<ref>N. Jacobson, Basic Algebra I, p. 233</ref> तो इस परिभाषा में, पृथक्करणीयता क्षेत्र K पर निर्भर करती है; उदाहरण के लिए किसी पूर्ण क्षेत्र पर किसी भी बहुपद को वियोज्य के रूप में माना जाता है। चूंकि, यह परिभाषा गैलोज़ सिद्धांत के लिए सुविधाजनक हो सकती है यह अब उपयोग में नहीं है।


== वियोज्य [[फील्ड एक्सटेंशन]] ==
== वियोज्य क्षेत्र एक्सटेंशन ==
वियोज्य बहुपदों का उपयोग वियोज्य एक्सटेंशन को परिभाषित करने के लिए किया जाता है: एक फ़ील्ड एक्सटेंशन {{math|''K'' ⊂ ''L''}} एक वियोज्य एक्सटेंशन है यदि और मात्र  यदि हर के लिए {{math|''α''}} में {{mvar|L}} जो कि [[बीजगणितीय तत्व]] है {{mvar|K}}, [[न्यूनतम बहुपद (क्षेत्र सिद्धांत)]]।  {{math|''α''}} ऊपर {{mvar|K}} एक वियोज्य बहुपद है।
वियोज्य बहुपदों का उपयोग वियोज्य एक्सटेंशन को परिभाषित करने के लिए किया जाता है और इस प्रकार एक फ़ील्ड एक्सटेंशन {{math|''K'' ⊂ ''L''}} एक वियोज्य एक्सटेंशन के रूप में है, यदि और केवल यदि {{mvar|L}} में प्रत्येक {{math|''α''}} के लिए जो {{mvar|K}} के ऊपर [[बीजगणितीय तत्व]] के रूप में है, तो α का [[न्यूनतम बहुपद]] क्षेत्र सिद्धांत एक वियोज्य बहुपद के रूप में होता है।


अविभाज्य एक्सटेंशन (अर्थात, ऐसे एक्सटेंशन जो वियोज्य नहीं हैं) मात्र सकारात्मक [[विशेषता (बीजगणित)]] में हो सकते हैं।
अविभाज्य एक्सटेंशन अर्थात, ऐसे एक्सटेंशन जो वियोज्य रूप में नहीं हैं और इस प्रकार मात्र सकारात्मक [[विशेषता (बीजगणित)]] रूप में हो सकती हैं।


उपरोक्त मानदंड त्वरित निष्कर्ष की ओर ले जाता है कि यदि पी अप्रासंगिक है और वियोज्य नहीं है, तो डी-पी (एक्स) = 0।
उपरोक्त मानदंड त्वरित निष्कर्ष की ओर ले जाता है कि यदि P अप्रासंगिक रूप में है और वियोज्य नहीं है, तो ''D'' ''P''(''X'') = 0.इस प्रकार हमारे पास होना चाहिए,
इस प्रकार हमारे पास होना चाहिए
: ''P''(''X'') = ''Q''(''X''<sup> ''p''</sup>)
: पी (एक्स) = क्यू (एक्स<sup>&हेयरस्प;प</sup>)
K पर कुछ बहुपद Q के लिए, जहाँ [[अभाज्य संख्या]] p के रूप में एक विशेषता है।
K पर कुछ बहुपद Q के लिए, जहाँ [[अभाज्य संख्या]] p विशेषता है।


इस सुराग से हम एक उदाहरण बना सकते हैं:
इस संकेत से हम एक उदाहरण बना सकते हैं, जो इस रूप में होता है
: पी (एक्स) = एक्स<sup>&hairsp;p</sup> − टी
: ''P''(''X'') = ''X''<sup> ''p''</sup> − ''T''
K के साथ p तत्वों के साथ [[परिमित क्षेत्र]] पर अनिश्चित T में [[तर्कसंगत कार्य]]ों का क्षेत्र। यहां कोई [[गणितीय प्रमाण]] सीधे तौर पर दे सकता है कि P(X) अप्रासंगिक है और वियोज्य नहीं है। यह वास्तव में एक विशिष्ट उदाहरण है कि अविभाज्यता क्यों मायने रखती है; ज्यामितीय शब्दों में P परिमित क्षेत्र पर प्रक्षेप्य रेखा पर मानचित्रण का प्रतिनिधित्व करता है, जो उनकी pth शक्ति के लिए समन्वय करता है। ऐसे मानचित्रण परिमित क्षेत्रों की [[बीजगणितीय ज्यामिति]] के लिए मौलिक हैं। दूसरा विधि  रखो, उस सेटिंग में ऐसे आवरण हैं जिन्हें गैलोज़ सिद्धांत द्वारा 'देखा' नहीं जा सकता है। (उच्च स्तरीय चर्चा के लिए रेडिकल आकारिकी देखें।)
K के साथ p तत्वों के साथ [[परिमित क्षेत्र]] पर अनिश्चित T में [[तर्कसंगत कार्य|तर्कसंगत]] फलनों के क्षेत्र के रूप में होता है। यहां कोई [[गणितीय प्रमाण]] प्रत्यक्ष रूप से साबित कर सकता है कि P(X) अप्रासंगिक रूप में है और वियोज्य नहीं है। यह वास्तव में एक विशिष्ट उदाहरण के रूप में है और इस प्रकार अविभाज्यता क्यों मायने रखती है; ज्यामितीय शब्दों में P उनकी pth शक्ति के निर्देशांक के लिए समन्वय करता है। और परिमित क्षेत्र पर प्रक्षेप्य रेखा पर मानचित्रण का प्रतिनिधित्व करता है। ऐसे मानचित्रण परिमित क्षेत्रों की [[बीजगणितीय ज्यामिति]] के लिए मौलिक रूप में हैं। दूसरे तरीके से कहें तो उस सेटिंग में ऐसे आवरण हैं, जिन्हें गैलोज़ सिद्धांत द्वारा 'देखा' नहीं जा सकता है और इस प्रकार उच्च स्तरीय चर्चा के लिए रेडिकल आकारिकी को देखते है।


यदि L क्षेत्र विस्तार है
यदि L क्षेत्र विस्तार है
: के (टी<sup>&हेयरस्प;1/p</sup>),
: ''K''(''T''<sup> 1/''p''</sup>),
दूसरे शब्दों में, P का [[विभाजन क्षेत्र]], फिर L/K [[विशुद्ध रूप से अविभाज्य क्षेत्र विस्तार]] का एक उदाहरण है। यह डिग्री पी का है, लेकिन पहचान के अतिरिक्त , के को ठीक करने वाला कोई [[ automorphism ]] नहीं है, क्योंकि टी<sup>&hairsp;1/p</sup> P का अनूठा मूल है। यह सीधे तौर पर दिखाता है कि गैल्वा सिद्धांत को यहाँ टूटना चाहिए। ऐसा क्षेत्र जिसमें ऐसा कोई विस्तार न हो, उत्तम कहलाता है। यह परिमित क्षेत्र अपनी ज्ञात संरचना से एक पोस्टरियोरी का अनुसरण करता है।
दूसरे शब्दों में, P का [[विभाजन क्षेत्र]], फिर L/K का विभाजन क्षेत्र [[विशुद्ध रूप से अविभाज्य क्षेत्र विस्तार]] का एक उदाहरण है। यह कोटि p का है, लेकिन आइडेंटिटी के अतिरिक्त K को ठीक करने वाला कोई[[ automorphism | ऑटोमोर्फिज्म]] नहीं है, क्योंकि T 1/p, P का अनूठा मूल है। यह प्रत्यक्ष रूप से दिखाता है कि गैलोज़ सिद्धांत को यहाँ टूटना चाहिए। ऐसा कोई क्षेत्र जिसमें ऐसा विस्तार न हुआ हो उत्तम कहलाता है। यह परिमित क्षेत्र अपनी ज्ञात संरचना से एक पोस्टरियोरी का अनुसरण करता है।


कोई यह दिखा सकता है कि इस उदाहरण के लिए K के ऊपर L के क्षेत्रों के टेन्सर उत्पाद में गैर-शून्य तत्व हैं। यह अविभाज्यता की एक और अभिव्यक्ति है: अर्थात्, खेतों पर टेंसर उत्पाद संचालन को एक [[अंगूठी (गणित)]] उत्पन्न करने की आवश्यकता नहीं है जो कि खेतों का एक उत्पाद है (इसलिए, एक [[ क्रमविनिमेय अंगूठी ]] [[अर्द्ध साधारण अंगूठी]] नहीं)।
कोई यह दिखा सकता है कि इस उदाहरण के लिए K के ऊपर L के क्षेत्रों के टेन्सर उत्पाद में गैर-शून्य तत्व के रूप में होता है। यह अविभाज्यता की एक और अभिव्यक्ति के रूप में होता है अर्थात्, खेतों पर टेंसर उत्पाद संचालन को [[अंगूठी (गणित)|रिंग (गणित)]] उत्पन्न करने की आवश्यकता नहीं होती है, जो फ़ील्ड्स का एक उत्पाद है, इसलिए एक[[ क्रमविनिमेय अंगूठी | क्रमविनिमेय रिंग]] [[अर्द्ध साधारण अंगूठी|अर्द्ध साधारण रिंग]] के रूप में नहीं होती है।


यदि P(x) वियोज्य है, और इसकी जड़ें एक [[समूह (गणित)]] (क्षेत्र K का एक [[उपसमूह]]) बनाती हैं, तो P(x) एक योगात्मक बहुपद है।
यदि P(x) वियोज्य के रूप में है और इसकी रुट [[समूह (गणित)]] क्षेत्र K का एक [[उपसमूह]] बनाती हैं, जो P(x) के एक योगात्मक बहुपद के रूप में है।


== गाल्वा सिद्धांत में अनुप्रयोग ==
== गाल्वा सिद्धांत में अनुप्रयोग ==
गैलोज़ सिद्धांत में वियोज्य बहुपद अधिकांशतः होते हैं।
गैलोज़ सिद्धांत में वियोज्य बहुपद अधिकांशतः रूप में होते हैं।


उदाहरण के लिए, पी को [[पूर्णांक]] गुणांक के साथ एक अलघुकरणीय बहुपद होने दें और पी एक अभाज्य संख्या हो जो पी के प्रमुख गुणांक को विभाजित नहीं करता है। क्यू को पी तत्वों के साथ परिमित क्षेत्र पर बहुपद होने दें, जो [[मॉड्यूलर अंकगणित]]ीय पी को कम करके प्राप्त किया जाता है। पी के गुणांक। फिर, यदि क्यू वियोज्य है (जो कि प्रत्येक पी के लिए स्थिति  है लेकिन एक परिमित संख्या है) तो क्यू के अलघुकरणीय कारकों की डिग्री पी के गैलोइस समूह के कुछ क्रम[[परिवर्तन]] के [[चक्रीय क्रमपरिवर्तन]] की लंबाई है।
उदाहरण के लिए, ''P'' को [[पूर्णांक]] गुणांक के साथ एक अलघुकरणीय बहुपद के रूप में होता है और P एक अभाज्य संख्या है, जो P के प्रमुख गुणांक को विभाजित नहीं करता है। और इस प्रकार Q को P तत्वों के साथ परिमित क्षेत्र पर बहुपद के रूप में होते है, जो P के गुणांक [[मॉड्यूलर अंकगणित|मॉड्यूलर अंकगणितीय]] P को कम करके प्राप्त किया जाता है। फिर यदि क्यू वियोज्य है, तो Q के अलघुकरणीय कारकों की कोटि P के गैलोइस समूह के कुछ क्रमपरिवर्तन चक्रों की लंबाई है। जो कि प्रत्येक P के लिए एक अवलोकन है और इस प्रकार यह एक परिमित संख्या है


एक अन्य उदाहरण: P जैसा कि ऊपर है, समूह G के लिए एक 'रिज़ॉल्वेंट' R एक बहुपद है जिसके गुणांक P के गुणांकों में बहुपद हैं, जो P के गैलोज़ समूह पर कुछ जानकारी प्रदान करता है। अधिक सटीक रूप से, यदि R वियोज्य है और है एक परिमेय संख्या मूल है तो P का Galois समूह G में निहित है। उदाहरण के लिए, यदि D, P का विविक्तकर है तो <math>X^2-D</math> [[वैकल्पिक समूह]] के लिए एक विलायक है। यह विलायक निरंतर वियोज्य होता है (यह मानते हुए कि विशेषता 2 नहीं है) यदि पी अलघुकरणीय है, लेकिन अधिकांश विलायक निरंतर वियोज्य नहीं होते हैं।
एक अन्य उदाहरण: P जैसा कि ऊपर है, समूह G के लिए एक 'विलायक ' R के एक बहुपद है जिसका गुणांक P के गुणांकों में बहुपद के रूप में हैं, जो P के गैलोज़ समूह पर इस प्रकार अधिक सटीक रूप से कुछ जानकारी प्रदान करता है और यदि R वियोज्य है और एक परिमेय संख्या रुट है तो P का गैलोइस समूह G के रूप में निहित होता है। उदाहरण के लिए यदि D, P का विविक्तकर है तो <math>X^2-D</math> [[वैकल्पिक समूह]] के लिए एक विलायक के रूप में है। यह विलायक निरंतर पृथक्करणीय रूप में होता है और इसे कैरिक्टरिस्टिक कहते हैं, यह 2 के स्वरूप में नहीं है और इस प्रकार यदि P अलघुकरणीय है, लेकिन अधिकांश विलायक निरंतर वियोज्य रूप में नहीं होते हैं।


== यह भी देखें ==
== यह भी देखें ==
Line 41: Line 40:
{{Reflist}}
{{Reflist}}
* Pages 240-241 of {{Lang Algebra|edition=3}}
* Pages 240-241 of {{Lang Algebra|edition=3}}
[[Category: क्षेत्र (गणित)]] [[Category: बहुपदों]]


[[Category: Machine Translated Page]]
[[Category:Created On 27/04/2023]]
[[Category:Created On 27/04/2023]]
[[Category:Machine Translated Page]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:क्षेत्र (गणित)]]
[[Category:बहुपदों]]

Latest revision as of 21:30, 3 May 2023

गणित में, किसी दिए गए क्षेत्र K पर एक बहुपद P(X) 'पृथक्करणीय' रूप में होता है, यदि बहुपद के रुट K के बीजगणितीय समापन में भिन्न रूप में होता है, अर्थात भिन्न -भिन्न रुटो की संख्या बहुपद की कोटि के बराबर होती है।[1]

यह अवधारणा वर्ग-मुक्त बहुपद के निकटता से संबंधित है। यदि K एक पूर्ण क्षेत्र के रूप में है तो दो अवधारणाएँ मेल खाती हैं। सामान्यतः P(X) पृथक्करणीय रूप में होता है और यदि यह K युक्त किसी भी क्षेत्र पर वर्ग मुक्त होता है, जिसमें यह सम्मलित रूप में होता है यदि और केवल P(X) अपने औपचारिक व्युत्पन्न D P(X) के सहअभाज्य बहुपद के रूप में होता है।

पुरानी परिभाषा

एक पुरानी परिभाषा में, P(X) को वियोज्य माना जाता है। यदि K[X] में इसके प्रत्येक अप्रासंगिक बहुपद कारक आधुनिक परिभाषा के रूप में वियोज्य हैं।[2] तो इस परिभाषा में, पृथक्करणीयता क्षेत्र K पर निर्भर करती है; उदाहरण के लिए किसी पूर्ण क्षेत्र पर किसी भी बहुपद को वियोज्य के रूप में माना जाता है। चूंकि, यह परिभाषा गैलोज़ सिद्धांत के लिए सुविधाजनक हो सकती है यह अब उपयोग में नहीं है।

वियोज्य क्षेत्र एक्सटेंशन

वियोज्य बहुपदों का उपयोग वियोज्य एक्सटेंशन को परिभाषित करने के लिए किया जाता है और इस प्रकार एक फ़ील्ड एक्सटेंशन KL एक वियोज्य एक्सटेंशन के रूप में है, यदि और केवल यदि L में प्रत्येक α के लिए जो K के ऊपर बीजगणितीय तत्व के रूप में है, तो α का न्यूनतम बहुपद क्षेत्र सिद्धांत एक वियोज्य बहुपद के रूप में होता है।

अविभाज्य एक्सटेंशन अर्थात, ऐसे एक्सटेंशन जो वियोज्य रूप में नहीं हैं और इस प्रकार मात्र सकारात्मक विशेषता (बीजगणित) रूप में हो सकती हैं।

उपरोक्त मानदंड त्वरित निष्कर्ष की ओर ले जाता है कि यदि P अप्रासंगिक रूप में है और वियोज्य नहीं है, तो DP(X) = 0.इस प्रकार हमारे पास होना चाहिए,

P(X) = Q(Xp)

K पर कुछ बहुपद Q के लिए, जहाँ अभाज्य संख्या p के रूप में एक विशेषता है।

इस संकेत से हम एक उदाहरण बना सकते हैं, जो इस रूप में होता है

P(X) = XpT

K के साथ p तत्वों के साथ परिमित क्षेत्र पर अनिश्चित T में तर्कसंगत फलनों के क्षेत्र के रूप में होता है। यहां कोई गणितीय प्रमाण प्रत्यक्ष रूप से साबित कर सकता है कि P(X) अप्रासंगिक रूप में है और वियोज्य नहीं है। यह वास्तव में एक विशिष्ट उदाहरण के रूप में है और इस प्रकार अविभाज्यता क्यों मायने रखती है; ज्यामितीय शब्दों में P उनकी pth शक्ति के निर्देशांक के लिए समन्वय करता है। और परिमित क्षेत्र पर प्रक्षेप्य रेखा पर मानचित्रण का प्रतिनिधित्व करता है। ऐसे मानचित्रण परिमित क्षेत्रों की बीजगणितीय ज्यामिति के लिए मौलिक रूप में हैं। दूसरे तरीके से कहें तो उस सेटिंग में ऐसे आवरण हैं, जिन्हें गैलोज़ सिद्धांत द्वारा 'देखा' नहीं जा सकता है और इस प्रकार उच्च स्तरीय चर्चा के लिए रेडिकल आकारिकी को देखते है।

यदि L क्षेत्र विस्तार है

K(T 1/p),

दूसरे शब्दों में, P का विभाजन क्षेत्र, फिर L/K का विभाजन क्षेत्र विशुद्ध रूप से अविभाज्य क्षेत्र विस्तार का एक उदाहरण है। यह कोटि p का है, लेकिन आइडेंटिटी के अतिरिक्त K को ठीक करने वाला कोई ऑटोमोर्फिज्म नहीं है, क्योंकि T 1/p, P का अनूठा मूल है। यह प्रत्यक्ष रूप से दिखाता है कि गैलोज़ सिद्धांत को यहाँ टूटना चाहिए। ऐसा कोई क्षेत्र जिसमें ऐसा विस्तार न हुआ हो उत्तम कहलाता है। यह परिमित क्षेत्र अपनी ज्ञात संरचना से एक पोस्टरियोरी का अनुसरण करता है।

कोई यह दिखा सकता है कि इस उदाहरण के लिए K के ऊपर L के क्षेत्रों के टेन्सर उत्पाद में गैर-शून्य तत्व के रूप में होता है। यह अविभाज्यता की एक और अभिव्यक्ति के रूप में होता है अर्थात्, खेतों पर टेंसर उत्पाद संचालन को रिंग (गणित) उत्पन्न करने की आवश्यकता नहीं होती है, जो फ़ील्ड्स का एक उत्पाद है, इसलिए एक क्रमविनिमेय रिंग अर्द्ध साधारण रिंग के रूप में नहीं होती है।

यदि P(x) वियोज्य के रूप में है और इसकी रुट समूह (गणित) क्षेत्र K का एक उपसमूह बनाती हैं, जो P(x) के एक योगात्मक बहुपद के रूप में है।

गाल्वा सिद्धांत में अनुप्रयोग

गैलोज़ सिद्धांत में वियोज्य बहुपद अधिकांशतः रूप में होते हैं।

उदाहरण के लिए, P को पूर्णांक गुणांक के साथ एक अलघुकरणीय बहुपद के रूप में होता है और P एक अभाज्य संख्या है, जो P के प्रमुख गुणांक को विभाजित नहीं करता है। और इस प्रकार Q को P तत्वों के साथ परिमित क्षेत्र पर बहुपद के रूप में होते है, जो P के गुणांक मॉड्यूलर अंकगणितीय P को कम करके प्राप्त किया जाता है। फिर यदि क्यू वियोज्य है, तो Q के अलघुकरणीय कारकों की कोटि P के गैलोइस समूह के कुछ क्रमपरिवर्तन चक्रों की लंबाई है। जो कि प्रत्येक P के लिए एक अवलोकन है और इस प्रकार यह एक परिमित संख्या है

एक अन्य उदाहरण: P जैसा कि ऊपर है, समूह G के लिए एक 'विलायक ' R के एक बहुपद है जिसका गुणांक P के गुणांकों में बहुपद के रूप में हैं, जो P के गैलोज़ समूह पर इस प्रकार अधिक सटीक रूप से कुछ जानकारी प्रदान करता है और यदि R वियोज्य है और एक परिमेय संख्या रुट है तो P का गैलोइस समूह G के रूप में निहित होता है। उदाहरण के लिए यदि D, P का विविक्तकर है तो वैकल्पिक समूह के लिए एक विलायक के रूप में है। यह विलायक निरंतर पृथक्करणीय रूप में होता है और इसे कैरिक्टरिस्टिक कहते हैं, यह 2 के स्वरूप में नहीं है और इस प्रकार यदि P अलघुकरणीय है, लेकिन अधिकांश विलायक निरंतर वियोज्य रूप में नहीं होते हैं।

यह भी देखें

संदर्भ

  1. Pages 240-241 of Lang, Serge (1993), Algebra (Third ed.), Reading, Mass.: Addison-Wesley, ISBN 978-0-201-55540-0, Zbl 0848.13001
  2. N. Jacobson, Basic Algebra I, p. 233