सोबोलेव स्पेस: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
{{Short description|Vector space of functions in mathematics}}
{{Short description|Vector space of functions in mathematics}}
गणित में एक सोबोलिव स्पेस एक वेक्टर स्पेस से लैस फलनों का एक सदिश स्थान है। यह किसी दिए गए क्रम तक इसके डेरिवेटिव के साथ फलनों के एलपी-मानदंडों का संयोजन है। अंतरिक्ष को [[पूर्ण मीट्रिक स्थान]] बनाने के लिए डेरिवेटिव्स को एक उपयुक्त [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]] माना जाता है, अर्थात् एक [[बनच स्थान|बनैच स्थान]] सहज रूप से एक सोबोलेव स्पेस कुछ एप्लिकेशन डोमेन के लिए पर्याप्त डेरिवेटिव वाले फलनों का एक स्थान है। जैसे आंशिक अंतर समीकरण और एक मानक से लैस है। जो फलन के आकार और नियमितता दोनों को मापता है।
गणित में एक सोबोलिव स्पेस एक वेक्टर स्पेस से लैस फलनों का एक सदिश स्थान है। यह किसी दिए गए क्रम तक इसके डेरिवेटिव के साथ फलनों के एलपी-मानदंडों का संयोजन है। स्पेस को [[पूर्ण मीट्रिक स्थान]] बनाने के लिए डेरिवेटिव्स को एक उपयुक्त [[कमजोर व्युत्पन्न|अशक्त व्युत्पन्न]] माना जाता है, अर्थात् एक [[बनच स्थान|बनैच स्थान]] सहज रूप से एक सोबोलेव स्पेस कुछ एप्लिकेशन डोमेन के लिए पर्याप्त डेरिवेटिव वाले फलनों का एक स्थान है। जैसे आंशिक अंतर समीकरण और एक मानक से लैस है। जो फलन के आकार और नियमितता दोनों को मापता है।


सोबोलेव रिक्त स्थान का नाम रूसी [[गणितज्ञ]] [[सर्गेई लावोविच सोबोलेव]] के नाम पर रखा गया है। उनका महत्व इस तथ्य से प्रदर्शित किया जाता है कि कुछ महत्वपूर्ण एवं आंशिक अंतर समीकरणों का अशक्त हल उचित सोबोलिव रिक्त स्थान में उपस्थित है। तथापि मौलिक अर्थों में डेरिवेटिव्स के साथ [[निरंतर कार्य|निरंतर फलनों]] के रिक्त स्थान में कोई शक्तिशाली हल नहीे प्राप्त हुआ है।
सोबोलेव रिक्त स्थान का नाम रूसी [[गणितज्ञ]] [[सर्गेई लावोविच सोबोलेव]] के नाम पर रखा गया है। उनका महत्व इस तथ्य से प्रदर्शित किया जाता है कि कुछ महत्वपूर्ण एवं आंशिक अंतर समीकरणों का अशक्त हल उचित सोबोलिव रिक्त स्थान में उपस्थित है। तथापि मौलिक अर्थों में डेरिवेटिव्स के साथ [[निरंतर कार्य|निरंतर फलनों]] के रिक्त स्थान में कोई शक्तिशाली हल नहीे प्राप्त हुआ है।
Line 8: Line 8:
इस खंड में और पूरे लेख में,  <math>\R^n.</math> का [[खुला उपसमुच्चय]] <math>\Omega</math> है।  
इस खंड में और पूरे लेख में,  <math>\R^n.</math> का [[खुला उपसमुच्चय]] <math>\Omega</math> है।  


[[गणितीय कार्य|गणितीय फलनों]] की सरलता के लिए कई मापदंड उपस्थित हैं। सबसे मूलभूत मापदंड निरंतर फलन करने का हो सकता है। स्मूथनेस की एक शक्तिशाली धारणा भिन्नता की है (क्योंकि विभिन्न प्रकार के फलन भी निरंतर हैं) और स्मूथनेस की एक और शक्तिशाली धारणा यह है कि व्युत्पन्न भी निरंतर हो (इन फलनों को कक्षा <math>C^1</math> के रूप में कहा जाता है - [[विभेदीकरण वर्ग]] देखें)। अवकलनीय फलन कई क्षेत्रों में और विशेष रूप से अवकल समीकरणों के लिए महत्वपूर्ण हैं। चूंकि बीसवीं शताब्दी में यह देखा गया था कि अंतरिक्ष <math>C^1</math> (या <math>C^2</math> आदि) अंतर समीकरणों के हल का अध्ययन करने के लिए बिल्कुल सही स्थान नहीं था। सोबोलेव रिक्त स्थान इन स्थानों के लिए आधुनिक प्रतिस्थापन हैं। जिसमें आंशिक अंतर समीकरणों के समाधान की जानकारी की जाती है।
[[गणितीय कार्य|गणितीय फलनों]] की सरलता के लिए कई मापदंड उपस्थित हैं। सबसे मूलभूत मापदंड निरंतर फलन करने का हो सकता है। स्मूथनेस की एक शक्तिशाली धारणा भिन्नता की है (क्योंकि विभिन्न प्रकार के फलन भी निरंतर हैं) और स्मूथनेस की एक और शक्तिशाली धारणा यह है कि व्युत्पन्न भी निरंतर हो (इन फलनों को कक्षा <math>C^1</math> के रूप में कहा जाता है - [[विभेदीकरण वर्ग]] देखें)। अवकलनीय फलन कई क्षेत्रों में और विशेष रूप से अवकल समीकरणों के लिए महत्वपूर्ण हैं। चूंकि बीसवीं शताब्दी में यह देखा गया था कि स्पेस <math>C^1</math> (या <math>C^2</math> आदि) अंतर समीकरणों के हल का अध्ययन करने के लिए बिल्कुल सही स्थान नहीं था। सोबोलेव रिक्त स्थान इन स्थानों के लिए आधुनिक प्रतिस्थापन हैं। जिसमें आंशिक अंतर समीकरणों के समाधान की जानकारी की जाती है।


अंतर समीकरण के अंतर्निहित मॉडल की मात्रा या गुण सामान्यतः अभिन्न मापदंडों के संदर्भ में व्यक्त किए जाते हैं। एक विशिष्ट उदाहरण <math>L^2</math>-नॉर्मड द्वारा तापमान या वेग वितरण की ऊर्जा को माप रहा है। इसलिए यह महत्वपूर्ण है कि एलपी स्पेस फलन को विभेदित करने के लिए एक टूल विकसित किया जाए।
अंतर समीकरण के अंतर्निहित मॉडल की मात्रा या गुण सामान्यतः अभिन्न मापदंडों के संदर्भ में व्यक्त किए जाते हैं। एक विशिष्ट उदाहरण <math>L^2</math>-नॉर्मड द्वारा तापमान या वेग वितरण की ऊर्जा को माप रहा है। इसलिए यह महत्वपूर्ण है कि एलपी स्पेस फलन को विभेदित करने के लिए एक टूल विकसित किया जाए।
Line 37: Line 37:
0 & \text{else}
0 & \text{else}
\end{cases}</math>
\end{cases}</math>
<math>u(x),</math> के अशक्त व्युत्पन्न होने की परिभाषा को पूर्णरूप से संतुष्ट करता है। जो उस समय सोबोलिव अंतरिक्ष <math>W^{1,p}</math> में होने के योग्य है। (किसी भी अनुमति के लिए <math>p</math> नीचे परिभाषा देखें)।
<math>u(x),</math> के अशक्त व्युत्पन्न होने की परिभाषा को पूर्णरूप से संतुष्ट करता है। जो उस समय सोबोलिव स्पेस <math>W^{1,p}</math> में होने के योग्य है। (किसी भी अनुमति के लिए <math>p</math> नीचे परिभाषा देखें)।


सोबोलेव रिक्त स्थान <math>W^{k,p}(\Omega)</math> अशक्त भिन्नता और [[एलपी मानदंड]] की अवधारणाओं को मिश्रित करें।
सोबोलेव रिक्त स्थान <math>W^{k,p}(\Omega)</math> अशक्त भिन्नता और [[एलपी मानदंड]] की अवधारणाओं को मिश्रित करें।
Line 44: Line 44:


=== एक आयामी स्थिति ===
=== एक आयामी स्थिति ===
एक आयामी स्थिति में सोबोलेव स्पेस <math>W^{k,p}(\R)</math> के लिए <math>1 \le p \le \infty</math> फलनों के सबसेट <math>f</math>  <math>L^p(\R)</math> में के रूप में परिभाषित किया गया है| ऐसा प्रदर्शित होता है कि <math>f</math> और इसके अशक्त डेरिवेटिव ऑर्डर <math>k</math> तक एक परिमित {{math|''L<sup>p</sup>''}} मापदंड है। जैसा कि ऊपर उल्लेख किया गया है कि उचित अर्थों में डेरिवेटिव को परिभाषित करने के लिए कुछ सावधानी रखनी चाहिए। एक आयामी हल में यह मान लेना पर्याप्त है कि <math>(k{-}1)</math>-वें व्युत्पन्न <math>f^{(k-1)}</math> लगभग प्रत्येक स्थान पर विभिन्न प्रकार है और इसके व्युत्पन्न के लेबेस्ग्यू एकीकरण के लिए लगभग प्रत्येक स्थान पर समान हैं (इसमें अप्रासंगिक उदाहरण सम्मिलित नहीं हैं। जैसे कि कैंटर फलन | कैंटर का फ़ंक्शन)।
एक आयामी स्थिति में सोबोलेव स्पेस <math>W^{k,p}(\R)</math> के लिए <math>1 \le p \le \infty</math> फलनों के सबसेट <math>f</math>  <math>L^p(\R)</math> में के रूप में परिभाषित किया गया है| ऐसा प्रदर्शित होता है कि <math>f</math> और इसके अशक्त डेरिवेटिव ऑर्डर <math>k</math> तक एक परिमित {{math|''L<sup>p</sup>''}} मापदंड है। जैसा कि ऊपर उल्लेख किया गया है कि उचित अर्थों में डेरिवेटिव को परिभाषित करने के लिए कुछ सावधानी रखनी चाहिए। एक आयामी हल में यह मान लेना पर्याप्त है कि <math>(k{-}1)</math>-वें व्युत्पन्न <math>f^{(k-1)}</math> लगभग प्रत्येक स्थान पर विभिन्न प्रकार है और इसके व्युत्पन्न के लेबेस्ग्यू एकीकरण के लिए लगभग प्रत्येक स्थान पर समान हैं (इसमें अप्रासंगिक उदाहरण सम्मिलित नहीं हैं। जैसे कि कैंटर फलन | कैंटर का फलन)।


इस परिभाषा के साथ सोबोलेव रिक्त स्थान एक प्राकृतिक नॉर्म्ड सदिश स्थान स्वीकार करते हैं,
इस परिभाषा के साथ सोबोलेव रिक्त स्थान एक प्राकृतिक नॉर्म्ड सदिश स्थान स्वीकार करते हैं,
Line 58: Line 58:


====स्थिति {{math|''p'' {{=}} 2}}====
====स्थिति {{math|''p'' {{=}} 2}}====
सोबोलेव रिक्त स्थान के साथ {{math|''p'' {{=}} 2}} विशेष रूप से फूरियर श्रृंखला के साथ उनके संबंध के कारण महत्वपूर्ण हैं और क्योंकि वे एक [[हिल्बर्ट अंतरिक्ष]] का निर्माण करते हैं। इस स्थिति को कवर करने के लिए एक विशेष संकेतन उत्पन्न किया गया है क्योंकि अंतरिक्ष एक हिल्बर्ट स्थान है:
सोबोलेव रिक्त स्थान के साथ {{math|''p'' {{=}} 2}} विशेष रूप से फूरियर श्रृंखला के साथ उनके संबंध के कारण महत्वपूर्ण हैं और क्योंकि वे एक [[हिल्बर्ट अंतरिक्ष|हिल्बर्ट स्पेस]] का निर्माण करते हैं। इस स्थिति को कवर करने के लिए एक विशेष संकेतन उत्पन्न किया गया है क्योंकि स्पेस एक हिल्बर्ट स्थान है:


:<math>H^k = W^{k,2}.</math>
:<math>H^k = W^{k,2}.</math>
अंतरिक्ष <math>H^k</math> फूरियर श्रृंखला के संदर्भ में स्वाभाविक रूप से परिभाषित किया जा सकता है। जिसका गुणांक पर्याप्त रूप से तेजी से घटता है। अर्थात्,
स्पेस <math>H^k</math> फूरियर श्रृंखला के संदर्भ में स्वाभाविक रूप से परिभाषित किया जा सकता है। जिसका गुणांक पर्याप्त रूप से तेजी से घटता है। अर्थात्,


:<math>H^k(\mathbb{T}) = \Big \{ f\in L^2(\mathbb{T}) : \sum_{n=-\infty}^\infty \left (1+n^2 + n^4 + \dots + n^{2k} \right ) \left |\widehat{f}(n) \right |^2 < \infty \Big \},</math>
:<math>H^k(\mathbb{T}) = \Big \{ f\in L^2(\mathbb{T}) : \sum_{n=-\infty}^\infty \left (1+n^2 + n^4 + \dots + n^{2k} \right ) \left |\widehat{f}(n) \right |^2 < \infty \Big \},</math>
Line 69: Line 69:
दोनों प्रतिनिधित्व पारसेवल के प्रमेय से सरलता से अनुसरण करते हैं और तथ्य यह है कि भेदभाव फूरियर गुणांक को गुणा करने के बराबर है <math>in</math>.
दोनों प्रतिनिधित्व पारसेवल के प्रमेय से सरलता से अनुसरण करते हैं और तथ्य यह है कि भेदभाव फूरियर गुणांक को गुणा करने के बराबर है <math>in</math>.


इसके अतिरिक्त अंतरिक्ष <math>H^k</math> अंतरिक्ष के समान एक [[आंतरिक उत्पाद स्थान]] <math>H^0 = L^2.</math> को स्वीकार करता है। वास्तव में <math>H^k</math> आंतरिक उत्पाद <math>L^2</math> के संदर्भ में परिभाषित किया गया है:
इसके अतिरिक्त स्पेस <math>H^k</math> स्पेस के समान एक [[आंतरिक उत्पाद स्थान]] <math>H^0 = L^2.</math> को स्वीकार करता है। वास्तव में <math>H^k</math> आंतरिक उत्पाद <math>L^2</math> के संदर्भ में परिभाषित किया गया है:


:<math>\langle u,v\rangle_{H^k} = \sum_{i=0}^k \left \langle D^i u,D^i v \right \rangle_{L^2}.</math>
:<math>\langle u,v\rangle_{H^k} = \sum_{i=0}^k \left \langle D^i u,D^i v \right \rangle_{L^2}.</math>
अंतरिक्ष <math>H^k</math> इस आंतरिक उत्पाद के साथ हिल्बर्ट स्पेस बन जाता है।
स्पेस <math>H^k</math> इस आंतरिक उत्पाद के साथ हिल्बर्ट स्पेस बन जाता है।


==== अन्य उदाहरण ====
==== अन्य उदाहरण ====
एक आयाम में कुछ अन्य सोबोलिव रिक्त स्थान एक सरल वर्णन की अनुमति देते हैं। उदाहरण के लिए <math>W^{1,1}(0,1)</math> पर [[पूर्ण निरंतरता]] का स्थान है (या किन्तु फलनों के समतुल्य वर्ग जो लगभग प्रत्येक स्थान पर समान हैं), किन्तु प्रत्येक अंतराल के लिए {{mvar|I}} <math>W^{1,\infty}(I)</math> परिबद्ध लिप्सचिट्ज़ निरंतरता का स्थान है। चूंकि ये गुण नष्ट हो गए हैं या एक से अधिक चर के फलनों के लिए अधिक सरल नहीं हैं।
एक आयाम में कुछ अन्य सोबोलिव रिक्त स्थान एक सरल वर्णन की अनुमति देते हैं। उदाहरण के लिए <math>W^{1,1}(0,1)</math> पर [[पूर्ण निरंतरता]] का स्थान है (या किन्तु फलनों के समतुल्य वर्ग जो लगभग प्रत्येक स्थान पर समान हैं), किन्तु प्रत्येक अंतराल के लिए {{mvar|I}} <math>W^{1,\infty}(I)</math> परिबद्ध लिप्सचिट्ज़ निरंतरता का स्थान है। चूंकि ये गुण नष्ट हो गए हैं या एक से अधिक चर के फलनों के लिए अधिक सरल नहीं हैं।


सभी रिक्त स्थान <math>W^{k,\infty}</math> [[एक क्षेत्र पर बीजगणित]] (सामान्य) हैं। अर्थात् दो तत्वों का उत्पाद एक बार पुनः इस सोबोलिव अंतरिक्ष का एक फलन है। जो कि <math>p<\infty.</math> की स्थिति नहीं है (उदाहरण के लिए, |''x''|<sup>−1/3</sup> जैसा व्यवहार करने वाले फलन <math>L^2,</math> मूल में हैं। किन्तु ऐसे दो फलनों का उत्पाद <math>L^2</math>में अंदर नहीं है।)
सभी रिक्त स्थान <math>W^{k,\infty}</math> [[एक क्षेत्र पर बीजगणित]] (सामान्य) हैं। अर्थात् दो तत्वों का उत्पाद एक बार पुनः इस सोबोलिव स्पेस का एक फलन है। जो कि <math>p<\infty.</math> की स्थिति नहीं है (उदाहरण के लिए |''x''|<sup>1/3</sup> जैसा व्यवहार करने वाले फलन <math>L^2,</math> मूल में हैं। किन्तु ऐसे दो फलनों का उत्पाद <math>L^2</math>में अंदर नहीं है।)


=== बहुआयामी स्थिति ===
=== बहुआयामी स्थिति ===
बहुत से आयामों में परिवर्तन परिभाषा से प्रारम्भ करके अधिक कठिनाइयाँ प्रदर्शित करता है। इसमें आवश्यकता है कि <math>f^{(k-1)}</math>, <math>f^{(k)}</math> का अभिन्न अंग हो। जो सामान्यीकरण नहीं करता है और सबसे सरल हल [[वितरण (गणित)]] के अर्थ में डेरिवेटिव पर विचार करना है।
बहुत से आयामों में परिवर्तन परिभाषा से प्रारम्भ करके अधिक कठिनाइयाँ प्रदर्शित करता है। इसमें आवश्यकता है कि <math>f^{(k-1)}</math>, <math>f^{(k)}</math> का अभिन्न अंग हो। जो सामान्यीकरण नहीं करता है और सबसे सरल हल [[वितरण (गणित)]] के अर्थ में डेरिवेटिव पर विचार करना है।


एक औपचारिक परिभाषा अब इस प्रकार है। माना कि <math>k \in \N, 1 \leqslant p \leqslant \infty.</math> सोबोलेव अंतरिक्ष <math>W^{k,p}(\Omega)</math> सभी फलनों <math>\Omega</math> पर <math>f</math> के समुच्चय के रूप में परिभाषित किया गया है। ऐसा है कि प्रत्येक बहु-सूचकांक <math>\alpha</math> के लिए  <math>|\alpha|\leqslant k,</math> के साथ, मिश्रित [[आंशिक व्युत्पन्न]]-     
एक औपचारिक परिभाषा अब इस प्रकार है। माना कि <math>k \in \N, 1 \leqslant p \leqslant \infty.</math> सोबोलेव स्पेस <math>W^{k,p}(\Omega)</math> सभी फलनों <math>\Omega</math> पर <math>f</math> के समुच्चय के रूप में परिभाषित किया गया है। ऐसा है कि प्रत्येक बहु-सूचकांक <math>\alpha</math> के लिए  <math>|\alpha|\leqslant k,</math> के साथ, मिश्रित [[आंशिक व्युत्पन्न]]-     


:<math>f^{(\alpha)} = \frac{\partial^{| \alpha |\!} f}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}}</math>
:<math>f^{(\alpha)} = \frac{\partial^{| \alpha |\!} f}{\partial x_{1}^{\alpha_{1}} \dots \partial x_{n}^{\alpha_{n}}}</math>
Line 91: Line 91:


:<math>W^{k,p}(\Omega) = \left \{ u \in L^p(\Omega) : D^{\alpha}u \in L^p(\Omega) \,\, \forall |\alpha| \leqslant k \right \}. </math>
:<math>W^{k,p}(\Omega) = \left \{ u \in L^p(\Omega) : D^{\alpha}u \in L^p(\Omega) \,\, \forall |\alpha| \leqslant k \right \}. </math>
प्राकृतिक संख्या <math>k</math> सोबोलेव अंतरिक्ष <math>W^{k,p}(\Omega).</math> का क्रम कहा जाता है।  
प्राकृतिक संख्या <math>k</math> सोबोलेव स्पेस <math>W^{k,p}(\Omega).</math> का क्रम कहा जाता है।  


<math>W^{k,p}(\Omega).</math> के लिए एक मानक के लिए कई विकल्प हैं। जिसमें निम्नलिखित दो सामान्य हैं और सामान्य (गणित) गुण के अर्थ में समकक्ष हैं:
<math>W^{k,p}(\Omega).</math> के लिए एक मानक के लिए कई विकल्प हैं। जिसमें निम्नलिखित दो सामान्य हैं और सामान्य (गणित) गुण के अर्थ में समकक्ष हैं:
Line 115: Line 115:
==== उदाहरण ====
==== उदाहरण ====


उच्च आयामों में, यह अब सच नहीं है कि, उदाहरण के लिए, <math>W^{1,1}</math> केवल निरंतर फलन सम्मिलित हैं। उदाहरण के लिए, <math>|x|^{-1} \in W^{1,1}(\mathbb{B}^3)</math> कहाँ <math>\mathbb{B}^3</math> [[यूनिट बॉल]] तीन आयामों में है। के लिए <math>k > n/p</math>, अंतरिक्ष <math>W^{k,p}(\Omega)</math> केवल निरंतर फलन सम्मिलित होंगे, लेकिन किसके लिए <math>k</math> यह पहले से ही सच है दोनों पर निर्भर करता है <math>p</math> और आयाम पर। उदाहरण के लिए, जैसा कि फ़ंक्शन के [[गोलाकार ध्रुवीय निर्देशांक]] का उपयोग करके आसानी से जांचा जा सकता है <math>f : \mathbb{B}^n \to \R \cup \{\infty \}</math> हमारे पास एन-डायमेंशनल बॉल पर परिभाषित है:
उच्च आयामों में, यह अब सच नहीं है कि, उदाहरण <math>W^{1,1}</math> के लिए  केवल निरंतर फलन सम्मिलित हैं। उदाहरण के लिए, <math>|x|^{-1} \in W^{1,1}(\mathbb{B}^3)</math> जहाँ <math>\mathbb{B}^3</math> [[यूनिट बॉल]] तीन आयामों में है।<math>k > n/p</math> के लिए स्पेस <math>W^{k,p}(\Omega)</math> केवल निरंतर फलन सम्मिलित होंगे। किन्तु किसके लिए <math>k</math> यह पहले से ही सच है। दोनों <math>p</math> और आयाम पर निर्भर करता है । उदाहरण के लिए जैसा कि फलन के [[गोलाकार ध्रुवीय निर्देशांक]] <math>f : \mathbb{B}^n \to \R \cup \{\infty \}</math> का उपयोग करके सरलता से जांचा जा सकता है।  हमारे पास एन-डायमेंशनल बॉल पर परिभाषित है:


:<math>f(x) = | x |^{-\alpha} \in W^{k,p}(\mathbb{B}^n) \Longleftrightarrow \alpha < \tfrac{n}{p} - k.</math>
:<math>f(x) = | x |^{-\alpha} \in W^{k,p}(\mathbb{B}^n) \Longleftrightarrow \alpha < \tfrac{n}{p} - k.</math>
सहज रूप से, 0 पर f का ब्लो-अप कम मायने रखता है जब n बड़ा होता है क्योंकि यूनिट बॉल में उच्च आयामों में बाहर और कम अंदर होता है।
सहज रूप से 0 पर f का ब्लो-अप कम कार्य रखता है। जब n बड़ा होता है क्योंकि यूनिट बॉल में उच्च आयामों में बाहर और कम अंदर होता है।


==== सोबोलेव प्रफलनों का निरन्तर ऑन लाइन्स (एसीएल) अभिलक्षणन ====
==== सोबोलेव प्रफलनों का निरन्तर ऑन लाइन्स (एसीएल) अभिलक्षणन ====
होने देना <math>1\leqslant p \leqslant \infty.</math> यदि कोई फंक्शन है <math>W^{1,p}(\Omega),</math> फिर, संभवतः माप शून्य के एक सेट पर फ़ंक्शन को संशोधित करने के बाद, समन्वय दिशाओं के समानांतर [[लगभग हर]] पंक्ति पर प्रतिबंध <math>\R^n</math> [[बिल्कुल निरंतर]] है; क्या अधिक है, मौलिक व्युत्पन्न उन रेखाओं के साथ है जो समन्वय दिशाओं के समानांतर हैं <math>L^p(\Omega).</math> इसके विपरीत, यदि का प्रतिबंध <math>f</math> निर्देशांक दिशाओं के समानांतर लगभग हर रेखा बिल्कुल निरंतर है, फिर बिंदुवार ढाल <math>\nabla f</math> लगभग हर जगह उपस्थित है, और <math>f</math> में है <math>W^{1,p}(\Omega)</math> बशर्ते <math>f, |\nabla f| \in L^p(\Omega).</math> विशेष रूप से, इस स्थिति में अशक्त आंशिक डेरिवेटिव <math>f</math> और बिंदुवार आंशिक डेरिवेटिव <math>f</math> लगभग हर जगह सहमत हैं। सोबोलेव रिक्त स्थान का एसीएल लक्षण वर्णन ओटो एम निकोडिम (#CITEREFNikodym1933) द्वारा स्थापित किया गया था; देखना {{harv|Maz'ya|2011|loc=§1.1.3}}.
माना कि <math>1\leqslant p \leqslant \infty.</math> यदि <math>W^{1,p}(\Omega),</math> में कोई फलन है। फिर संभवतः माप शून्य के एक समुच्चय पर फलन को संशोधित करने के बाद समन्वय दिशाओं के समानांतर [[लगभग हर|लगभग प्रत्येक]] पंक्ति पर प्रतिबंध <math>\R^n</math> [[बिल्कुल निरंतर]] है। क्या अधिक है। मौलिक व्युत्पन्न उन रेखाओं के साथ है, जो समन्वय दिशाओं के समानांतर हैं।  इसके विपरीत, यदि का प्रतिबंध <math>f</math> निर्देशांक दिशाओं के समानांतर लगभग हर रेखा बिल्कुल निरंतर है, फिर बिंदुवार ढाल <math>\nabla f</math> लगभग हर जगह उपस्थित है, और <math>f</math> में है <math>W^{1,p}(\Omega)</math> बशर्ते <math>f, |\nabla f| \in L^p(\Omega).</math> विशेष रूप से, इस स्थिति में अशक्त आंशिक डेरिवेटिव <math>f</math> और बिंदुवार आंशिक डेरिवेटिव <math>f</math> लगभग हर जगह सहमत हैं। सोबोलेव रिक्त स्थान का एसीएल लक्षण वर्णन ओटो एम निकोडिम (#CITEREFNikodym1933) द्वारा स्थापित किया गया था; देखना {{harv|Maz'ya|2011|loc=§1.1.3}}.


एक शक्तिशाली परिणाम तब होता है जब <math>p>n.</math> में एक समारोह <math>W^{1,p}(\Omega)</math> है, माप शून्य के एक सेट पर संशोधित करने के बाद, होल्डर लगातार एक्सपोनेंट <math>\gamma = 1 - \tfrac{n}{p},</math> सोबोलेव असमानता द्वारा#मोरे की असमानता|मोरे की असमानता। विशेष रूप से, यदि <math>p=\infty</math> और <math>\Omega</math> Lipschitz सीमा है, तो फलन Lipschitz निरंतर है।
एक शक्तिशाली परिणाम तब होता है जब <math>p>n.</math> में एक समारोह <math>W^{1,p}(\Omega)</math> है, माप शून्य के एक सेट पर संशोधित करने के बाद, होल्डर लगातार एक्सपोनेंट <math>\gamma = 1 - \tfrac{n}{p},</math> सोबोलेव असमानता द्वारा#मोरे की असमानता|मोरे की असमानता। विशेष रूप से, यदि <math>p=\infty</math> और <math>\Omega</math> Lipschitz सीमा है, तो फलन Lipschitz निरंतर है।
Line 128: Line 128:
{{See also|Trace operator}}
{{See also|Trace operator}}


सोबोलेव अंतरिक्ष <math>W^{1,2}(\Omega)</math> द्वारा भी दर्शाया गया है <math>H^1\!(\Omega).</math> यह एक हिल्बर्ट स्पेस है, जिसमें एक महत्वपूर्ण सबस्पेस है <math>H^1_0\!(\Omega)</math> असीमित रूप से समर्थित असीमित फलनों को बंद करने के रूप में परिभाषित किया गया है <math>\Omega</math> में <math>H^1\!(\Omega).</math> ऊपर परिभाषित सोबोलेव मानदंड यहाँ तक कम हो जाता है
सोबोलेव स्पेस <math>W^{1,2}(\Omega)</math> द्वारा भी दर्शाया गया है <math>H^1\!(\Omega).</math> यह एक हिल्बर्ट स्पेस है, जिसमें एक महत्वपूर्ण सबस्पेस है <math>H^1_0\!(\Omega)</math> असीमित रूप से समर्थित असीमित फलनों को बंद करने के रूप में परिभाषित किया गया है <math>\Omega</math> में <math>H^1\!(\Omega).</math> ऊपर परिभाषित सोबोलेव मानदंड यहाँ तक कम हो जाता है


:<math>\|f\|_{H^1} = \left ( \int_\Omega \! |f|^2 \!+\! |\nabla\! f|^2 \right)^{\!\frac12}.</math>
:<math>\|f\|_{H^1} = \left ( \int_\Omega \! |f|^2 \!+\! |\nabla\! f|^2 \right)^{\!\frac12}.</math>
Line 150: Line 150:
\end{align}</math>}}
\end{align}</math>}}


तू को तू का अंश कहा जाता है। मोटे तौर पर बोलते हुए, यह प्रमेय प्रतिबंध ऑपरेटर को सोबोलिव अंतरिक्ष तक फैलाता है <math>W^{1,p}(\Omega)</math> अच्छे व्यवहार के लिए Ω. ध्यान दें कि [[ट्रेस ऑपरेटर]] टी सामान्य रूप से विशेषण नहीं है, लेकिन 1 <p <∞ के लिए यह सोबोलेव-स्लोबोडेकिज स्पेस पर लगातार मैप करता है <math>W^{1-\frac{1}{p},p}(\partial\Omega).</math>
तू को तू का अंश कहा जाता है। मोटे तौर पर बोलते हुए, यह प्रमेय प्रतिबंध ऑपरेटर को सोबोलिव स्पेस तक फैलाता है <math>W^{1,p}(\Omega)</math> अच्छे व्यवहार के लिए Ω. ध्यान दें कि [[ट्रेस ऑपरेटर]] टी सामान्य रूप से विशेषण नहीं है, लेकिन 1 <p <∞ के लिए यह सोबोलेव-स्लोबोडेकिज स्पेस पर लगातार मैप करता है <math>W^{1-\frac{1}{p},p}(\partial\Omega).</math>
सहज रूप से, ट्रेस लेने से डेरिवेटिव का 1/p खर्च होता है। डब्ल्यू में यू फलन करता है<sup>1,p</sup>(Ω) शून्य ट्रेस के साथ, अर्थात् Tu = 0, समानता द्वारा विशेषता हो सकती है
सहज रूप से, ट्रेस लेने से डेरिवेटिव का 1/p खर्च होता है। डब्ल्यू में यू फलन करता है<sup>1,p</sup>(Ω) शून्य ट्रेस के साथ, अर्थात् Tu = 0, समानता द्वारा विशेषता हो सकती है


Line 162: Line 162:


=== बेसेल संभावित स्थान ===
=== बेसेल संभावित स्थान ===
एक प्राकृतिक संख्या k और के लिए {{math|1 < ''p'' < ∞}} कोई दिखा सकता है ([[गुणक (फूरियर विश्लेषण)]] का उपयोग करके<ref>{{harvnb|Bergh|Löfström|1976}}</ref><ref name="Triebel1995">{{harvnb|Triebel|1995}}</ref>) कि अंतरिक्ष <math>W^{k,p}(\R^n)</math> के रूप में समान रूप से परिभाषित किया जा सकता है
एक प्राकृतिक संख्या k और के लिए {{math|1 < ''p'' < ∞}} कोई दिखा सकता है ([[गुणक (फूरियर विश्लेषण)]] का उपयोग करके<ref>{{harvnb|Bergh|Löfström|1976}}</ref><ref name="Triebel1995">{{harvnb|Triebel|1995}}</ref>) कि स्पेस <math>W^{k,p}(\R^n)</math> के रूप में समान रूप से परिभाषित किया जा सकता है


:<math> W^{k,p}(\R^n) = H^{k,p}(\R^n) := \Big \{f \in L^p(\R^n) : \mathcal{F}^{-1} \Big[\big(1 + |\xi|^2\big)^{\frac{k}{2}}\mathcal{F}f \Big] \in L^p(\R^n) \Big \},</math>
:<math> W^{k,p}(\R^n) = H^{k,p}(\R^n) := \Big \{f \in L^p(\R^n) : \mathcal{F}^{-1} \Big[\big(1 + |\xi|^2\big)^{\frac{k}{2}}\mathcal{F}f \Big] \in L^p(\R^n) \Big \},</math>
Line 226: Line 226:
=== शून्य से विस्तार ===
=== शून्य से विस्तार ===


जैसे #Functions सीमा पर गायब हो जाते हैं, हम परिभाषित करते हैं <math>H^s_0(\Omega)</math> में बंद होना <math>H^s(\Omega)</math> अंतरिक्ष का <math>C^\infty_c(\Omega)</math> असीम रूप से विभिन्न प्रकार कॉम्पैक्ट रूप से समर्थित फलनों की। ऊपर दिए गए ट्रेस की परिभाषा को देखते हुए, हम निम्नलिखित बता सकते हैं
जैसे #Functions सीमा पर गायब हो जाते हैं, हम परिभाषित करते हैं <math>H^s_0(\Omega)</math> में बंद होना <math>H^s(\Omega)</math> स्पेस का <math>C^\infty_c(\Omega)</math> असीम रूप से विभिन्न प्रकार कॉम्पैक्ट रूप से समर्थित फलनों की। ऊपर दिए गए ट्रेस की परिभाषा को देखते हुए, हम निम्नलिखित बता सकते हैं


{{ math theorem | math_statement = Let <math>\Omega</math> be uniformly ''C<sup>m</sup>'' regular, ''m'' ≥ ''s'' and let ''P'' be the linear map sending ''u'' in <math>H^s(\Omega)</math> to
{{ math theorem | math_statement = Let <math>\Omega</math> be uniformly ''C<sup>m</sup>'' regular, ''m'' ≥ ''s'' and let ''P'' be the linear map sending ''u'' in <math>H^s(\Omega)</math> to
Line 244: Line 244:


:<math> \| Ef \|_{L^p(\R^n)}= \| f \|_{L^p(\Omega)}.</math>
:<math> \| Ef \|_{L^p(\R^n)}= \| f \|_{L^p(\Omega)}.</math>
सोबोलेव स्पेस के स्थिति में डब्ल्यू<sup>1, पी</sup>(Ω) के लिए {{math|1 ≤ p ≤ ∞}}, एक फ़ंक्शन यू को शून्य से विस्तारित करने से आवश्यक रूप से एक तत्व नहीं मिलेगा <math>W^{1,p}(\R^n).</math> लेकिन यदि Ω लिपशिट्ज सीमा से घिरा है (उदाहरण के लिए ∂Ω सी है<sup>1</sup>), तो किसी भी बंधे हुए खुले सेट O के लिए जैसे कि Ω⊂⊂O (अर्थात् Ω कॉम्पैक्ट रूप से O में समाहित है), एक परिबद्ध रैखिक ऑपरेटर उपस्थित है<ref name="Adams1975" />
सोबोलेव स्पेस के स्थिति में डब्ल्यू<sup>1, पी</sup>(Ω) के लिए {{math|1 ≤ p ≤ ∞}}, एक फलन यू को शून्य से विस्तारित करने से आवश्यक रूप से एक तत्व नहीं मिलेगा <math>W^{1,p}(\R^n).</math> लेकिन यदि Ω लिपशिट्ज सीमा से घिरा है (उदाहरण के लिए ∂Ω सी है<sup>1</sup>), तो किसी भी बंधे हुए खुले सेट O के लिए जैसे कि Ω⊂⊂O (अर्थात् Ω कॉम्पैक्ट रूप से O में समाहित है), एक परिबद्ध रैखिक ऑपरेटर उपस्थित है<ref name="Adams1975" />


:<math> E: W^{1,p}(\Omega)\to W^{1,p}(\R^n),</math>
:<math> E: W^{1,p}(\Omega)\to W^{1,p}(\R^n),</math>
Line 256: Line 256:
{{Main|Sobolev inequality}}
{{Main|Sobolev inequality}}


यह पूछना एक स्वाभाविक प्रश्न है कि क्या कोई सोबोलेव फ़ंक्शन निरंतर या यहां तक ​​कि लगातार विभिन्न प्रकार होता है। मोटे तौर पर बोलते हुए, पर्याप्त रूप से कई अशक्त डेरिवेटिव्स (अर्थात् बड़े के) का परिणाम मौलिक व्युत्पन्न होता है। इस विचार को सामान्यीकृत किया गया है और सोबोलिव असमानता में सटीक बनाया गया है।
यह पूछना एक स्वाभाविक प्रश्न है कि क्या कोई सोबोलेव फलन निरंतर या यहां तक ​​कि लगातार विभिन्न प्रकार होता है। मोटे तौर पर बोलते हुए, पर्याप्त रूप से कई अशक्त डेरिवेटिव्स (अर्थात् बड़े के) का परिणाम मौलिक व्युत्पन्न होता है। इस विचार को सामान्यीकृत किया गया है और सोबोलिव असमानता में सटीक बनाया गया है।


लिखना <math>W^{k,p}</math> डायमेंशन n के कुछ कॉम्पैक्ट रीमैनियन मैनिफोल्ड के सोबोलेव स्पेस के लिए। यहाँ k कोई भी वास्तविक संख्या हो सकती है, और 1 ≤ p ≤ ∞। (पी = ∞ सोबोलेव स्पेस के लिए <math>W^{k,\infty}</math> होल्डर स्पेस सी के रूप में परिभाषित किया गया है<sup>n,α</sup> जहां k = n + α और 0 < α ≤ 1.) सोबोलेव एम्बेडिंग प्रमेय कहता है कि यदि <math>k \geqslant m</math> और <math>k - \tfrac{n}{p} \geqslant m - \tfrac{n}{q}</math> तब
लिखना <math>W^{k,p}</math> डायमेंशन n के कुछ कॉम्पैक्ट रीमैनियन मैनिफोल्ड के सोबोलेव स्पेस के लिए। यहाँ k कोई भी वास्तविक संख्या हो सकती है, और 1 ≤ p ≤ ∞। (पी = ∞ सोबोलेव स्पेस के लिए <math>W^{k,\infty}</math> होल्डर स्पेस सी के रूप में परिभाषित किया गया है<sup>n,α</sup> जहां k = n + α और 0 < α ≤ 1.) सोबोलेव एम्बेडिंग प्रमेय कहता है कि यदि <math>k \geqslant m</math> और <math>k - \tfrac{n}{p} \geqslant m - \tfrac{n}{q}</math> तब

Revision as of 21:52, 27 April 2023

गणित में एक सोबोलिव स्पेस एक वेक्टर स्पेस से लैस फलनों का एक सदिश स्थान है। यह किसी दिए गए क्रम तक इसके डेरिवेटिव के साथ फलनों के एलपी-मानदंडों का संयोजन है। स्पेस को पूर्ण मीट्रिक स्थान बनाने के लिए डेरिवेटिव्स को एक उपयुक्त अशक्त व्युत्पन्न माना जाता है, अर्थात् एक बनैच स्थान सहज रूप से एक सोबोलेव स्पेस कुछ एप्लिकेशन डोमेन के लिए पर्याप्त डेरिवेटिव वाले फलनों का एक स्थान है। जैसे आंशिक अंतर समीकरण और एक मानक से लैस है। जो फलन के आकार और नियमितता दोनों को मापता है।

सोबोलेव रिक्त स्थान का नाम रूसी गणितज्ञ सर्गेई लावोविच सोबोलेव के नाम पर रखा गया है। उनका महत्व इस तथ्य से प्रदर्शित किया जाता है कि कुछ महत्वपूर्ण एवं आंशिक अंतर समीकरणों का अशक्त हल उचित सोबोलिव रिक्त स्थान में उपस्थित है। तथापि मौलिक अर्थों में डेरिवेटिव्स के साथ निरंतर फलनों के रिक्त स्थान में कोई शक्तिशाली हल नहीे प्राप्त हुआ है।

प्रेरणा

इस खंड में और पूरे लेख में, का खुला उपसमुच्चय है।

गणितीय फलनों की सरलता के लिए कई मापदंड उपस्थित हैं। सबसे मूलभूत मापदंड निरंतर फलन करने का हो सकता है। स्मूथनेस की एक शक्तिशाली धारणा भिन्नता की है (क्योंकि विभिन्न प्रकार के फलन भी निरंतर हैं) और स्मूथनेस की एक और शक्तिशाली धारणा यह है कि व्युत्पन्न भी निरंतर हो (इन फलनों को कक्षा के रूप में कहा जाता है - विभेदीकरण वर्ग देखें)। अवकलनीय फलन कई क्षेत्रों में और विशेष रूप से अवकल समीकरणों के लिए महत्वपूर्ण हैं। चूंकि बीसवीं शताब्दी में यह देखा गया था कि स्पेस (या आदि) अंतर समीकरणों के हल का अध्ययन करने के लिए बिल्कुल सही स्थान नहीं था। सोबोलेव रिक्त स्थान इन स्थानों के लिए आधुनिक प्रतिस्थापन हैं। जिसमें आंशिक अंतर समीकरणों के समाधान की जानकारी की जाती है।

अंतर समीकरण के अंतर्निहित मॉडल की मात्रा या गुण सामान्यतः अभिन्न मापदंडों के संदर्भ में व्यक्त किए जाते हैं। एक विशिष्ट उदाहरण -नॉर्मड द्वारा तापमान या वेग वितरण की ऊर्जा को माप रहा है। इसलिए यह महत्वपूर्ण है कि एलपी स्पेस फलन को विभेदित करने के लिए एक टूल विकसित किया जाए।

भागों के सूत्र द्वारा एकीकरण से प्रत्येक के लिए यह प्राप्त होता है। जहाँ एक प्राकृतिक संख्या को दर्शाता है और कॉम्पैक्ट समर्थन के साथ सभी असीमित विभिन्न प्रकार फलनों के लिए-

जहाँ आदेश का एक बहु-सूचकांक है। और हम नोटेशन का उपयोग कर रहे हैं:

इस समीकरण का बायां पक्ष अभी भी समझ में आता है। यदि स्थानीय रूप से एकीकृत होने के लिए हम केवल मान लें। यदि कोई स्थानीय रूप से एकीकृत फलन उपस्थित है। ऐसा है कि-

फिर हम अशक्त व्युत्पन्न आंशिक व्युत्पन्न प्रदर्शित करते हैं। यदि कोई अशक्त आंशिक व्युत्पन्न है। तब इसे लगभग प्रत्येक स्थान पर विशिष्ट रूप से परिभाषित किया जाता है और इस प्रकार यह विशिष्ट रूप से एलपी स्थान के एक तत्व के रूप में निर्धारित होता है। उसी प्रकार दूसरी ओर यदि है। तब मौलिक और अशक्त व्युत्पन्न मिलते हैं। इस प्रकार यदि एक अशक्त आंशिक व्युत्पन्न है। हम इसे द्वारा निरूपित कर सकते हैं।

उदाहरण के लिए फलन-

शून्य पर निरंतर नहीं है और -1, 0, या 1 पर अवकलनीय नहीं है। फिर भी फलन

के अशक्त व्युत्पन्न होने की परिभाषा को पूर्णरूप से संतुष्ट करता है। जो उस समय सोबोलिव स्पेस में होने के योग्य है। (किसी भी अनुमति के लिए नीचे परिभाषा देखें)।

सोबोलेव रिक्त स्थान अशक्त भिन्नता और एलपी मानदंड की अवधारणाओं को मिश्रित करें।

पूर्णांक k के साथ सोबोलेव रिक्त स्थान-

एक आयामी स्थिति

एक आयामी स्थिति में सोबोलेव स्पेस के लिए फलनों के सबसेट में के रूप में परिभाषित किया गया है| ऐसा प्रदर्शित होता है कि और इसके अशक्त डेरिवेटिव ऑर्डर तक एक परिमित Lp मापदंड है। जैसा कि ऊपर उल्लेख किया गया है कि उचित अर्थों में डेरिवेटिव को परिभाषित करने के लिए कुछ सावधानी रखनी चाहिए। एक आयामी हल में यह मान लेना पर्याप्त है कि -वें व्युत्पन्न लगभग प्रत्येक स्थान पर विभिन्न प्रकार है और इसके व्युत्पन्न के लेबेस्ग्यू एकीकरण के लिए लगभग प्रत्येक स्थान पर समान हैं (इसमें अप्रासंगिक उदाहरण सम्मिलित नहीं हैं। जैसे कि कैंटर फलन | कैंटर का फलन)।

इस परिभाषा के साथ सोबोलेव रिक्त स्थान एक प्राकृतिक नॉर्म्ड सदिश स्थान स्वीकार करते हैं,

कोई इसे स्थिति तक मानक के साथ बढ़ा सकता है। तब आवश्यक सुप्रीमम और आवश्यक न्यूनतम का उपयोग करके परिभाषित किया जा सकता है।

नॉर्मड से लैस बनैच स्थान बन जाता है। यह प्रदर्शित होता है कि यह अनुक्रम में केवल पहले और अंतिम को लेने के लिए पर्याप्त है अर्थात जो नॉर्मड द्वारा परिभाषित मापदंड है-

उपरोक्त मापदंड के समतुल्य है (अर्थात् नॉर्मड वेक्टर स्पेस मापदंडों की टोपोलॉजिकल संरचना समान हैं)।

स्थिति p = 2

सोबोलेव रिक्त स्थान के साथ p = 2 विशेष रूप से फूरियर श्रृंखला के साथ उनके संबंध के कारण महत्वपूर्ण हैं और क्योंकि वे एक हिल्बर्ट स्पेस का निर्माण करते हैं। इस स्थिति को कवर करने के लिए एक विशेष संकेतन उत्पन्न किया गया है क्योंकि स्पेस एक हिल्बर्ट स्थान है:

स्पेस फूरियर श्रृंखला के संदर्भ में स्वाभाविक रूप से परिभाषित किया जा सकता है। जिसका गुणांक पर्याप्त रूप से तेजी से घटता है। अर्थात्,

जहाँ , की फूरियर श्रृंखला है और 1-टोरस को प्रदर्शित करता है। ऊपरोक्त कोई समकक्ष मानदंड का उपयोग कर सकता है-

दोनों प्रतिनिधित्व पारसेवल के प्रमेय से सरलता से अनुसरण करते हैं और तथ्य यह है कि भेदभाव फूरियर गुणांक को गुणा करने के बराबर है .

इसके अतिरिक्त स्पेस स्पेस के समान एक आंतरिक उत्पाद स्थान को स्वीकार करता है। वास्तव में आंतरिक उत्पाद के संदर्भ में परिभाषित किया गया है:

स्पेस इस आंतरिक उत्पाद के साथ हिल्बर्ट स्पेस बन जाता है।

अन्य उदाहरण

एक आयाम में कुछ अन्य सोबोलिव रिक्त स्थान एक सरल वर्णन की अनुमति देते हैं। उदाहरण के लिए पर पूर्ण निरंतरता का स्थान है (या किन्तु फलनों के समतुल्य वर्ग जो लगभग प्रत्येक स्थान पर समान हैं), किन्तु प्रत्येक अंतराल के लिए I परिबद्ध लिप्सचिट्ज़ निरंतरता का स्थान है। चूंकि ये गुण नष्ट हो गए हैं या एक से अधिक चर के फलनों के लिए अधिक सरल नहीं हैं।

सभी रिक्त स्थान एक क्षेत्र पर बीजगणित (सामान्य) हैं। अर्थात् दो तत्वों का उत्पाद एक बार पुनः इस सोबोलिव स्पेस का एक फलन है। जो कि की स्थिति नहीं है (उदाहरण के लिए |x|1/3 जैसा व्यवहार करने वाले फलन मूल में हैं। किन्तु ऐसे दो फलनों का उत्पाद में अंदर नहीं है।)

बहुआयामी स्थिति

बहुत से आयामों में परिवर्तन परिभाषा से प्रारम्भ करके अधिक कठिनाइयाँ प्रदर्शित करता है। इसमें आवश्यकता है कि , का अभिन्न अंग हो। जो सामान्यीकरण नहीं करता है और सबसे सरल हल वितरण (गणित) के अर्थ में डेरिवेटिव पर विचार करना है।

एक औपचारिक परिभाषा अब इस प्रकार है। माना कि सोबोलेव स्पेस सभी फलनों पर के समुच्चय के रूप में परिभाषित किया गया है। ऐसा है कि प्रत्येक बहु-सूचकांक के लिए के साथ, मिश्रित आंशिक व्युत्पन्न-

अशक्त व्युत्पन्न अर्थ में उपस्थित है और अंदर में स्थित है। अर्थात्

अर्थात् सोबोलेव स्पेस परिभाषित किया जाता है।

प्राकृतिक संख्या सोबोलेव स्पेस का क्रम कहा जाता है।

के लिए एक मानक के लिए कई विकल्प हैं। जिसमें निम्नलिखित दो सामान्य हैं और सामान्य (गणित) गुण के अर्थ में समकक्ष हैं:

और

इनमें से किसी भी मानदंड के संबंध में, एक बनौच स्थान है। के लिए एक वियोज्य स्थान भी है। द्वारा निरूपित करना परम्परागत है। इसके लिए नॉर्मड के साथ एक हिल्बर्ट स्थान है।[1]

स्मूथ फलनों द्वारा सन्निकटन-

केवल उनकी परिभाषा के आधार पर सोबोलेव रिक्त स्थान के साथ कार्य करना कठिन है। इसलिए यह जानना अधिक उचित है कि मेयर्स-सेरिन प्रमेय द्वारा एक फलन सुचारू फलनों द्वारा अनुमानित किया जा सकता है। यह तथ्य अधिकांशतः हमें स्मूथ फलनों के गुणों को सोबोलेव फलनों में अनुवाद करने की अनुमति प्रदान करता है। यदि परिमित है और खुला हुआ समुच्चय है। तो किसी के लिए फलनों का अनुमानित क्रम उपस्थित है। ऐसा है कि:

यदि लिप्सचिट्ज़ सीमा है। हम यह भी मान सकते हैं कि सभी पर कॉम्पैक्ट समर्थन के साथ स्मूथ सभी फलनों का प्रतिबंध है[2]


उदाहरण

उच्च आयामों में, यह अब सच नहीं है कि, उदाहरण के लिए केवल निरंतर फलन सम्मिलित हैं। उदाहरण के लिए, जहाँ यूनिट बॉल तीन आयामों में है। के लिए स्पेस केवल निरंतर फलन सम्मिलित होंगे। किन्तु किसके लिए यह पहले से ही सच है। दोनों और आयाम पर निर्भर करता है । उदाहरण के लिए जैसा कि फलन के गोलाकार ध्रुवीय निर्देशांक का उपयोग करके सरलता से जांचा जा सकता है। हमारे पास एन-डायमेंशनल बॉल पर परिभाषित है:

सहज रूप से 0 पर f का ब्लो-अप कम कार्य रखता है। जब n बड़ा होता है क्योंकि यूनिट बॉल में उच्च आयामों में बाहर और कम अंदर होता है।

सोबोलेव प्रफलनों का निरन्तर ऑन लाइन्स (एसीएल) अभिलक्षणन

माना कि यदि में कोई फलन है। फिर संभवतः माप शून्य के एक समुच्चय पर फलन को संशोधित करने के बाद समन्वय दिशाओं के समानांतर लगभग प्रत्येक पंक्ति पर प्रतिबंध बिल्कुल निरंतर है। क्या अधिक है। मौलिक व्युत्पन्न उन रेखाओं के साथ है, जो समन्वय दिशाओं के समानांतर हैं। इसके विपरीत, यदि का प्रतिबंध निर्देशांक दिशाओं के समानांतर लगभग हर रेखा बिल्कुल निरंतर है, फिर बिंदुवार ढाल लगभग हर जगह उपस्थित है, और में है बशर्ते विशेष रूप से, इस स्थिति में अशक्त आंशिक डेरिवेटिव और बिंदुवार आंशिक डेरिवेटिव लगभग हर जगह सहमत हैं। सोबोलेव रिक्त स्थान का एसीएल लक्षण वर्णन ओटो एम निकोडिम (#CITEREFNikodym1933) द्वारा स्थापित किया गया था; देखना (Maz'ya 2011, §1.1.3).

एक शक्तिशाली परिणाम तब होता है जब में एक समारोह है, माप शून्य के एक सेट पर संशोधित करने के बाद, होल्डर लगातार एक्सपोनेंट सोबोलेव असमानता द्वारा#मोरे की असमानता|मोरे की असमानता। विशेष रूप से, यदि और Lipschitz सीमा है, तो फलन Lipschitz निरंतर है।

सीमा पर गायब होने वाले फलन

सोबोलेव स्पेस द्वारा भी दर्शाया गया है यह एक हिल्बर्ट स्पेस है, जिसमें एक महत्वपूर्ण सबस्पेस है असीमित रूप से समर्थित असीमित फलनों को बंद करने के रूप में परिभाषित किया गया है में ऊपर परिभाषित सोबोलेव मानदंड यहाँ तक कम हो जाता है

कब एक नियमित सीमा है, में फलनों के स्थान के रूप में वर्णित किया जा सकता है जो निशान के अर्थ में सीमा पर गायब हो जाता है (सोबोलेव स्पेस#एक्सटेंशन बाई जीरो)। कब यदि एक परिबद्ध अंतराल है, तब पर निरंतर फलन होते हैं फार्म का

जहां सामान्यीकृत व्युत्पन्न में है और 0 अभिन्न है, ताकि कब घिरा हुआ है, पॉइनकेयर असमानता बताती है कि एक स्थिरांक है ऐसा है कि:

कब बँधा हुआ है, से इंजेक्शन को कॉम्पैक्ट ऑपरेटर है। यह तथ्य डिरिचलेट समस्या के अध्ययन में एक भूमिका निभाता है, और इस तथ्य में कि इसका एक अलौकिक आधार उपस्थित है लाप्लास ऑपरेटर के ईजेनवेक्टरों से मिलकर (डिरिचलेट सीमा स्थिति के साथ)।

निशान

आंशिक अंतर समीकरणों की जांच करते समय सोबोलिव रिक्त स्थान अधिकांशतः माना जाता है। सोबोलिव फलनों के सीमा मूल्यों पर विचार करना आवश्यक है। यदि , उन सीमा मानों को प्रतिबंध द्वारा वर्णित किया गया है हालांकि, यह स्पष्ट नहीं है कि सीमा पर मूल्यों का वर्णन कैसे किया जाए क्योंकि सीमा का n-आयामी माप शून्य है। निम्नलिखित प्रमेय[2]समस्या का समाधान करता है:

Trace theorem — Assume Ω is bounded with Lipschitz boundary. Then there exists a bounded linear operator such that

तू को तू का अंश कहा जाता है। मोटे तौर पर बोलते हुए, यह प्रमेय प्रतिबंध ऑपरेटर को सोबोलिव स्पेस तक फैलाता है अच्छे व्यवहार के लिए Ω. ध्यान दें कि ट्रेस ऑपरेटर टी सामान्य रूप से विशेषण नहीं है, लेकिन 1 <p <∞ के लिए यह सोबोलेव-स्लोबोडेकिज स्पेस पर लगातार मैप करता है सहज रूप से, ट्रेस लेने से डेरिवेटिव का 1/p खर्च होता है। डब्ल्यू में यू फलन करता है1,p(Ω) शून्य ट्रेस के साथ, अर्थात् Tu = 0, समानता द्वारा विशेषता हो सकती है

कहाँ

दूसरे शब्दों में, Ω के लिए लिप्सचिट्ज़ सीमा के साथ घिरा हुआ है, ट्रेस-शून्य फलन करता है कॉम्पैक्ट समर्थन के साथ चिकनी फलनों द्वारा अनुमान लगाया जा सकता है।

== गैर-पूर्णांक k == के साथ सोबोलेव रिक्त स्थान

बेसेल संभावित स्थान

एक प्राकृतिक संख्या k और के लिए 1 < p < ∞ कोई दिखा सकता है (गुणक (फूरियर विश्लेषण) का उपयोग करके[3][4]) कि स्पेस के रूप में समान रूप से परिभाषित किया जा सकता है

नॉर्मड के साथ

यह सोबोलिव रिक्त स्थान को गैर-पूर्णांक क्रम से प्रेरित करता है क्योंकि उपरोक्त परिभाषा में हम k को किसी भी वास्तविक संख्या s से बदल सकते हैं। परिणामी रिक्त स्थान

बेसेल संभावित स्थान कहलाते हैं[5] (फ्रेडरिक बेसेल के नाम पर)। वे सामान्य रूप से बनच स्थान हैं और विशेष स्थिति में हिल्बर्ट स्थान p = 2 हैं।

के लिए फलनों के प्रतिबंधों का सेट है Ω मानक से लैस करने के लिए

फिर से, एचs,p(Ω) एक बनच स्थान है और स्थिति में p = 2 एक हिल्बर्ट स्थान है।

सोबोलिव रिक्त स्थान के लिए विस्तार प्रमेय का उपयोग करके, यह दिखाया जा सकता है कि डब्ल्यू भीके,पी</सुप>(Ω) = एचk,p(Ω) समतुल्य मानदंडों के अर्थ में रखता है, यदि Ω वर्दी सी के साथ डोमेन हैk-सीमा, k एक प्राकृतिक संख्या और 1 < p < ∞. एम्बेडिंग द्वारा

बेसेल संभावित रिक्त स्थान सोबोलेव रिक्त स्थान के बीच एक सतत पैमाने का निर्माण करें एक अमूर्त दृष्टिकोण से, बेसेल संभावित रिक्त स्थान सोबोलेव रिक्त स्थान के जटिल इंटरपोलेशन स्पेस स्थान के रूप में होते हैं, अर्थात् समकक्ष मानदंडों के अर्थ में यह मानता है कि

कहाँ:


सोबोलेव-स्लोबोडेकिज स्पेस

आंशिक क्रम को परिभाषित करने के लिए एक अन्य दृष्टिकोण सोबोलिव रिक्त स्थान धारक की स्थिति को एल को सामान्य बनाने के विचार से उत्पन्न होता हैपी-सेटिंग।[6] के लिए और स्लोबोडेकिज सेमिनॉर्म (मोटे तौर पर होल्डर सेमिनॉर्म के अनुरूप) द्वारा परिभाषित किया गया है

होने देना s > 0 पूर्णांक न हो और सेट हो . होल्डर स्पेस#H.C3.B6lder स्पेस|होल्डर स्पेस, सोबोलेव-स्लोबोडेकिज स्पेस के समान विचार का उपयोग करना[7] परिभाषित किया जाता है

यह मानक के लिए एक बनच स्थान है

यदि उपयुक्त रूप से इस अर्थ में नियमित है कि कुछ विस्तार ऑपरेटर उपस्थित हैं, फिर भी सोबोलेव-स्लोबोडेकिज रिक्त स्थान बनच रिक्त स्थान का एक पैमाना बनाते हैं, अर्थात किसी के पास निरंतर इंजेक्शन या एम्बेडिंग है

अनियमित Ω के ऐसे उदाहरण हैं कि की सदिश उपसमष्टि भी नहीं है 0 <s <1 के लिए (उदाहरण 9.1 देखें [8])

अमूर्त दृष्टिकोण से, रिक्त स्थान सोबोलिव रिक्त स्थान के वास्तविक इंटरपोलेशन रिक्त स्थान के साथ मेल खाता है, अर्थात् समकक्ष मानदंडों के अर्थ में निम्नलिखित धारण करता है:

सोबोलिव-स्लोबोडेकिज रिक्त स्थान सोबोलिव फलनों के निशान के अध्ययन में एक महत्वपूर्ण भूमिका निभाते हैं। वे बेसोव रिक्त स्थान के विशेष स्थिति हैं।[4]


एक्सटेंशन ऑपरेटर

यदि एक डोमेन (गणितीय विश्लेषण) है जिसकी सीमा बहुत खराब तरीके से व्यवहार नहीं की जाती है (उदाहरण के लिए, यदि इसकी सीमा कई गुना है, या अधिक अनुमोदित शंकु की स्थिति को संतुष्ट करती है) तो वहां एक ऑपरेटर ए मैपिंग फलन है के फलनों के लिए ऐसा है कि:

  1. एयू (एक्स) = यू (एक्स) लगभग हर एक्स के लिए और
  2. किसी भी 1 ≤ p ≤ ∞ और पूर्णांक k के लिए सतत है।

हम ऐसे ऑपरेटर A को एक्सटेंशन ऑपरेटर कहेंगे


=== पी = 2 === का स्थिति

एक्सटेंशन ऑपरेटर परिभाषित करने का सबसे स्वाभाविक तरीका है गैर-पूर्णांक s के लिए (हम सीधे काम नहीं कर सकते चूंकि फूरियर ट्रांसफॉर्म लेना एक वैश्विक ऑपरेशन है)। हम परिभाषित करते हैं ऐसा कहकर यदि और केवल यदि समतुल्य रूप से, जटिल इंटरपोलेशन समान परिणाम देता है रिक्त स्थान जब तक एक एक्सटेंशन ऑपरेटर है। यदि कोई एक्सटेंशन ऑपरेटर नहीं है, जटिल इंटरपोलेशन प्राप्त करने का एकमात्र तरीका है रिक्त स्थान।

नतीजतन, प्रक्षेप असमानता अभी भी कायम है।

शून्य से विस्तार

जैसे #Functions सीमा पर गायब हो जाते हैं, हम परिभाषित करते हैं में बंद होना स्पेस का असीम रूप से विभिन्न प्रकार कॉम्पैक्ट रूप से समर्थित फलनों की। ऊपर दिए गए ट्रेस की परिभाषा को देखते हुए, हम निम्नलिखित बता सकते हैं

Theorem — Let be uniformly Cm regular, ms and let P be the linear map sending u in to

where d/dn is the derivative normal to G, and k is the largest integer less than s. Then is precisely the kernel of P.

यदि हम इसके विस्तार को शून्य से परिभाषित कर सकते हैं प्राकृतिक तरीके से, अर्थात्

Theorem — Let The map is continuous into if and only if s is not of the form for n an integer.

के लिए fLp(Ω) इसका विस्तार शून्य से,

का एक तत्व है आगे,

सोबोलेव स्पेस के स्थिति में डब्ल्यू1, पी(Ω) के लिए 1 ≤ p ≤ ∞, एक फलन यू को शून्य से विस्तारित करने से आवश्यक रूप से एक तत्व नहीं मिलेगा लेकिन यदि Ω लिपशिट्ज सीमा से घिरा है (उदाहरण के लिए ∂Ω सी है1), तो किसी भी बंधे हुए खुले सेट O के लिए जैसे कि Ω⊂⊂O (अर्थात् Ω कॉम्पैक्ट रूप से O में समाहित है), एक परिबद्ध रैखिक ऑपरेटर उपस्थित है[2]

ऐसा कि प्रत्येक के लिए ए.ई. Ω पर, Eu के पास O के भीतर कॉम्पैक्ट समर्थन है, और केवल p, Ω, O और आयाम n के आधार पर एक निरंतर C उपस्थित है, जैसे कि

हम बुलाते है का विस्तार को


सोबोलेव एम्बेडिंग

यह पूछना एक स्वाभाविक प्रश्न है कि क्या कोई सोबोलेव फलन निरंतर या यहां तक ​​कि लगातार विभिन्न प्रकार होता है। मोटे तौर पर बोलते हुए, पर्याप्त रूप से कई अशक्त डेरिवेटिव्स (अर्थात् बड़े के) का परिणाम मौलिक व्युत्पन्न होता है। इस विचार को सामान्यीकृत किया गया है और सोबोलिव असमानता में सटीक बनाया गया है।

लिखना डायमेंशन n के कुछ कॉम्पैक्ट रीमैनियन मैनिफोल्ड के सोबोलेव स्पेस के लिए। यहाँ k कोई भी वास्तविक संख्या हो सकती है, और 1 ≤ p ≤ ∞। (पी = ∞ सोबोलेव स्पेस के लिए होल्डर स्पेस सी के रूप में परिभाषित किया गया हैn,α जहां k = n + α और 0 < α ≤ 1.) सोबोलेव एम्बेडिंग प्रमेय कहता है कि यदि और तब

और एम्बेडिंग निरंतर है। इसके अतिरिक्त, यदि और तो एम्बेडिंग पूरी तरह से निरंतर है (इसे कभी-कभी कोंद्राचोव का प्रमेय या रेलिच-कोंड्राचोव प्रमेय कहा जाता है)। में फलन करता है एम निरंतर से कम क्रम के सभी डेरिवेटिव हैं, इसलिए विशेष रूप से यह विभिन्न डेरिवेटिव के निरंतर होने के लिए सोबोलेव रिक्त स्थान पर स्थितियां देता है। अनौपचारिक रूप से ये एम्बेडिंग कहते हैं कि एल को परिवर्तित करने के लिएp परिबद्धता अनुमान के लिए अनुमान प्रति आयाम 1/p डेरिवेटिव खर्च करता है।

गैर-कॉम्पैक्ट मैनिफोल्ड्स के लिए एम्बेडिंग प्रमेय के समान रूपांतर हैं जैसे (Stein 1970). सोबोलेव एम्बेडिंग चालू है जो कॉम्पैक्ट नहीं होते हैं, उनमें अधिकांशतः Cocompact एम्बेडिंग का एक संबंधित, लेकिन अशक्त गुण होता है।

यह भी देखें

टिप्पणियाँ

  1. Evans 2010, Chapter 5.2
  2. 2.0 2.1 2.2 Adams & Fournier 2003
  3. Bergh & Löfström 1976
  4. 4.0 4.1 Triebel 1995
  5. Bessel potential spaces with variable integrability have been independently introduced by Almeida & Samko (A. Almeida and S. Samko, "Characterization of Riesz and Bessel potentials on variable Lebesgue spaces", J. Function Spaces Appl. 4 (2006), no. 2, 113–144) and Gurka, Harjulehto & Nekvinda (P. Gurka, P. Harjulehto and A. Nekvinda: "Bessel potential spaces with variable exponent", Math. Inequal. Appl. 10 (2007), no. 3, 661–676).
  6. Lunardi 1995
  7. In the literature, fractional Sobolev-type spaces are also called Aronszajn spaces, Gagliardo spaces or Slobodeckij spaces, after the names of the mathematicians who introduced them in the 1950s: N. Aronszajn ("Boundary values of functions with finite Dirichlet integral", Techn. Report of Univ. of Kansas 14 (1955), 77–94), E. Gagliardo ("Proprietà di alcune classi di funzioni in più variabili", Ricerche Mat. 7 (1958), 102–137), and L. N. Slobodeckij ("Generalized Sobolev spaces and their applications to boundary value problems of partial differential equations", Leningrad. Gos. Ped. Inst. Učep. Zap. 197 (1958), 54–112).
  8. Di Nezza, Eleonora; Palatucci, Giampiero; Valdinoci, Enrico (2012-07-01). "Hitchhikerʼs guide to the fractional Sobolev spaces". Bulletin des Sciences Mathématiques (in English). 136 (5): 521–573. doi:10.1016/j.bulsci.2011.12.004. ISSN 0007-4497.


संदर्भ


बाहरी संबंध