मैग्नस विस्तार: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 1: Line 1:
गणित और भौतिकी को  [[विल्हेम मैग्नस]] (1907-1990) के नाम पर रखा गया था। मैग्नस विस्तार एक रेखीय ऑपरेटर के रूप में जाना जाता है। पहले क्रम के सजातीय [[रैखिक अंतर समीकरण]] के समाधान में एक घातीय निरूपण के रूप  में प्रदान करता है। विशेष रूप से यह अलग-अलग गुणांकों के साथ रैखिक अंतर समीकरणों की एक प्रणाली [[मौलिक मैट्रिक्स (रैखिक अंतर समीकरण)|मौलिक आव्यूह रैखिक अंतर समीकरण]] को प्रस्तुत करता हैं। {{mvar|n}} विभिन्न गुणांकों के साथ  रैखिक निरूपण में सामान्य रूप में होता है और  घातांक को एक अनंत श्रृंखला के रूप में एकत्रित करता है, जिसकी शर्तों में एकाधिक समाकलन और नेस्टेड कम्यूटेटर के रूप में सम्मिलत  होता हैं।   
1907-1990 में, गणित और भौतिकी को  [[विल्हेम मैग्नस]] के नाम पर रखा गया था। मैग्नस विस्तार एक रेखीय ऑपरेटर के रूप में जाना जाता है। पहले क्रम के सजातीय [[रैखिक अंतर समीकरण]] के समाधान में एक घातीय निरूपण के रूप  में प्रदान करता है। और यह विशेष रूप से यह भिन्न -भिन्न  गुणांक वाले क्रम n के [[रैखिक अवकलन समीकरणों|रैखिक अवकल समीकरणों]] की एक प्रणाली के मौलिक [[मौलिक मैट्रिक्स (रैखिक अंतर समीकरण)|आव्यूह]] को प्रस्तुत करता है और  घातांक को एक अनंत श्रृंखला के रूप में प्रदर्शित करता है, जिसकी शर्तों में एकाधिक समाकलन और नेस्टेड कम्यूटेटर के रूप में सम्मिलत होता हैं।   


=== मैग्नस दृष्टिकोण और इसकी व्याख्या ===
=== मैग्नस दृष्टिकोण और इसकी व्याख्या ===


यदि {{math|''n'' × ''n''}} गुणांक आव्यूह  {{math|''A''(''t'')}}, को देखते है रैखिक सरल अंतर समीकरण से जुड़ी [[प्रारंभिक-मूल्य समस्या]] को हल करते है।     
यदि {{math|''n'' × ''n''}} गुणांक आव्यूह  {{math|''A''(''t'')}}, के रूप में होते है और रैखिक अवकल समीकरण से जुड़ी [[प्रारंभिक-मूल्य समस्या]] को हल करते है।     


: <math>Y'(t) = A(t) Y(t), \quad Y(t_0) = Y_0</math>
: <math>Y'(t) = A(t) Y(t), \quad Y(t_0) = Y_0</math>
यदि फलन {{math|''Y''(''t'')}}.के लिए  {{mvar|n}}-आयामी सदिश  रूप में होता है  
यदि फलन {{math|''Y''(''t'')}}.के लिए  {{mvar|n}}-आयामी सदिश के रूप में होता है  


जब n = 1, समाधान के रूप में पढ़ता है   
जहाँ n = 1, समाधान के रूप में पढ़ता है   
: <math>Y(t) = \exp \left( \int_{t_0}^t A(s)\,ds \right) Y_0.</math>
: <math>Y(t) = \exp \left( \int_{t_0}^t A(s)\,ds \right) Y_0.</math>
यह अभी भी n > 1 के लिए मान्य है, यदि आव्यूह  At1 At2 = At2 At1 को t t1 और t2 के मानों के किसी भी जोड़े के लिए संतुष्ट करता है। यदि आव्यूह  टी के रूप में  स्वतंत्र है। चूकि  सामान्य स्थिति में उपरोक्त अभिव्यक्ति की  समस्या का समाधान नहीं है।
यदि  n > 1 के लिए मान्य रूप में है, यदि आव्यूह  At1 At2 = At2 At1 को t t1 और t2 के मानों के किसी भी जोड़े के लिए संतुष्ट करता है। यदि आव्यूह  A t के रूप में  स्वतंत्र है। चूकि  सामान्य स्थिति में उपरोक्त अभिव्यक्ति की  समस्या का समाधान नहीं है।


आव्यूह  प्रारंभिक-मूल्य समस्या को हल करने के लिए मैग्नस द्वारा प्रस्तुत किया गया दृष्टिकोण है, यह एक निश्चित n × n आव्यूह   क्रिया  Ω(t, t0) के घातांक के माध्यम से समाधान को व्यक्त करता है
आव्यूह  प्रारंभिक-मूल्य समस्या को हल करने के लिए मैग्नस द्वारा प्रस्तुत किया गया दृष्टिकोण है, यह एक निश्चित n × n आव्यूह Ω(t, t0) के घातांक के माध्यम से समाधान को व्यक्त करता है


: <math>Y(t) = \exp\big(\Omega(t, t_0)\big) \, Y_0,</math>
: <math>Y(t) = \exp\big(\Omega(t, t_0)\big) \, Y_0,</math>
Line 19: Line 19:
जहां सरलता से लिखने का अभ्यास  {{math|Ω(''t'')}} के लिए {{math|Ω(''t'', ''t''<sub>0</sub>)}} और ''t''<sub>0</sub> = 0.के रूप में बनाया गया है।
जहां सरलता से लिखने का अभ्यास  {{math|Ω(''t'')}} के लिए {{math|Ω(''t'', ''t''<sub>0</sub>)}} और ''t''<sub>0</sub> = 0.के रूप में बनाया गया है।


मैग्नस ने इसकी सराहना की {{math|{{sfrac|''d''|''dt''}} (''e''<sup>Ω</sup>) ''e''<sup>−Ω</sup> {{=}} ''A''(''t'')}},  पॉइनकेयर हौसडॉर्फ  आव्यूह इकाई का उपयोग करते है| इसलिए वह Ω के व्युत्पन्न समय को बर्नौली संख्याओं के उत्पादन फलन और Ω के आसन्न एंडोमोर्फिज्म से संबंधित होता है।     
मैग्नस ने इसकी सराहना की {{math|{{sfrac|''d''|''dt''}} (''e''<sup>Ω</sup>) ''e''<sup>−Ω</sup> {{=}} ''A''(''t'')}},  पॉइनकेयर हौसडॉर्फ  आव्यूह इकाई का उपयोग करते हैइसलिए वह Ω के व्युत्पन्न समय को बर्नौली संख्याओं के निर्माण फलन और Ω के आसन्न एंडोमोर्फिज्म से संबंधित होता है।     


: <math>\Omega' = \frac{\operatorname{ad}_\Omega}{\exp(\operatorname{ad}_\Omega) - 1} A,</math>
: <math>\Omega' = \frac{\operatorname{ad}_\Omega}{\exp(\operatorname{ad}_\Omega) - 1} A,</math>
सीबीएच विस्तार के निरंतर एनालॉग {{mvar|A}} के संदर्भ में {{mvar|Ω}} के लिए आवर्ती रूप से हल करने के लिए बनाया गया है जैसा कि बाद के खंड में बताया गया है।
सीबीएच विस्तार के निरंतर एनालॉग {{mvar|A}} के संदर्भ में {{mvar|Ω}} के लिए आवर्ती रूप से हल करने के लिए बनाया गया है, जैसा कि बाद के खंड में बताया गया है।


आव्यूह  के रैखिक प्रारंभिक-मूल्य समस्या के समाधान के लिए उपरोक्त समीकरण मैग्नस विस्तार या मैग्नस श्रृंखला का गठन करता है। इस श्रृंखला के पहले चार पदों इस रूप में दर्शाते है  
आव्यूह  के रैखिक प्रारंभिक-मूल्य समस्या के समाधान के लिए उपरोक्त समीकरण मैग्नस विस्तार या मैग्नस श्रृंखला का गठन करता है। इस श्रृंखला के पहले चार पदों को इस रूप में दर्शाते है  


: <math>
: <math>
Line 41: Line 41:
जहां {{math|[''A'', ''B''] ≡ ''A'' ''B'' − ''B'' ''A''}} है।  A और B का आव्यूह कम्प्यूटटेर के रूप में होता है।  
जहां {{math|[''A'', ''B''] ≡ ''A'' ''B'' − ''B'' ''A''}} है।  A और B का आव्यूह कम्प्यूटटेर के रूप में होता है।  


इन समीकरणों की व्याख्या इस प्रकार की जा सकती है कि {{math|Ω<sub>1</sub>(''t'')}} अदिश घातांक के (n = 1) स्थिति में सामंजस्यपूर्ण मेल खाता है, लेकिन यह समीकरण समस्त समाधान नहीं दे सकता है । यदि कोई घातीय रिप्रजेंटेशन  [[लही समूह]]  पर जोर देता है, तो घातांक को सही करने की आवश्यकता होती है । मैग्नस श्रृंखला के शेष हिस्सों में यह सुधार व्यवस्थित रूप से किया जा सकता है । Ω या इसके कुछ हिस्सों के समाधान में अस्तित्व दल के अस्तित्व को बीजगणित रूप प्रदान करता है।
इन समीकरणों की व्याख्या इस प्रकार की जा सकती है कि {{math|Ω<sub>1</sub>(''t'')}} अदिश घातांक के (n = 1) स्थिति में सामंजस्यपूर्ण मेल खाता है, लेकिन यह समीकरण समस्त समाधान के रूप में नहीं होता है। यदि कोई घातीय प्रतिनिधित्व [[लही समूह]]  पर जोर देता है, तो घातांक को सही करने की आवश्यकता होती है। मैग्नस श्रृंखला के शेष भागो में यह सुधार व्यवस्थित रूप से किया जाता है। और इस प्रकार Ω या इसके कुछ भागो के समाधान में लही समूह  के अस्तित्व को बीजगणित रूप प्रदान करता है।


अनुप्रयोगों में शायद ही कभी मैग्नस श्रृंखला का योग किया जा सकता है,और अनुमानित समाधान प्राप्त करने के लिए इसे कम करना पड़ता है। मैग्नस प्रस्ताव का मुख्य लाभ यह है ,कि काट-छाँट की गई श्रृंखला अक्सर महत्वपूर्ण गुणात्मक गुणों को सटीक समाधान के रूप में साझा करती है, जो अन्य पारंपरिक [[क्वांटम यांत्रिकी]] के साथ भिन्न होती है। उदाहरण के लिए, [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] में समय के विकास को  [[सहानुभूतिपूर्ण ज्यामिति|संवेदी ज्यामिति]]  के चरित्र को  निकटता के हर क्रम में संरक्षित किया जाता है। इसी प्रकार, [[क्वांटम यांत्रिकी]] में [[ समय विकास | समय विस्तार]] को ऑपरेटर  [[एकात्मक संचालक|संगठित संचालक]] के चरित्र को भी संरक्षित किया जाता है (इसके विपरीत, उदाहरण के लिए, उन समस्या को हल करने  के लिए डायसन श्रृंखला का उपयोग  किया जाता है।   
अनुप्रयोगों में शायद ही कभी मैग्नस श्रृंखला का योग किया जा सकता है,और अनुमानित समाधान प्राप्त करने के लिए इसे कम करना पड़ता है। मैग्नस प्रस्ताव का मुख्य लाभ यह है ,कि काट-छाँट की गई श्रृंखला अक्सर महत्वपूर्ण गुणात्मक गुणों को सटीक समाधान के रूप में साझा करती है, जो अन्य पारंपरिक [[क्वांटम यांत्रिकी]] के साथ भिन्न होती है। उदाहरण के लिए, [[शास्त्रीय यांत्रिकी|मौलिक यांत्रिकी]] में समय के विकास को  [[सहानुभूतिपूर्ण ज्यामिति|संवेदी ज्यामिति]]  के चरित्र को  निकटता के हर क्रम में संरक्षित किया जाता है। इसी प्रकार, [[क्वांटम यांत्रिकी]] में [[ समय विकास | समय विस्तार]] को ऑपरेटर  [[एकात्मक संचालक|संगठित संचालक]] के चरित्र को भी संरक्षित किया जाता है (इसके विपरीत, उदाहरण के लिए, उन समस्या को हल करने  के लिए डायसन श्रृंखला का उपयोग  किया जाता है।   

Revision as of 23:51, 30 April 2023

1907-1990 में, गणित और भौतिकी को  विल्हेम मैग्नस के नाम पर रखा गया था। मैग्नस विस्तार एक रेखीय ऑपरेटर के रूप में जाना जाता है। पहले क्रम के सजातीय रैखिक अंतर समीकरण के समाधान में एक घातीय निरूपण के रूप  में प्रदान करता है। और यह विशेष रूप से यह भिन्न -भिन्न गुणांक वाले क्रम n के रैखिक अवकल समीकरणों की एक प्रणाली के मौलिक आव्यूह को प्रस्तुत करता है और  घातांक को एक अनंत श्रृंखला के रूप में प्रदर्शित करता है, जिसकी शर्तों में एकाधिक समाकलन और नेस्टेड कम्यूटेटर के रूप में सम्मिलत होता हैं।

मैग्नस दृष्टिकोण और इसकी व्याख्या

यदि n × n गुणांक आव्यूह A(t), के रूप में होते है और रैखिक अवकल समीकरण से जुड़ी प्रारंभिक-मूल्य समस्या को हल करते है।

यदि फलन Y(t).के लिए n-आयामी सदिश के रूप में होता है

जहाँ n = 1, समाधान के रूप में पढ़ता है

यदि n > 1 के लिए मान्य रूप में है, यदि आव्यूह At1 At2 = At2 At1 को t t1 और t2 के मानों के किसी भी जोड़े के लिए संतुष्ट करता है। यदि आव्यूह A t के रूप में स्वतंत्र है। चूकि सामान्य स्थिति में उपरोक्त अभिव्यक्ति की समस्या का समाधान नहीं है।

आव्यूह प्रारंभिक-मूल्य समस्या को हल करने के लिए मैग्नस द्वारा प्रस्तुत किया गया दृष्टिकोण है, यह एक निश्चित n × n आव्यूह Ω(t, t0) के घातांक के माध्यम से समाधान को व्यक्त करता है

जिसे बाद में श्रृंखला (गणित) के विस्तार रूप में बनाया गया है

जहां सरलता से लिखने का अभ्यास Ω(t) के लिए Ω(t, t0) और t0 = 0.के रूप में बनाया गया है।

मैग्नस ने इसकी सराहना की d/dt (eΩ) e−Ω = A(t), पॉइनकेयर हौसडॉर्फ आव्यूह इकाई का उपयोग करते है, इसलिए वह Ω के व्युत्पन्न समय को बर्नौली संख्याओं के निर्माण फलन और Ω के आसन्न एंडोमोर्फिज्म से संबंधित होता है।

सीबीएच विस्तार के निरंतर एनालॉग A के संदर्भ में Ω के लिए आवर्ती रूप से हल करने के लिए बनाया गया है, जैसा कि बाद के खंड में बताया गया है।

आव्यूह के रैखिक प्रारंभिक-मूल्य समस्या के समाधान के लिए उपरोक्त समीकरण मैग्नस विस्तार या मैग्नस श्रृंखला का गठन करता है। इस श्रृंखला के पहले चार पदों को इस रूप में दर्शाते है

जहां [A, B] ≡ A BB A है। A और B का आव्यूह कम्प्यूटटेर के रूप में होता है।

इन समीकरणों की व्याख्या इस प्रकार की जा सकती है कि Ω1(t) अदिश घातांक के (n = 1) स्थिति में सामंजस्यपूर्ण मेल खाता है, लेकिन यह समीकरण समस्त समाधान के रूप में नहीं होता है। यदि कोई घातीय प्रतिनिधित्व लही समूह पर जोर देता है, तो घातांक को सही करने की आवश्यकता होती है। मैग्नस श्रृंखला के शेष भागो में यह सुधार व्यवस्थित रूप से किया जाता है। और इस प्रकार Ω या इसके कुछ भागो के समाधान में लही समूह के अस्तित्व को बीजगणित रूप प्रदान करता है।

अनुप्रयोगों में शायद ही कभी मैग्नस श्रृंखला का योग किया जा सकता है,और अनुमानित समाधान प्राप्त करने के लिए इसे कम करना पड़ता है। मैग्नस प्रस्ताव का मुख्य लाभ यह है ,कि काट-छाँट की गई श्रृंखला अक्सर महत्वपूर्ण गुणात्मक गुणों को सटीक समाधान के रूप में साझा करती है, जो अन्य पारंपरिक क्वांटम यांत्रिकी के साथ भिन्न होती है। उदाहरण के लिए, मौलिक यांत्रिकी में समय के विकास को संवेदी ज्यामिति के चरित्र को निकटता के हर क्रम में संरक्षित किया जाता है। इसी प्रकार, क्वांटम यांत्रिकी में समय विस्तार को ऑपरेटर संगठित संचालक के चरित्र को भी संरक्षित किया जाता है (इसके विपरीत, उदाहरण के लिए, उन समस्या को हल करने के लिए डायसन श्रृंखला का उपयोग  किया जाता है।

विस्तार का अभिसरण

गणितीय दृष्टिकोण से अभिसरण समस्या के लिए एक विशिष्ट आव्यूह A(t), दिया गया है,जब घातांक Ωt को मैग्नस श्रृंखला के योग के रूप में प्राप्त किया जाता है।

अभिसरण श्रृंखला के लिए t ∈ [0,T) लिए पर्याप्त स्थिति है।

यहाँ एक आव्यूह विशिष्ट गुण को दर्शाता है। यह परिणाम इस अर्थ में सामान्य है, कि कोई विशिष्ट आव्यूह का निर्माण कर सकता है जिसके लिए A(t) श्रृंखला किसी के लिए भिन्न हो जाती है t > T.

मैग्नस जनरेटर

मैग्नस विस्तार में सभी शर्तों को उत्पन्न करने के लिए एक आवर्ती प्रक्रिया मेट्रिसेस का उपयोग करती है Sn(k) के माध्यम से आवर्ती रूप को परिभाषित किया गया है।

जो फिर प्रस्तुत करता है

यहाँ adkΩ एक आवृत्ति है ,यहाँ उच्चारण के लिए एक संक्षिप्त लिपि है,अनुमानित अन्तःआकृतिक देखे जा सकते  है।

जबकि Bj के साथ एक बर्नूली नंबर हैं B1 = −1/2.

अंत में जब इस पुनर्चक्रण पर स्पष्ट रूप से काम किया जाता है तो Ωn(t) को n आव्यूह A वाले n- 1 नेस्टेड कम्यूटेटर के n-फोल्ड इंटीग्रल के रैखिक संयोजन के रूप में व्यक्त किया जा सकता हैं.

जो अधिक जटिल हो जाता है n.

स्टोकेस्टिक केस

स्टोकेस्टिक साधारण अंतर समीकरणों का विस्तार

स्टोकेस्टिक स्थितिके विस्तार के लिए अनुमति एक प्रणाली है। -आयामी एक प्रकार कि गति,है। , प्रायिकता के स्थान पर को रखा गया है,

परिमित समय क्षितिज के साथ प्राकृतिक निस्पंदन को दर्शाती  है।अब, रैखिक आव्यूह -मूल्यवान स्टोचैस्टिक इटो डिफरेंशियल समीकरण (आइंस्टीन सूचकांक के समीकरण सम्मेलन j के साथ विचार कर रहे थे

जहाँ क्रमिक रूप से मापने योग्य हैं -वैल्यूड बाउंड स्टचास्तिक प्रक्रिया और इकाई आव्यूह है। स्टोचैस्टिक समायोजन के कारण परिवर्तन के साथ नियतात्मक स्थितिभी उसी दृष्टिकोण का पालन करते है [1] संबंधित आव्यूह लघुगणक एक इटो-प्रक्रिया के रूप में निकलते है, जिसके पहले दो प्रसार आदेश द्वारा दिए गए हैं और

जहाँआइंस्टीन के योग सम्मेलन के साथ i और j काम करते है.