मैग्नस विस्तार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 80: Line 80:
स्टोकेस्टिक मामले के विस्तार के लिए अनुमति <math display="inline">\left(W_t\right)_{t\in [0,T]}</math> एक प्रणाली है। <math display="inline">\mathbb{R}^q</math>-आयामी [[एक प्रकार कि गति]],है। <math display="inline">q\in \mathbb{N}_{>0}</math>, प्रायिकता के स्थान पर <math display="inline">\left(\Omega,\mathcal{F},\mathbb{P}\right)</math>को रखा गया है,  
स्टोकेस्टिक मामले के विस्तार के लिए अनुमति <math display="inline">\left(W_t\right)_{t\in [0,T]}</math> एक प्रणाली है। <math display="inline">\mathbb{R}^q</math>-आयामी [[एक प्रकार कि गति]],है। <math display="inline">q\in \mathbb{N}_{>0}</math>, प्रायिकता के स्थान पर <math display="inline">\left(\Omega,\mathcal{F},\mathbb{P}\right)</math>को रखा गया है,  


परिमित समय क्षितिज के साथ <math display="inline">T>0</math> प्राकृतिक निस्पंदन को दर्शाती  है।अब, रैखिक आव्यूह -मूल्यवान स्टोचैस्टिक इटो डिफरेंशियल समीकरण (आइंस्टीन सूचकांक के समीकरण सम्मेलन के साथ) {{math|''j''}}
परिमित समय क्षितिज के साथ <math display="inline">T>0</math> प्राकृतिक निस्पंदन को दर्शाती  है।अब, रैखिक आव्यूह -मूल्यवान स्टोचैस्टिक इटो डिफरेंशियल समीकरण (आइंस्टीन सूचकांक के समीकरण सम्मेलन {{math|''j''}} के साथ विचार कर रहे थे
: <math> dX_t = B_t X_t dt + A_t^{(j)} X_t dW_t^j,\quad X_0=I_d,\qquad d\in\mathbb{N}_{>0},</math>
जहाँ  <math display="inline">B_{\cdot},A_{\cdot}^{(1)},\dots,A_{\cdot}^{(j)}</math>क्रमिक रूप से मापने योग्य हैं <math display="inline">d\times d</math>-वैल्यूड बाउंड [[स्टचास्तिक प्रोसेसेज़|स्टचास्तिक प्रक्रिया]] और <math display="inline">I_d</math> इकाई आव्यूह  है। स्टोचैस्टिक समायोजन के कारण परिवर्तन के साथ नियतात्मक मामले भी उसी दृष्टिकोण का पालन करते है <ref>{{harvnb|Kamm|Pagliarani|Pascucci|2020}}</ref> संबंधित आव्यूह  लघुगणक एक इटो-प्रक्रिया के रूप में निकलते है, जिसके पहले दो प्रसार आदेश द्वारा दिए गए हैं <math display="inline">Y_t^{(1)}=Y_t^{(1,0)}+Y_t^{(0,1)}</math> और <math display="inline">Y_t^{(2)}=Y_t^{(2,0)}+Y_t^{(1,1)}+Y_t^{(0,2)}</math>
 
जहाँआइंस्टीन के योग सम्मेलन के साथ {{math|''i''}} और {{math|''j''}} काम करते है.


पर विचार कर रहे थे 
: <math> dX_t = B_t X_t dt + A_t^{(j)} X_t dW_t^j,\quad X_0=I_d,\qquad d\in\mathbb{N}_{>0},</math>
कहाँ <math display="inline">B_{\cdot},A_{\cdot}^{(1)},\dots,A_{\cdot}^{(j)}</math> उत्तरोत्तर मापने योग्य हैं <math display="inline">d\times d</math>-वैल्यूड बाउंड [[स्टचास्तिक प्रोसेसेज़]] और <math display="inline">I_d</math> इकाई आव्यूह  है। स्टोचैस्टिक सेटिंग के कारण परिवर्तन के साथ नियतात्मक मामले में उसी दृष्टिकोण का पालन करना<ref>{{harvnb|Kamm|Pagliarani|Pascucci|2020}}</ref> संबंधित आव्यूह  लघुगणक एक इटो-प्रक्रिया के रूप में निकलेगा, जिसके पहले दो विस्तार आदेश द्वारा दिए गए हैं <math display="inline">Y_t^{(1)}=Y_t^{(1,0)}+Y_t^{(0,1)}</math> और <math display="inline">Y_t^{(2)}=Y_t^{(2,0)}+Y_t^{(1,1)}+Y_t^{(0,2)}</math>, कहाँ
आइंस्टीन के योग सम्मेलन के साथ {{math|''i''}} और {{math|''j''}}
: <math>
: <math>
\begin{align}
\begin{align}

Revision as of 16:10, 30 April 2023

गणित और भौतिकी को  विल्हेम मैग्नस (1907-1990) के नाम पर रखा गया था।मैग्नस विस्तार एक रेखीय ऑपरेटर के रूप में जाना जाता है। पहले क्रम के सजातीय रैखिक अंतर समीकरण के समाधान में एक घातीय निरूपण के रूप  में प्रदान करता है। विशेष रूप से यह अलग-अलग गुणांकों के साथ रैखिक अंतर समीकरणों की एक प्रणाली मौलिक आव्यूह (रैखिक अंतर समीकरण) को प्रस्तुत करता हैं। n विभिन्न गुणांकों के साथ रैखिक निरूपण में सामान्य प्रस्तुत करता है, घातांक को एक अनंत श्रृंखला के रूप में एकत्रित किया जाता है, जिसकी शर्तों में एकाधिक इंटीग्रल और नेस्टेड कम्यूटेटर के रूप में शामिल होते हैं।

मैग्नस दृष्टिकोण और इसकी व्याख्या

हम n × n गुणांक आव्यूह A(t), को देखते हुए रैखिक सरल अंतर समीकरण से जुड़ी प्रारंभिक-मूल्य समस्या को हल करना चाहते है।

अज्ञात के लिए n-आयामी वेक्टर फलन Y(t).

जब n = 1, समाधान केवल पढ़ता है

यह अभी भी n > 1 के लिए मान्य है, यदि आव्यूह At1 At2 = At2 At1 को t t1 और t2 के मानों के किसी भी जोड़े के लिए संतुष्ट करता है। यदि आव्यूह ए टी से स्वतंत्र है। हालाँकि, सामान्य स्थिति में, उपरोक्त अभिव्यक्ति की अब समस्या का समाधान नहीं है।

आव्यूह प्रारंभिक-मूल्य समस्या को हल करने के लिए मैग्नस द्वारा प्रस्तुत किया गया दृष्टिकोण है,यह एक निश्चित n × n आव्यूह क्रिया Ω(t, t0) के घातांक के माध्यम से समाधान को व्यक्त करता है.

जिसे बाद में श्रृंखला (गणित) के विस्तार रूप में बनाया गया है

जहां सरलता से लिखने का अभ्यास है Ω(t) के लिए Ω(t, t0) और t0 = 0.के रूप में बनाया गया है।

मैग्नस ने इसकी सराहना की d/dt (eΩ) e−Ω = A(t), पॉइनकेयर हौसडॉर्फ आव्यूह इकाई का उपयोग करते है| इसलिए वह Ω के व्युत्पन्न समय को बर्नौली संख्याओं के उत्पादन ,फलनऔर Ω के आसन्न एंडोमोर्फिज्म से संबंधित कर सकता है।

सीबीएच विस्तार के निरंतर एनालॉग A के संदर्भ में Ω के लिए आवर्ती रूप से हल करने के लिए बनाया गया है जैसा कि बाद के खंड में बताया गया है।

आव्यूह के रैखिक प्रारंभिक-मूल्य समस्या के समाधान के लिए उपरोक्त समीकरण मैग्नस विस्तार या मैग्नस श्रृंखला का गठन करता है। इस श्रृंखला के पहले चार पदों को पढ़ते है।

जहां [A, B] ≡ A BB A है। A और B का आव्यूह दिक्परिवर्तकर है।

इन समीकरणों की व्याख्या इस प्रकार की जा सकती है: कि Ω1(t) अदिश घातांक के(n = 1) मामले में सामंजस्यपूर्ण मेल खाता है,लेकिन यह समीकरण समस्त समाधान नहीं दे सकता है । यदि कोई घातीय अभिवेदन (अस्तित्व दल ) पर जोर देता है, तो घातांक को सही करने की आवश्यकता होती है । मैग्नस श्रृंखला के बाकी हिस्सों में यह सुधार व्यवस्थित रूप से किया जा सकता है । Ω या इसके कुछ हिस्सों के समाधान में अस्तित्व दल के अस्तित्व को बीजगणित रूप प्रदान करता है।

अनुप्रयोगों में शायद ही कभी मैग्नस श्रृंखला का योग किया जा सकता है,और अनुमानित समाधान प्राप्त करने के लिए इसे कम करना पड़ता है। मैग्नस प्रस्ताव का मुख्य लाभ यह है ,कि काट-छाँट की गई श्रृंखला अक्सर महत्वपूर्ण गुणात्मक गुणों को सटीक समाधान के रूप में साझा करती है, जो अन्य पारंपरिक क्वांटम यांत्रिकी के साथ भिन्न होती है। उदाहरण के लिए, मौलिक यांत्रिकी में समय के विकास को संवेदी ज्यामिति के चरित्र को निकटता के हर क्रम में संरक्षित किया जाता है। इसी प्रकार, क्वांटम यांत्रिकी में समय विस्तार को ऑपरेटर संगठित संचालक के चरित्र को भी संरक्षित किया जाता है (इसके विपरीत, उदाहरण के लिए, उन समस्या को हल करने के लिए डायसन श्रृंखला का उपयोग  किया जाता है।

विस्तार का अभिसरण

गणितीय दृष्टिकोण से अभिसरण समस्या के लिए एक विशिष्ट आव्यूह A(t), दिया गया है,जब घातांक Ωt को मैग्नस श्रृंखला के योग के रूप में प्राप्त किया जाता है।

अभिसरण श्रृंखला के लिए t ∈ [0,T) लिए पर्याप्त स्थिति है।

यहाँ एक आव्यूह विशिष्ट गुण को दर्शाता है। यह परिणाम इस अर्थ में सामान्य है, कि कोई विशिष्ट आव्यूह का निर्माण कर सकता है जिसके लिए A(t) श्रृंखला किसी के लिए भिन्न हो जाती है t > T.

मैग्नस जनरेटर

मैग्नस विस्तार में सभी शर्तों को उत्पन्न करने के लिए एक आवर्ती प्रक्रिया मेट्रिसेस का उपयोग करती है Sn(k) के माध्यम से आवर्ती रूप को परिभाषित किया गया है।

जो फिर प्रस्तुत करता है

यहाँ adkΩ एक आवृत्ति है ,यहाँ उच्चारण के लिए एक संक्षिप्त लिपि है,अनुमानित अन्तःआकृतिक देखे जा सकते  है।

जबकि Bj के साथ एक बर्नूली नंबर हैं B1 = −1/2.

अंत में जब इस पुनर्चक्रण पर स्पष्ट रूप से काम किया जाता है तो Ωn(t) को n आव्यूह A वाले n- 1 नेस्टेड कम्यूटेटर के n-फोल्ड इंटीग्रल के रैखिक संयोजन के रूप में व्यक्त किया जा सकता हैं.

जो अधिक जटिल हो जाता है n.

स्टोकेस्टिक केस

स्टोकेस्टिक साधारण अंतर समीकरणों का विस्तार

स्टोकेस्टिक मामले के विस्तार के लिए अनुमति एक प्रणाली है। -आयामी एक प्रकार कि गति,है। , प्रायिकता के स्थान पर को रखा गया है,

परिमित समय क्षितिज के साथ प्राकृतिक निस्पंदन को दर्शाती  है।अब, रैखिक आव्यूह -मूल्यवान स्टोचैस्टिक इटो डिफरेंशियल समीकरण (आइंस्टीन सूचकांक के समीकरण सम्मेलन j के साथ विचार कर रहे थे

जहाँ क्रमिक रूप से मापने योग्य हैं -वैल्यूड बाउंड स्टचास्तिक प्रक्रिया और इकाई आव्यूह है। स्टोचैस्टिक समायोजन के कारण परिवर्तन के साथ नियतात्मक मामले भी उसी दृष्टिकोण का पालन करते है [1] संबंधित आव्यूह लघुगणक एक इटो-प्रक्रिया के रूप में निकलते है, जिसके पहले दो प्रसार आदेश द्वारा दिए गए हैं और

जहाँआइंस्टीन के योग सम्मेलन के साथ i और j काम करते है.