सोबोलेव स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 2: Line 2:
गणित में, एक सोबोलिव स्पेस एक वेक्टर स्पेस से लैस फलनों का एक सदिश स्थान है। यह किसी दिए गए क्रम तक इसके डेरिवेटिव के साथ फलनों के एलपी-मानदंडों का संयोजन है। अंतरिक्ष को [[पूर्ण मीट्रिक स्थान]] बनाने के लिए डेरिवेटिव्स को एक उपयुक्त [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]] माना जाता है, अर्थात् एक [[बनच स्थान|बनैच स्थान]] सहज रूप से एक सोबोलेव स्पेस कुछ एप्लिकेशन डोमेन के लिए पर्याप्त डेरिवेटिव वाले फलनों का एक स्थान है। जैसे आंशिक अंतर समीकरण और एक मानक से लैस है। जो फलन के आकार और नियमितता दोनों को मापता है।
गणित में, एक सोबोलिव स्पेस एक वेक्टर स्पेस से लैस फलनों का एक सदिश स्थान है। यह किसी दिए गए क्रम तक इसके डेरिवेटिव के साथ फलनों के एलपी-मानदंडों का संयोजन है। अंतरिक्ष को [[पूर्ण मीट्रिक स्थान]] बनाने के लिए डेरिवेटिव्स को एक उपयुक्त [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]] माना जाता है, अर्थात् एक [[बनच स्थान|बनैच स्थान]] सहज रूप से एक सोबोलेव स्पेस कुछ एप्लिकेशन डोमेन के लिए पर्याप्त डेरिवेटिव वाले फलनों का एक स्थान है। जैसे आंशिक अंतर समीकरण और एक मानक से लैस है। जो फलन के आकार और नियमितता दोनों को मापता है।


सोबोलेव रिक्त स्थान का नाम रूसी [[गणितज्ञ]] [[सर्गेई लावोविच सोबोलेव]] के नाम पर रखा गया है। उनका महत्व इस तथ्य से आता है कि कुछ महत्वपूर्ण आंशिक अंतर समीकरणों का कमजोर समाधान उचित सोबोलिव रिक्त स्थान में मौजूद है, भले ही शास्त्रीय अर्थों में डेरिवेटिव्स के साथ [[निरंतर कार्य]]ों के रिक्त स्थान में कोई मजबूत समाधान न हो।
सोबोलेव रिक्त स्थान का नाम रूसी [[गणितज्ञ]] [[सर्गेई लावोविच सोबोलेव]] के नाम पर रखा गया है। उनका महत्व इस तथ्य से प्रदर्शित किया जाता है कि कुछ महत्वपूर्ण एवं आंशिक अंतर समीकरणों का अशक्त हल उचित सोबोलिव रिक्त स्थान में उपस्थित है। तथापि मौलिक अर्थों में डेरिवेटिव्स के साथ [[निरंतर कार्य|निरंतर कार्यों]] के रिक्त स्थान में कोई शक्तिशाली हल नहीे प्राप्त हुआ है।


== प्रेरणा ==
== प्रेरणा ==
Line 16: Line 16:


:<math>D^{\alpha\!}f = \frac{\partial^{| \alpha |}\! f}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}}.</math>
:<math>D^{\alpha\!}f = \frac{\partial^{| \alpha |}\! f}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}}.</math>
इस समीकरण का बायां हाथ अभी भी समझ में आता है अगर हम केवल मान लें <math>u</math> [[स्थानीय रूप से एकीकृत]] होने के लिए। यदि कोई स्थानीय रूप से एकीकृत कार्य मौजूद है <math>v</math>, ऐसा है कि
इस समीकरण का बायां हाथ अभी भी समझ में आता है अगर हम केवल मान लें <math>u</math> [[स्थानीय रूप से एकीकृत]] होने के लिए। यदि कोई स्थानीय रूप से एकीकृत कार्य उपस्थित है <math>v</math>, ऐसा है कि


:<math> \int_\Omega u\,D^{\alpha\!}\varphi\;dx=(-1)^{|\alpha|}\int_\Omega v\,\varphi  \;dx \qquad\text{for all }\varphi\in C_c^\infty(\Omega),</math>
:<math> \int_\Omega u\,D^{\alpha\!}\varphi\;dx=(-1)^{|\alpha|}\int_\Omega v\,\varphi  \;dx \qquad\text{for all }\varphi\in C_c^\infty(\Omega),</math>
फिर हम फोन करते हैं <math>v</math> कमजोर व्युत्पन्न|कमजोर <math>\alpha</math>-वाँ आंशिक व्युत्पन्न <math>u</math>. अगर कोई कमजोर है <math>\alpha</math>-वाँ आंशिक व्युत्पन्न <math>u</math>, तब इसे [[लगभग हर जगह]] विशिष्ट रूप से परिभाषित किया जाता है, और इस प्रकार यह विशिष्ट रूप से Lp स्थान के एक तत्व के रूप में निर्धारित होता है। वहीं दूसरी ओर अगर <math>u\in C^k(\Omega)</math>, तब शास्त्रीय और कमजोर व्युत्पन्न मेल खाते हैं। इस प्रकार, यदि <math>v</math> एक कमजोर है <math>\alpha</math>-वाँ आंशिक व्युत्पन्न <math>u</math>, हम इसे द्वारा निरूपित कर सकते हैं <math>D^\alpha u := v</math>.
फिर हम फोन करते हैं <math>v</math> अशक्त व्युत्पन्न|अशक्त <math>\alpha</math>-वाँ आंशिक व्युत्पन्न <math>u</math>. अगर कोई अशक्त है <math>\alpha</math>-वाँ आंशिक व्युत्पन्न <math>u</math>, तब इसे [[लगभग हर जगह]] विशिष्ट रूप से परिभाषित किया जाता है, और इस प्रकार यह विशिष्ट रूप से Lp स्थान के एक तत्व के रूप में निर्धारित होता है। वहीं दूसरी ओर अगर <math>u\in C^k(\Omega)</math>, तब मौलिक और अशक्त व्युत्पन्न मेल खाते हैं। इस प्रकार, यदि <math>v</math> एक अशक्त है <math>\alpha</math>-वाँ आंशिक व्युत्पन्न <math>u</math>, हम इसे द्वारा निरूपित कर सकते हैं <math>D^\alpha u := v</math>.


उदाहरण के लिए, समारोह
उदाहरण के लिए, समारोह
Line 36: Line 36:
0 & \text{else}
0 & \text{else}
\end{cases}</math>
\end{cases}</math>
के कमजोर व्युत्पन्न होने की परिभाषा को संतुष्ट करता है <math>u(x),</math> जो तब सोबोलिव अंतरिक्ष में होने के योग्य है <math>W^{1,p}</math> (किसी भी अनुमति के लिए <math>p</math>, नीचे परिभाषा देखें)।
के अशक्त व्युत्पन्न होने की परिभाषा को संतुष्ट करता है <math>u(x),</math> जो तब सोबोलिव अंतरिक्ष में होने के योग्य है <math>W^{1,p}</math> (किसी भी अनुमति के लिए <math>p</math>, नीचे परिभाषा देखें)।


सोबोलेव रिक्त स्थान <math>W^{k,p}(\Omega)</math> कमजोर भिन्नता और [[एलपी मानदंड]] की अवधारणाओं को मिलाएं।
सोबोलेव रिक्त स्थान <math>W^{k,p}(\Omega)</math> अशक्त भिन्नता और [[एलपी मानदंड]] की अवधारणाओं को मिलाएं।


== पूर्णांक k == के साथ सोबोलेव रिक्त स्थान
== पूर्णांक k == के साथ सोबोलेव रिक्त स्थान


=== एक आयामी मामला ===
=== एक आयामी मामला ===
एक आयामी मामले में सोबोलेव स्पेस <math>W^{k,p}(\R)</math> के लिए <math>1 \le p \le \infty</math> कार्यों के सबसेट के रूप में परिभाषित किया गया है <math>f</math> एलपी स्पेस में|<math>L^p(\R)</math>ऐसा है कि <math>f</math> और इसके कमजोर डेरिवेटिव ऑर्डर तक <math>k</math> एक परिमित एलपी मानदंड है |{{math|''L<sup>p</sup>''}} मानदंड। जैसा कि ऊपर उल्लेख किया गया है, उचित अर्थों में डेरिवेटिव को परिभाषित करने के लिए कुछ सावधानी बरतनी चाहिए। एक आयामी समस्या में यह मान लेना पर्याप्त है कि <math>(k{-}1)</math>-वें व्युत्पन्न <math>f^{(k-1)}</math> लगभग हर जगह अलग-अलग है और इसके व्युत्पन्न के लेबेस्ग्यू एकीकरण के लिए लगभग हर जगह बराबर है (इसमें अप्रासंगिक उदाहरण शामिल नहीं हैं जैसे कि कैंटर फ़ंक्शन | कैंटर का फ़ंक्शन)।
एक आयामी मामले में सोबोलेव स्पेस <math>W^{k,p}(\R)</math> के लिए <math>1 \le p \le \infty</math> कार्यों के सबसेट के रूप में परिभाषित किया गया है <math>f</math> एलपी स्पेस में|<math>L^p(\R)</math>ऐसा है कि <math>f</math> और इसके अशक्त डेरिवेटिव ऑर्डर तक <math>k</math> एक परिमित एलपी मानदंड है |{{math|''L<sup>p</sup>''}} मानदंड। जैसा कि ऊपर उल्लेख किया गया है, उचित अर्थों में डेरिवेटिव को परिभाषित करने के लिए कुछ सावधानी बरतनी चाहिए। एक आयामी समस्या में यह मान लेना पर्याप्त है कि <math>(k{-}1)</math>-वें व्युत्पन्न <math>f^{(k-1)}</math> लगभग हर जगह अलग-अलग है और इसके व्युत्पन्न के लेबेस्ग्यू एकीकरण के लिए लगभग हर जगह बराबर है (इसमें अप्रासंगिक उदाहरण शामिल नहीं हैं जैसे कि कैंटर फ़ंक्शन | कैंटर का फ़ंक्शन)।


इस परिभाषा के साथ, सोबोलेव रिक्त स्थान एक प्राकृतिक नॉर्म्ड सदिश स्थान स्वीकार करते हैं,
इस परिभाषा के साथ, सोबोलेव रिक्त स्थान एक प्राकृतिक नॉर्म्ड सदिश स्थान स्वीकार करते हैं,
Line 84: Line 84:


:<math>f^{(\alpha)} = \frac{\partial^{| \alpha |\!} f}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}}</math>
:<math>f^{(\alpha)} = \frac{\partial^{| \alpha |\!} f}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}}</math>
कमजोर व्युत्पन्न अर्थ में मौजूद है और अंदर है <math>L^p(\Omega),</math> अर्थात।
अशक्त व्युत्पन्न अर्थ में उपस्थित है और अंदर है <math>L^p(\Omega),</math> अर्थात।


:<math>\left \|f^{(\alpha)} \right \|_{L^{p}} < \infty.</math>
:<math>\left \|f^{(\alpha)} \right \|_{L^{p}} < \infty.</math>
Line 107: Line 107:


==== चिकनी कार्यों द्वारा सन्निकटन ====
==== चिकनी कार्यों द्वारा सन्निकटन ====
केवल उनकी परिभाषा के आधार पर सोबोलेव रिक्त स्थान के साथ काम करना कठिन है। इसलिए यह जानना दिलचस्प है कि मेयर्स-सेरिन प्रमेय द्वारा एक कार्य <math>u \in W^{k,p}(\Omega)</math> [[सुचारू कार्य]]ों द्वारा अनुमानित किया जा सकता है। यह तथ्य अक्सर हमें सुचारू कार्यों के गुणों को सोबोलेव कार्यों में अनुवाद करने की अनुमति देता है। अगर <math>p</math> परिमित है और <math>\Omega</math> खुला है, तो किसी के लिए मौजूद है <math>u \in W^{k,p}(\Omega)</math> कार्यों का अनुमानित क्रम <math>u_m \in C^{\infty}(\Omega)</math> ऐसा है कि:
केवल उनकी परिभाषा के आधार पर सोबोलेव रिक्त स्थान के साथ काम करना कठिन है। इसलिए यह जानना दिलचस्प है कि मेयर्स-सेरिन प्रमेय द्वारा एक कार्य <math>u \in W^{k,p}(\Omega)</math> [[सुचारू कार्य]]ों द्वारा अनुमानित किया जा सकता है। यह तथ्य अक्सर हमें सुचारू कार्यों के गुणों को सोबोलेव कार्यों में अनुवाद करने की अनुमति देता है। अगर <math>p</math> परिमित है और <math>\Omega</math> खुला है, तो किसी के लिए उपस्थित है <math>u \in W^{k,p}(\Omega)</math> कार्यों का अनुमानित क्रम <math>u_m \in C^{\infty}(\Omega)</math> ऐसा है कि:


:<math> \left \| u_m - u \right \|_{W^{k,p}(\Omega)} \to 0.</math>
:<math> \left \| u_m - u \right \|_{W^{k,p}(\Omega)} \to 0.</math>
Line 121: Line 121:


==== सोबोलेव प्रकार्यों का निरन्तर ऑन लाइन्स (एसीएल) अभिलक्षणन ====
==== सोबोलेव प्रकार्यों का निरन्तर ऑन लाइन्स (एसीएल) अभिलक्षणन ====
होने देना <math>1\leqslant p \leqslant \infty.</math> अगर कोई फंक्शन है <math>W^{1,p}(\Omega),</math> फिर, संभवतः माप शून्य के एक सेट पर फ़ंक्शन को संशोधित करने के बाद, समन्वय दिशाओं के समानांतर [[लगभग हर]] पंक्ति पर प्रतिबंध <math>\R^n</math> [[बिल्कुल निरंतर]] है; क्या अधिक है, शास्त्रीय व्युत्पन्न उन रेखाओं के साथ है जो समन्वय दिशाओं के समानांतर हैं <math>L^p(\Omega).</math> इसके विपरीत, यदि का प्रतिबंध <math>f</math> निर्देशांक दिशाओं के समानांतर लगभग हर रेखा बिल्कुल निरंतर है, फिर बिंदुवार ढाल <math>\nabla f</math> लगभग हर जगह मौजूद है, और <math>f</math> में है <math>W^{1,p}(\Omega)</math> बशर्ते <math>f, |\nabla f| \in L^p(\Omega).</math> विशेष रूप से, इस मामले में कमजोर आंशिक डेरिवेटिव <math>f</math> और बिंदुवार आंशिक डेरिवेटिव <math>f</math> लगभग हर जगह सहमत हैं। सोबोलेव रिक्त स्थान का एसीएल लक्षण वर्णन ओटो एम निकोडिम (#CITEREFNikodym1933) द्वारा स्थापित किया गया था; देखना {{harv|Maz'ya|2011|loc=§1.1.3}}.
होने देना <math>1\leqslant p \leqslant \infty.</math> अगर कोई फंक्शन है <math>W^{1,p}(\Omega),</math> फिर, संभवतः माप शून्य के एक सेट पर फ़ंक्शन को संशोधित करने के बाद, समन्वय दिशाओं के समानांतर [[लगभग हर]] पंक्ति पर प्रतिबंध <math>\R^n</math> [[बिल्कुल निरंतर]] है; क्या अधिक है, मौलिक व्युत्पन्न उन रेखाओं के साथ है जो समन्वय दिशाओं के समानांतर हैं <math>L^p(\Omega).</math> इसके विपरीत, यदि का प्रतिबंध <math>f</math> निर्देशांक दिशाओं के समानांतर लगभग हर रेखा बिल्कुल निरंतर है, फिर बिंदुवार ढाल <math>\nabla f</math> लगभग हर जगह उपस्थित है, और <math>f</math> में है <math>W^{1,p}(\Omega)</math> बशर्ते <math>f, |\nabla f| \in L^p(\Omega).</math> विशेष रूप से, इस मामले में अशक्त आंशिक डेरिवेटिव <math>f</math> और बिंदुवार आंशिक डेरिवेटिव <math>f</math> लगभग हर जगह सहमत हैं। सोबोलेव रिक्त स्थान का एसीएल लक्षण वर्णन ओटो एम निकोडिम (#CITEREFNikodym1933) द्वारा स्थापित किया गया था; देखना {{harv|Maz'ya|2011|loc=§1.1.3}}.


एक मजबूत परिणाम तब होता है जब <math>p>n.</math> में एक समारोह <math>W^{1,p}(\Omega)</math> है, माप शून्य के एक सेट पर संशोधित करने के बाद, होल्डर लगातार एक्सपोनेंट <math>\gamma = 1 - \tfrac{n}{p},</math> सोबोलेव असमानता द्वारा#मोरे की असमानता|मोरे की असमानता। विशेष रूप से, अगर <math>p=\infty</math> और <math>\Omega</math> Lipschitz सीमा है, तो कार्य Lipschitz निरंतर है।
एक मजबूत परिणाम तब होता है जब <math>p>n.</math> में एक समारोह <math>W^{1,p}(\Omega)</math> है, माप शून्य के एक सेट पर संशोधित करने के बाद, होल्डर लगातार एक्सपोनेंट <math>\gamma = 1 - \tfrac{n}{p},</math> सोबोलेव असमानता द्वारा#मोरे की असमानता|मोरे की असमानता। विशेष रूप से, अगर <math>p=\infty</math> और <math>\Omega</math> Lipschitz सीमा है, तो कार्य Lipschitz निरंतर है।
Line 138: Line 138:


:<math>\int_\Omega | f|^2 \leqslant C^2 \int_\Omega |\nabla f|^2, \qquad f \in H^1_0(\Omega).</math>
:<math>\int_\Omega | f|^2 \leqslant C^2 \int_\Omega |\nabla f|^2, \qquad f \in H^1_0(\Omega).</math>
कब <math>\Omega</math> बँधा हुआ है, से इंजेक्शन <math>H^1_0\!(\Omega)</math> को <math>L^2\!(\Omega),</math> [[कॉम्पैक्ट ऑपरेटर]] है। यह तथ्य [[डिरिचलेट समस्या]] के अध्ययन में एक भूमिका निभाता है, और इस तथ्य में कि इसका एक अलौकिक आधार मौजूद है <math>L^2(\Omega)</math> [[लाप्लास ऑपरेटर]] के ईजेनवेक्टरों से मिलकर (डिरिचलेट सीमा स्थिति के साथ)।
कब <math>\Omega</math> बँधा हुआ है, से इंजेक्शन <math>H^1_0\!(\Omega)</math> को <math>L^2\!(\Omega),</math> [[कॉम्पैक्ट ऑपरेटर]] है। यह तथ्य [[डिरिचलेट समस्या]] के अध्ययन में एक भूमिका निभाता है, और इस तथ्य में कि इसका एक अलौकिक आधार उपस्थित है <math>L^2(\Omega)</math> [[लाप्लास ऑपरेटर]] के ईजेनवेक्टरों से मिलकर (डिरिचलेट सीमा स्थिति के साथ)।


== निशान ==
== निशान ==
Line 196: Line 196:
यह मानक के लिए एक बनच स्थान है
यह मानक के लिए एक बनच स्थान है
:<math>\|f \| _{W^{s, p}(\Omega)} := \|f\|_{W^{\lfloor s \rfloor,p}(\Omega)} + \sup_{|\alpha| = \lfloor s \rfloor} [D^\alpha f]_{\theta, p, \Omega}.</math>
:<math>\|f \| _{W^{s, p}(\Omega)} := \|f\|_{W^{\lfloor s \rfloor,p}(\Omega)} + \sup_{|\alpha| = \lfloor s \rfloor} [D^\alpha f]_{\theta, p, \Omega}.</math>
अगर <math>\Omega</math> उपयुक्त रूप से इस अर्थ में नियमित है कि कुछ विस्तार ऑपरेटर मौजूद हैं, फिर भी सोबोलेव-स्लोबोडेकिज रिक्त स्थान बनच रिक्त स्थान का एक पैमाना बनाते हैं, अर्थात किसी के पास निरंतर इंजेक्शन या एम्बेडिंग है
अगर <math>\Omega</math> उपयुक्त रूप से इस अर्थ में नियमित है कि कुछ विस्तार ऑपरेटर उपस्थित हैं, फिर भी सोबोलेव-स्लोबोडेकिज रिक्त स्थान बनच रिक्त स्थान का एक पैमाना बनाते हैं, अर्थात किसी के पास निरंतर इंजेक्शन या एम्बेडिंग है


:<math> W^{k+1,p}(\Omega) \hookrightarrow W^{s',p}(\Omega) \hookrightarrow W^{s,p}(\Omega) \hookrightarrow W^{k, p}(\Omega), \quad k \leqslant s \leqslant s' \leqslant k+1.</math>
:<math> W^{k+1,p}(\Omega) \hookrightarrow W^{s',p}(\Omega) \hookrightarrow W^{s,p}(\Omega) \hookrightarrow W^{k, p}(\Omega), \quad k \leqslant s \leqslant s' \leqslant k+1.</math>
Line 243: Line 243:


:<math> \| Ef \|_{L^p(\R^n)}= \| f \|_{L^p(\Omega)}.</math>
:<math> \| Ef \|_{L^p(\R^n)}= \| f \|_{L^p(\Omega)}.</math>
सोबोलेव स्पेस के मामले में डब्ल्यू<sup>1, पी</sup>(Ω) के लिए {{math|1 ≤ p ≤ ∞}}, एक फ़ंक्शन यू को शून्य से विस्तारित करने से आवश्यक रूप से एक तत्व नहीं मिलेगा <math>W^{1,p}(\R^n).</math> लेकिन अगर Ω लिपशिट्ज सीमा से घिरा है (उदाहरण के लिए ∂Ω सी है<sup>1</sup>), तो किसी भी बंधे हुए खुले सेट O के लिए जैसे कि Ω⊂⊂O (यानी Ω कॉम्पैक्ट रूप से O में समाहित है), एक परिबद्ध रैखिक ऑपरेटर मौजूद है<ref name="Adams1975" />
सोबोलेव स्पेस के मामले में डब्ल्यू<sup>1, पी</sup>(Ω) के लिए {{math|1 ≤ p ≤ ∞}}, एक फ़ंक्शन यू को शून्य से विस्तारित करने से आवश्यक रूप से एक तत्व नहीं मिलेगा <math>W^{1,p}(\R^n).</math> लेकिन अगर Ω लिपशिट्ज सीमा से घिरा है (उदाहरण के लिए ∂Ω सी है<sup>1</sup>), तो किसी भी बंधे हुए खुले सेट O के लिए जैसे कि Ω⊂⊂O (यानी Ω कॉम्पैक्ट रूप से O में समाहित है), एक परिबद्ध रैखिक ऑपरेटर उपस्थित है<ref name="Adams1975" />


:<math> E: W^{1,p}(\Omega)\to W^{1,p}(\R^n),</math>
:<math> E: W^{1,p}(\Omega)\to W^{1,p}(\R^n),</math>
ऐसा कि प्रत्येक के लिए <math>u\in W^{1,p}(\Omega): Eu = u</math> ए.ई. Ω पर, Eu के पास O के भीतर कॉम्पैक्ट समर्थन है, और केवल p, Ω, O और आयाम n के आधार पर एक निरंतर C मौजूद है, जैसे कि
ऐसा कि प्रत्येक के लिए <math>u\in W^{1,p}(\Omega): Eu = u</math> ए.ई. Ω पर, Eu के पास O के भीतर कॉम्पैक्ट समर्थन है, और केवल p, Ω, O और आयाम n के आधार पर एक निरंतर C उपस्थित है, जैसे कि


:<math>\| Eu \|_{W^{1,p}(\R^n)}\leqslant C \|u\|_{W^{1,p}(\Omega)}.</math>
:<math>\| Eu \|_{W^{1,p}(\R^n)}\leqslant C \|u\|_{W^{1,p}(\Omega)}.</math>
Line 255: Line 255:
{{Main|Sobolev inequality}}
{{Main|Sobolev inequality}}


यह पूछना एक स्वाभाविक प्रश्न है कि क्या कोई सोबोलेव फ़ंक्शन निरंतर या यहां तक ​​कि लगातार अलग-अलग होता है। मोटे तौर पर बोलते हुए, पर्याप्त रूप से कई कमजोर डेरिवेटिव्स (यानी बड़े के) का परिणाम शास्त्रीय व्युत्पन्न होता है। इस विचार को सामान्यीकृत किया गया है और सोबोलिव असमानता में सटीक बनाया गया है।
यह पूछना एक स्वाभाविक प्रश्न है कि क्या कोई सोबोलेव फ़ंक्शन निरंतर या यहां तक ​​कि लगातार अलग-अलग होता है। मोटे तौर पर बोलते हुए, पर्याप्त रूप से कई अशक्त डेरिवेटिव्स (यानी बड़े के) का परिणाम मौलिक व्युत्पन्न होता है। इस विचार को सामान्यीकृत किया गया है और सोबोलिव असमानता में सटीक बनाया गया है।


लिखना <math>W^{k,p}</math> डायमेंशन n के कुछ कॉम्पैक्ट रीमैनियन मैनिफोल्ड के सोबोलेव स्पेस के लिए। यहाँ k कोई भी वास्तविक संख्या हो सकती है, और 1 ≤ p ≤ ∞। (पी = ∞ सोबोलेव स्पेस के लिए <math>W^{k,\infty}</math> होल्डर स्पेस सी के रूप में परिभाषित किया गया है<sup>n,α</sup> जहां k = n + α और 0 < α ≤ 1.) सोबोलेव एम्बेडिंग प्रमेय कहता है कि अगर <math>k \geqslant m</math> और <math>k - \tfrac{n}{p} \geqslant m - \tfrac{n}{q}</math> तब
लिखना <math>W^{k,p}</math> डायमेंशन n के कुछ कॉम्पैक्ट रीमैनियन मैनिफोल्ड के सोबोलेव स्पेस के लिए। यहाँ k कोई भी वास्तविक संख्या हो सकती है, और 1 ≤ p ≤ ∞। (पी = ∞ सोबोलेव स्पेस के लिए <math>W^{k,\infty}</math> होल्डर स्पेस सी के रूप में परिभाषित किया गया है<sup>n,α</sup> जहां k = n + α और 0 < α ≤ 1.) सोबोलेव एम्बेडिंग प्रमेय कहता है कि अगर <math>k \geqslant m</math> और <math>k - \tfrac{n}{p} \geqslant m - \tfrac{n}{q}</math> तब
Line 262: Line 262:
और एम्बेडिंग निरंतर है। इसके अलावा, अगर <math>k > m</math> और <math>k - \tfrac{n}{p} > m - \tfrac{n}{q}</math> तो एम्बेडिंग पूरी तरह से निरंतर है (इसे कभी-कभी कोंद्राचोव का प्रमेय या रेलिच-कोंड्राचोव प्रमेय कहा जाता है)। में कार्य करता है <math>W^{m,\infty}</math> एम निरंतर से कम क्रम के सभी डेरिवेटिव हैं, इसलिए विशेष रूप से यह विभिन्न डेरिवेटिव के निरंतर होने के लिए सोबोलेव रिक्त स्थान पर स्थितियां देता है। अनौपचारिक रूप से ये एम्बेडिंग कहते हैं कि एल को परिवर्तित करने के लिए<sup>p</sup> परिबद्धता अनुमान के लिए अनुमान प्रति आयाम 1/p डेरिवेटिव खर्च करता है।
और एम्बेडिंग निरंतर है। इसके अलावा, अगर <math>k > m</math> और <math>k - \tfrac{n}{p} > m - \tfrac{n}{q}</math> तो एम्बेडिंग पूरी तरह से निरंतर है (इसे कभी-कभी कोंद्राचोव का प्रमेय या रेलिच-कोंड्राचोव प्रमेय कहा जाता है)। में कार्य करता है <math>W^{m,\infty}</math> एम निरंतर से कम क्रम के सभी डेरिवेटिव हैं, इसलिए विशेष रूप से यह विभिन्न डेरिवेटिव के निरंतर होने के लिए सोबोलेव रिक्त स्थान पर स्थितियां देता है। अनौपचारिक रूप से ये एम्बेडिंग कहते हैं कि एल को परिवर्तित करने के लिए<sup>p</sup> परिबद्धता अनुमान के लिए अनुमान प्रति आयाम 1/p डेरिवेटिव खर्च करता है।


गैर-कॉम्पैक्ट मैनिफोल्ड्स के लिए एम्बेडिंग प्रमेय के समान रूपांतर हैं जैसे <math>\R^n</math> {{harv|Stein|1970}}. सोबोलेव एम्बेडिंग चालू है <math>\R^n</math> जो कॉम्पैक्ट नहीं होते हैं, उनमें अक्सर Cocompact एम्बेडिंग का एक संबंधित, लेकिन कमजोर गुण होता है।
गैर-कॉम्पैक्ट मैनिफोल्ड्स के लिए एम्बेडिंग प्रमेय के समान रूपांतर हैं जैसे <math>\R^n</math> {{harv|Stein|1970}}. सोबोलेव एम्बेडिंग चालू है <math>\R^n</math> जो कॉम्पैक्ट नहीं होते हैं, उनमें अक्सर Cocompact एम्बेडिंग का एक संबंधित, लेकिन अशक्त गुण होता है।


== यह भी देखें ==
== यह भी देखें ==

Revision as of 20:30, 27 April 2023

गणित में, एक सोबोलिव स्पेस एक वेक्टर स्पेस से लैस फलनों का एक सदिश स्थान है। यह किसी दिए गए क्रम तक इसके डेरिवेटिव के साथ फलनों के एलपी-मानदंडों का संयोजन है। अंतरिक्ष को पूर्ण मीट्रिक स्थान बनाने के लिए डेरिवेटिव्स को एक उपयुक्त अशक्त व्युत्पन्न माना जाता है, अर्थात् एक बनैच स्थान सहज रूप से एक सोबोलेव स्पेस कुछ एप्लिकेशन डोमेन के लिए पर्याप्त डेरिवेटिव वाले फलनों का एक स्थान है। जैसे आंशिक अंतर समीकरण और एक मानक से लैस है। जो फलन के आकार और नियमितता दोनों को मापता है।

सोबोलेव रिक्त स्थान का नाम रूसी गणितज्ञ सर्गेई लावोविच सोबोलेव के नाम पर रखा गया है। उनका महत्व इस तथ्य से प्रदर्शित किया जाता है कि कुछ महत्वपूर्ण एवं आंशिक अंतर समीकरणों का अशक्त हल उचित सोबोलिव रिक्त स्थान में उपस्थित है। तथापि मौलिक अर्थों में डेरिवेटिव्स के साथ निरंतर कार्यों के रिक्त स्थान में कोई शक्तिशाली हल नहीे प्राप्त हुआ है।

प्रेरणा

इस खंड में और पूरे लेख में का खुला उपसमुच्चय है गणितीय कार्यों की सुगमता के लिए कई मापदंड हैं। सबसे बुनियादी मानदंड निरंतर कार्य करने का हो सकता है। चिकनाई की एक मजबूत धारणा भिन्नता की है (क्योंकि अलग-अलग कार्य भी निरंतर हैं) और चिकनीता की एक और मजबूत धारणा यह है कि व्युत्पन्न भी निरंतर हो (इन कार्यों को कक्षा के रूप में कहा जाता है) - विभेदीकरण वर्ग देखें)। अवकलनीय कार्य कई क्षेत्रों में और विशेष रूप से अवकल समीकरणों के लिए महत्वपूर्ण हैं। हालाँकि, बीसवीं शताब्दी में, यह देखा गया था कि अंतरिक्ष (या , आदि) अंतर समीकरणों के समाधान का अध्ययन करने के लिए बिल्कुल सही स्थान नहीं था। सोबोलेव रिक्त स्थान इन स्थानों के लिए आधुनिक प्रतिस्थापन हैं जिसमें आंशिक अंतर समीकरणों के समाधान की तलाश की जाती है।

अंतर समीकरण के अंतर्निहित मॉडल की मात्रा या गुण आमतौर पर अभिन्न मानदंडों के संदर्भ में व्यक्त किए जाते हैं। एक विशिष्ट उदाहरण एक तापमान या वेग वितरण की ऊर्जा को माप रहा है -आदर्श। इसलिए यह महत्वपूर्ण है कि Lp स्पेस फ़ंक्शंस को विभेदित करने के लिए एक टूल विकसित किया जाए।

भागों के सूत्र द्वारा एकीकरण से प्रत्येक के लिए यह प्राप्त होता है , कहाँ एक प्राकृतिक संख्या है, और कॉम्पैक्ट समर्थन के साथ सभी असीमित अलग-अलग कार्यों के लिए

कहाँ आदेश का एक बहु-सूचकांक है और हम नोटेशन का उपयोग कर रहे हैं:

इस समीकरण का बायां हाथ अभी भी समझ में आता है अगर हम केवल मान लें स्थानीय रूप से एकीकृत होने के लिए। यदि कोई स्थानीय रूप से एकीकृत कार्य उपस्थित है , ऐसा है कि

फिर हम फोन करते हैं अशक्त व्युत्पन्न|अशक्त -वाँ आंशिक व्युत्पन्न . अगर कोई अशक्त है -वाँ आंशिक व्युत्पन्न , तब इसे लगभग हर जगह विशिष्ट रूप से परिभाषित किया जाता है, और इस प्रकार यह विशिष्ट रूप से Lp स्थान के एक तत्व के रूप में निर्धारित होता है। वहीं दूसरी ओर अगर , तब मौलिक और अशक्त व्युत्पन्न मेल खाते हैं। इस प्रकार, यदि एक अशक्त है -वाँ आंशिक व्युत्पन्न , हम इसे द्वारा निरूपित कर सकते हैं .

उदाहरण के लिए, समारोह

शून्य पर निरंतर नहीं है, और -1, 0, या 1 पर अवकलनीय नहीं है। फिर भी कार्य

के अशक्त व्युत्पन्न होने की परिभाषा को संतुष्ट करता है जो तब सोबोलिव अंतरिक्ष में होने के योग्य है (किसी भी अनुमति के लिए , नीचे परिभाषा देखें)।

सोबोलेव रिक्त स्थान अशक्त भिन्नता और एलपी मानदंड की अवधारणाओं को मिलाएं।

== पूर्णांक k == के साथ सोबोलेव रिक्त स्थान

एक आयामी मामला

एक आयामी मामले में सोबोलेव स्पेस के लिए कार्यों के सबसेट के रूप में परिभाषित किया गया है एलपी स्पेस में|ऐसा है कि और इसके अशक्त डेरिवेटिव ऑर्डर तक एक परिमित एलपी मानदंड है |Lp मानदंड। जैसा कि ऊपर उल्लेख किया गया है, उचित अर्थों में डेरिवेटिव को परिभाषित करने के लिए कुछ सावधानी बरतनी चाहिए। एक आयामी समस्या में यह मान लेना पर्याप्त है कि -वें व्युत्पन्न लगभग हर जगह अलग-अलग है और इसके व्युत्पन्न के लेबेस्ग्यू एकीकरण के लिए लगभग हर जगह बराबर है (इसमें अप्रासंगिक उदाहरण शामिल नहीं हैं जैसे कि कैंटर फ़ंक्शन | कैंटर का फ़ंक्शन)।

इस परिभाषा के साथ, सोबोलेव रिक्त स्थान एक प्राकृतिक नॉर्म्ड सदिश स्थान स्वीकार करते हैं,

कोई इसे मामले तक बढ़ा सकता है , मानक के साथ तब आवश्यक सुप्रीमम और आवश्यक न्यूनतम का उपयोग करके परिभाषित किया गया

आदर्श से लैस बनच स्थान बन जाता है। यह पता चला है कि यह अनुक्रम में केवल पहले और अंतिम को लेने के लिए पर्याप्त है, अर्थात, द्वारा परिभाषित मानदंड

उपरोक्त मानदंड के समतुल्य है (यानी नॉर्मड वेक्टर स्पेस#मानदंडों की टोपोलॉजिकल संरचना समान हैं)।

मामला p = 2

सोबोलेव रिक्त स्थान के साथ p = 2 विशेष रूप से फूरियर श्रृंखला के साथ उनके संबंध के कारण महत्वपूर्ण हैं और क्योंकि वे एक हिल्बर्ट अंतरिक्ष बनाते हैं। इस मामले को कवर करने के लिए एक विशेष संकेतन उत्पन्न हुआ है, क्योंकि अंतरिक्ष एक हिल्बर्ट स्थान है:

अंतरिक्ष फूरियर श्रृंखला के संदर्भ में स्वाभाविक रूप से परिभाषित किया जा सकता है जिसका गुणांक पर्याप्त तेजी से घटता है, अर्थात्,

कहाँ की फूरियर श्रृंखला है और 1-टोरस को दर्शाता है। ऊपर के रूप में, कोई समकक्ष मानदंड का उपयोग कर सकता है

दोनों प्रतिनिधित्व पारसेवल के प्रमेय से आसानी से अनुसरण करते हैं और तथ्य यह है कि भेदभाव फूरियर गुणांक को गुणा करने के बराबर है .

इसके अलावा, अंतरिक्ष अंतरिक्ष की तरह एक आंतरिक उत्पाद स्थान को स्वीकार करता है वास्तव में, आंतरिक उत्पाद के संदर्भ में परिभाषित किया गया है अंदरूनी प्रोडक्ट:

अंतरिक्ष इस आंतरिक उत्पाद के साथ हिल्बर्ट स्पेस बन जाता है।

अन्य उदाहरण

एक आयाम में, कुछ अन्य सोबोलिव रिक्त स्थान एक सरल वर्णन की अनुमति देते हैं। उदाहरण के लिए, पर पूर्ण निरंतरता का स्थान है (0, 1) (या बल्कि, कार्यों के समतुल्य वर्ग जो लगभग हर जगह समान हैं), जबकि परिबद्ध लिप्सचिट्ज़ निरंतरता का स्थान है I, हर अंतराल के लिए I. हालाँकि, ये गुण खो गए हैं या एक से अधिक चर के कार्यों के लिए उतने सरल नहीं हैं।

सभी रिक्त स्थान एक क्षेत्र पर बीजगणित (सामान्य) हैं, यानी दो तत्वों का उत्पाद एक बार फिर इस सोबोलिव अंतरिक्ष का एक कार्य है, जो कि मामला नहीं है (उदाहरण के लिए, |x| जैसा व्यवहार करने वाले कार्य−1/3 मूल में हैं लेकिन ऐसे दो कार्यों का उत्पाद अंदर नहीं है ).

बहुआयामी मामला

बहुत से आयामों में परिवर्तन परिभाषा से शुरू करके अधिक कठिनाइयाँ लाता है। आवश्यकता है कि का अभिन्न अंग हो सामान्यीकरण नहीं करता है, और सबसे सरल समाधान वितरण (गणित) के अर्थ में डेरिवेटिव पर विचार करना है।

एक औपचारिक परिभाषा अब इस प्रकार है। होने देना सोबोलेव अंतरिक्ष सभी कार्यों के सेट के रूप में परिभाषित किया गया है पर ऐसा है कि प्रत्येक बहु-सूचकांक के लिए साथ मिश्रित आंशिक व्युत्पन्न

अशक्त व्युत्पन्न अर्थ में उपस्थित है और अंदर है अर्थात।

यानी सोबोलेव स्पेस परिभाषित किया जाता है

प्राकृतिक संख्या सोबोलेव अंतरिक्ष का क्रम कहा जाता है के लिए एक मानक के लिए कई विकल्प हैं निम्नलिखित दो आम हैं और सामान्य (गणित) # गुण के अर्थ में समकक्ष हैं:

और

इनमें से किसी भी मानदंड के संबंध में, एक बनच स्थान है। के लिए एक वियोज्य स्थान भी है। निरूपित करना परम्परागत है द्वारा इसके लिए आदर्श के साथ एक हिल्बर्ट स्थान है .[1]


चिकनी कार्यों द्वारा सन्निकटन

केवल उनकी परिभाषा के आधार पर सोबोलेव रिक्त स्थान के साथ काम करना कठिन है। इसलिए यह जानना दिलचस्प है कि मेयर्स-सेरिन प्रमेय द्वारा एक कार्य सुचारू कार्यों द्वारा अनुमानित किया जा सकता है। यह तथ्य अक्सर हमें सुचारू कार्यों के गुणों को सोबोलेव कार्यों में अनुवाद करने की अनुमति देता है। अगर परिमित है और खुला है, तो किसी के लिए उपस्थित है कार्यों का अनुमानित क्रम ऐसा है कि:

अगर Lipschitz सीमा है, हम यह भी मान सकते हैं कि सभी पर कॉम्पैक्ट समर्थन के साथ सुचारू कार्यों का प्रतिबंध है [2]


उदाहरण

उच्च आयामों में, यह अब सच नहीं है कि, उदाहरण के लिए, केवल निरंतर कार्य शामिल हैं। उदाहरण के लिए, कहाँ यूनिट बॉल तीन आयामों में है। के लिए , अंतरिक्ष केवल निरंतर कार्य शामिल होंगे, लेकिन किसके लिए यह पहले से ही सच है दोनों पर निर्भर करता है और आयाम पर। उदाहरण के लिए, जैसा कि फ़ंक्शन के गोलाकार ध्रुवीय निर्देशांक का उपयोग करके आसानी से जांचा जा सकता है हमारे पास एन-डायमेंशनल बॉल पर परिभाषित है:

सहज रूप से, 0 पर f का ब्लो-अप कम मायने रखता है जब n बड़ा होता है क्योंकि यूनिट बॉल में उच्च आयामों में बाहर और कम अंदर होता है।

सोबोलेव प्रकार्यों का निरन्तर ऑन लाइन्स (एसीएल) अभिलक्षणन

होने देना अगर कोई फंक्शन है फिर, संभवतः माप शून्य के एक सेट पर फ़ंक्शन को संशोधित करने के बाद, समन्वय दिशाओं के समानांतर लगभग हर पंक्ति पर प्रतिबंध बिल्कुल निरंतर है; क्या अधिक है, मौलिक व्युत्पन्न उन रेखाओं के साथ है जो समन्वय दिशाओं के समानांतर हैं इसके विपरीत, यदि का प्रतिबंध निर्देशांक दिशाओं के समानांतर लगभग हर रेखा बिल्कुल निरंतर है, फिर बिंदुवार ढाल लगभग हर जगह उपस्थित है, और में है बशर्ते विशेष रूप से, इस मामले में अशक्त आंशिक डेरिवेटिव और बिंदुवार आंशिक डेरिवेटिव लगभग हर जगह सहमत हैं। सोबोलेव रिक्त स्थान का एसीएल लक्षण वर्णन ओटो एम निकोडिम (#CITEREFNikodym1933) द्वारा स्थापित किया गया था; देखना (Maz'ya 2011, §1.1.3).

एक मजबूत परिणाम तब होता है जब में एक समारोह है, माप शून्य के एक सेट पर संशोधित करने के बाद, होल्डर लगातार एक्सपोनेंट सोबोलेव असमानता द्वारा#मोरे की असमानता|मोरे की असमानता। विशेष रूप से, अगर और Lipschitz सीमा है, तो कार्य Lipschitz निरंतर है।

सीमा पर गायब होने वाले कार्य

सोबोलेव अंतरिक्ष द्वारा भी दर्शाया गया है यह एक हिल्बर्ट स्पेस है, जिसमें एक महत्वपूर्ण सबस्पेस है असीमित रूप से समर्थित असीमित कार्यों को बंद करने के रूप में परिभाषित किया गया है में ऊपर परिभाषित सोबोलेव मानदंड यहाँ तक कम हो जाता है

कब एक नियमित सीमा है, में कार्यों के स्थान के रूप में वर्णित किया जा सकता है जो निशान के अर्थ में सीमा पर गायब हो जाता है (सोबोलेव स्पेस#एक्सटेंशन बाई जीरो)। कब अगर एक परिबद्ध अंतराल है, तब पर निरंतर कार्य होते हैं फार्म का

जहां सामान्यीकृत व्युत्पन्न में है और 0 अभिन्न है, ताकि कब घिरा हुआ है, पॉइनकेयर असमानता बताती है कि एक स्थिरांक है ऐसा है कि:

कब बँधा हुआ है, से इंजेक्शन को कॉम्पैक्ट ऑपरेटर है। यह तथ्य डिरिचलेट समस्या के अध्ययन में एक भूमिका निभाता है, और इस तथ्य में कि इसका एक अलौकिक आधार उपस्थित है लाप्लास ऑपरेटर के ईजेनवेक्टरों से मिलकर (डिरिचलेट सीमा स्थिति के साथ)।

निशान

आंशिक अंतर समीकरणों की जांच करते समय सोबोलिव रिक्त स्थान अक्सर माना जाता है। सोबोलिव कार्यों के सीमा मूल्यों पर विचार करना आवश्यक है। अगर , उन सीमा मानों को प्रतिबंध द्वारा वर्णित किया गया है हालांकि, यह स्पष्ट नहीं है कि सीमा पर मूल्यों का वर्णन कैसे किया जाए क्योंकि सीमा का n-आयामी माप शून्य है। निम्नलिखित प्रमेय[2]समस्या का समाधान करता है:

Trace theorem — Assume Ω is bounded with Lipschitz boundary. Then there exists a bounded linear operator such that

तू को तू का अंश कहा जाता है। मोटे तौर पर बोलते हुए, यह प्रमेय प्रतिबंध ऑपरेटर को सोबोलिव अंतरिक्ष तक फैलाता है अच्छे व्यवहार के लिए Ω. ध्यान दें कि ट्रेस ऑपरेटर टी सामान्य रूप से विशेषण नहीं है, लेकिन 1 <p <∞ के लिए यह सोबोलेव-स्लोबोडेकिज स्पेस पर लगातार मैप करता है सहज रूप से, ट्रेस लेने से डेरिवेटिव का 1/p खर्च होता है। डब्ल्यू में यू कार्य करता है1,p(Ω) शून्य ट्रेस के साथ, यानी Tu = 0, समानता द्वारा विशेषता हो सकती है

कहाँ

दूसरे शब्दों में, Ω के लिए लिप्सचिट्ज़ सीमा के साथ घिरा हुआ है, ट्रेस-शून्य कार्य करता है कॉम्पैक्ट समर्थन के साथ चिकनी कार्यों द्वारा अनुमान लगाया जा सकता है।

== गैर-पूर्णांक k == के साथ सोबोलेव रिक्त स्थान

बेसेल संभावित स्थान

एक प्राकृतिक संख्या k और के लिए 1 < p < ∞ कोई दिखा सकता है (गुणक (फूरियर विश्लेषण) का उपयोग करके[3][4]) कि अंतरिक्ष के रूप में समान रूप से परिभाषित किया जा सकता है

आदर्श के साथ

यह सोबोलिव रिक्त स्थान को गैर-पूर्णांक क्रम से प्रेरित करता है क्योंकि उपरोक्त परिभाषा में हम k को किसी भी वास्तविक संख्या s से बदल सकते हैं। परिणामी रिक्त स्थान

बेसेल संभावित स्थान कहलाते हैं[5] (फ्रेडरिक बेसेल के नाम पर)। वे सामान्य रूप से बनच स्थान हैं और विशेष मामले में हिल्बर्ट स्थान p = 2 हैं।

के लिए कार्यों के प्रतिबंधों का सेट है Ω मानक से लैस करने के लिए

फिर से, एचs,p(Ω) एक बनच स्थान है और स्थिति में p = 2 एक हिल्बर्ट स्थान है।

सोबोलिव रिक्त स्थान के लिए विस्तार प्रमेय का उपयोग करके, यह दिखाया जा सकता है कि डब्ल्यू भीके,पी</सुप>(Ω) = एचk,p(Ω) समतुल्य मानदंडों के अर्थ में रखता है, यदि Ω वर्दी सी के साथ डोमेन हैk-सीमा, k एक प्राकृतिक संख्या और 1 < p < ∞. एम्बेडिंग द्वारा

बेसेल संभावित रिक्त स्थान सोबोलेव रिक्त स्थान के बीच एक सतत पैमाने का निर्माण करें एक अमूर्त दृष्टिकोण से, बेसेल संभावित रिक्त स्थान सोबोलेव रिक्त स्थान के जटिल इंटरपोलेशन स्पेस स्थान के रूप में होते हैं, यानी समकक्ष मानदंडों के अर्थ में यह मानता है कि

कहाँ:


सोबोलेव-स्लोबोडेकिज स्पेस

आंशिक क्रम को परिभाषित करने के लिए एक अन्य दृष्टिकोण सोबोलिव रिक्त स्थान धारक की स्थिति को एल को सामान्य बनाने के विचार से उत्पन्न होता हैपी-सेटिंग।[6] के लिए और स्लोबोडेकिज सेमिनॉर्म (मोटे तौर पर होल्डर सेमिनॉर्म के अनुरूप) द्वारा परिभाषित किया गया है

होने देना s > 0 पूर्णांक न हो और सेट हो . होल्डर स्पेस#H.C3.B6lder स्पेस|होल्डर स्पेस, सोबोलेव-स्लोबोडेकिज स्पेस के समान विचार का उपयोग करना[7] परिभाषित किया जाता है

यह मानक के लिए एक बनच स्थान है

अगर उपयुक्त रूप से इस अर्थ में नियमित है कि कुछ विस्तार ऑपरेटर उपस्थित हैं, फिर भी सोबोलेव-स्लोबोडेकिज रिक्त स्थान बनच रिक्त स्थान का एक पैमाना बनाते हैं, अर्थात किसी के पास निरंतर इंजेक्शन या एम्बेडिंग है

अनियमित Ω के ऐसे उदाहरण हैं कि की सदिश उपसमष्टि भी नहीं है 0 <s <1 के लिए (उदाहरण 9.1 देखें [8])

अमूर्त दृष्टिकोण से, रिक्त स्थान सोबोलिव रिक्त स्थान के वास्तविक इंटरपोलेशन रिक्त स्थान के साथ मेल खाता है, यानी समकक्ष मानदंडों के अर्थ में निम्नलिखित धारण करता है:

सोबोलिव-स्लोबोडेकिज रिक्त स्थान सोबोलिव कार्यों के निशान के अध्ययन में एक महत्वपूर्ण भूमिका निभाते हैं। वे बेसोव रिक्त स्थान के विशेष मामले हैं।[4]


एक्सटेंशन ऑपरेटर

अगर एक डोमेन (गणितीय विश्लेषण) है जिसकी सीमा बहुत खराब तरीके से व्यवहार नहीं की जाती है (उदाहरण के लिए, यदि इसकी सीमा कई गुना है, या अधिक अनुमोदित शंकु की स्थिति को संतुष्ट करती है) तो वहां एक ऑपरेटर ए मैपिंग फ़ंक्शंस है के कार्यों के लिए ऐसा है कि:

  1. एयू (एक्स) = यू (एक्स) लगभग हर एक्स के लिए और
  2. किसी भी 1 ≤ p ≤ ∞ और पूर्णांक k के लिए सतत है।

हम ऐसे ऑपरेटर A को एक्सटेंशन ऑपरेटर कहेंगे


=== पी = 2 === का मामला

एक्सटेंशन ऑपरेटर परिभाषित करने का सबसे स्वाभाविक तरीका है गैर-पूर्णांक s के लिए (हम सीधे काम नहीं कर सकते चूंकि फूरियर ट्रांसफॉर्म लेना एक वैश्विक ऑपरेशन है)। हम परिभाषित करते हैं ऐसा कहकर अगर और केवल अगर समतुल्य रूप से, जटिल इंटरपोलेशन समान परिणाम देता है रिक्त स्थान जब तक एक एक्सटेंशन ऑपरेटर है। अगर कोई एक्सटेंशन ऑपरेटर नहीं है, जटिल इंटरपोलेशन प्राप्त करने का एकमात्र तरीका है रिक्त स्थान।

नतीजतन, प्रक्षेप असमानता अभी भी कायम है।

शून्य से विस्तार

जैसे #Functions सीमा पर गायब हो जाते हैं, हम परिभाषित करते हैं में बंद होना अंतरिक्ष का असीम रूप से अलग-अलग कॉम्पैक्ट रूप से समर्थित कार्यों की। ऊपर दिए गए ट्रेस की परिभाषा को देखते हुए, हम निम्नलिखित बता सकते हैं

Theorem — Let be uniformly Cm regular, ms and let P be the linear map sending u in to

where d/dn is the derivative normal to G, and k is the largest integer less than s. Then is precisely the kernel of P.

अगर हम इसके विस्तार को शून्य से परिभाषित कर सकते हैं प्राकृतिक तरीके से, अर्थात्

Theorem — Let The map is continuous into if and only if s is not of the form for n an integer.

के लिए fLp(Ω) इसका विस्तार शून्य से,

का एक तत्व है आगे,

सोबोलेव स्पेस के मामले में डब्ल्यू1, पी(Ω) के लिए 1 ≤ p ≤ ∞, एक फ़ंक्शन यू को शून्य से विस्तारित करने से आवश्यक रूप से एक तत्व नहीं मिलेगा लेकिन अगर Ω लिपशिट्ज सीमा से घिरा है (उदाहरण के लिए ∂Ω सी है1), तो किसी भी बंधे हुए खुले सेट O के लिए जैसे कि Ω⊂⊂O (यानी Ω कॉम्पैक्ट रूप से O में समाहित है), एक परिबद्ध रैखिक ऑपरेटर उपस्थित है[2]

ऐसा कि प्रत्येक के लिए ए.ई. Ω पर, Eu के पास O के भीतर कॉम्पैक्ट समर्थन है, और केवल p, Ω, O और आयाम n के आधार पर एक निरंतर C उपस्थित है, जैसे कि

हम बुलाते है का विस्तार को


सोबोलेव एम्बेडिंग

यह पूछना एक स्वाभाविक प्रश्न है कि क्या कोई सोबोलेव फ़ंक्शन निरंतर या यहां तक ​​कि लगातार अलग-अलग होता है। मोटे तौर पर बोलते हुए, पर्याप्त रूप से कई अशक्त डेरिवेटिव्स (यानी बड़े के) का परिणाम मौलिक व्युत्पन्न होता है। इस विचार को सामान्यीकृत किया गया है और सोबोलिव असमानता में सटीक बनाया गया है।

लिखना डायमेंशन n के कुछ कॉम्पैक्ट रीमैनियन मैनिफोल्ड के सोबोलेव स्पेस के लिए। यहाँ k कोई भी वास्तविक संख्या हो सकती है, और 1 ≤ p ≤ ∞। (पी = ∞ सोबोलेव स्पेस के लिए होल्डर स्पेस सी के रूप में परिभाषित किया गया हैn,α जहां k = n + α और 0 < α ≤ 1.) सोबोलेव एम्बेडिंग प्रमेय कहता है कि अगर और तब

और एम्बेडिंग निरंतर है। इसके अलावा, अगर और तो एम्बेडिंग पूरी तरह से निरंतर है (इसे कभी-कभी कोंद्राचोव का प्रमेय या रेलिच-कोंड्राचोव प्रमेय कहा जाता है)। में कार्य करता है एम निरंतर से कम क्रम के सभी डेरिवेटिव हैं, इसलिए विशेष रूप से यह विभिन्न डेरिवेटिव के निरंतर होने के लिए सोबोलेव रिक्त स्थान पर स्थितियां देता है। अनौपचारिक रूप से ये एम्बेडिंग कहते हैं कि एल को परिवर्तित करने के लिएp परिबद्धता अनुमान के लिए अनुमान प्रति आयाम 1/p डेरिवेटिव खर्च करता है।

गैर-कॉम्पैक्ट मैनिफोल्ड्स के लिए एम्बेडिंग प्रमेय के समान रूपांतर हैं जैसे (Stein 1970). सोबोलेव एम्बेडिंग चालू है जो कॉम्पैक्ट नहीं होते हैं, उनमें अक्सर Cocompact एम्बेडिंग का एक संबंधित, लेकिन अशक्त गुण होता है।

यह भी देखें

टिप्पणियाँ

  1. Evans 2010, Chapter 5.2
  2. 2.0 2.1 2.2 Adams & Fournier 2003
  3. Bergh & Löfström 1976
  4. 4.0 4.1 Triebel 1995
  5. Bessel potential spaces with variable integrability have been independently introduced by Almeida & Samko (A. Almeida and S. Samko, "Characterization of Riesz and Bessel potentials on variable Lebesgue spaces", J. Function Spaces Appl. 4 (2006), no. 2, 113–144) and Gurka, Harjulehto & Nekvinda (P. Gurka, P. Harjulehto and A. Nekvinda: "Bessel potential spaces with variable exponent", Math. Inequal. Appl. 10 (2007), no. 3, 661–676).
  6. Lunardi 1995
  7. In the literature, fractional Sobolev-type spaces are also called Aronszajn spaces, Gagliardo spaces or Slobodeckij spaces, after the names of the mathematicians who introduced them in the 1950s: N. Aronszajn ("Boundary values of functions with finite Dirichlet integral", Techn. Report of Univ. of Kansas 14 (1955), 77–94), E. Gagliardo ("Proprietà di alcune classi di funzioni in più variabili", Ricerche Mat. 7 (1958), 102–137), and L. N. Slobodeckij ("Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations", Leningrad. Gos. Ped. Inst. Učep. Zap. 197 (1958), 54–112).
  8. Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico (2012-07-01). "Hitchhikerʼs guide to the fractional Sobolev spaces". Bulletin des Sciences Mathématiques (in English). 136 (5): 521–573. doi:10.1016/j.bulsci.2011.12.004. ISSN 0007-4497.


संदर्भ


बाहरी संबंध