मैग्नस विस्तार: Difference between revisions
No edit summary |
No edit summary |
||
Line 43: | Line 43: | ||
इन समीकरणों की व्याख्या इस प्रकार की जा सकती है कि {{math|Ω<sub>1</sub>(''t'')}} अदिश घातांक के (n = 1) स्थिति में सामंजस्यपूर्ण मेल खाता है, लेकिन यह समीकरण समस्त समाधान के रूप में नहीं होता है। यदि कोई घातीय प्रतिनिधित्व [[लही समूह]] पर जोर देता है, तो घातांक को सही करने की आवश्यकता होती है। मैग्नस श्रृंखला के शेष भागो में यह सुधार व्यवस्थित रूप से किया जाता है। और इस प्रकार Ω या इसके कुछ भागो के समाधान में लही समूह के अस्तित्व को बीजगणित रूप प्रदान करता है। | इन समीकरणों की व्याख्या इस प्रकार की जा सकती है कि {{math|Ω<sub>1</sub>(''t'')}} अदिश घातांक के (n = 1) स्थिति में सामंजस्यपूर्ण मेल खाता है, लेकिन यह समीकरण समस्त समाधान के रूप में नहीं होता है। यदि कोई घातीय प्रतिनिधित्व [[लही समूह]] पर जोर देता है, तो घातांक को सही करने की आवश्यकता होती है। मैग्नस श्रृंखला के शेष भागो में यह सुधार व्यवस्थित रूप से किया जाता है। और इस प्रकार Ω या इसके कुछ भागो के समाधान में लही समूह के अस्तित्व को बीजगणित रूप प्रदान करता है। | ||
अनुप्रयोगों में | अनुप्रयोगों में संभवतया कभी मैग्नस श्रृंखला का योग किया जा सकता है और अनुमानित समाधान प्राप्त करने के लिए इसे कम करना पड़ता है। मैग्नस प्रस्ताव का मुख्य लाभ यह है ,कि काट-छाँट की गई श्रृंखला अधिकांशतः महत्वपूर्ण गुणात्मक गुणों को सटीक समाधान के रूप में साझा करती है, जो अन्य पारंपरिक [[क्वांटम यांत्रिकी]] के साथ भिन्न रूप में होती है। उदाहरण के लिए, [[मौलिक यांत्रिकी]] में समय के विकास के [[संसुघटित]] गुण को सन्निकटन के हर क्रम में संरक्षित किया जाता है। इसी तरह, [[क्वांटम यांत्रिकी]] में [[ समय विकास |समय विस्तार]] ऑपरेटर के एकात्मक गुण को भी इसके विपरीत संरक्षित किया जाता है, उदाहरण के लिए, उसी समस्या को हल करने वाली डायसन श्रृंखला के लिए उपयोग किया जाता है। | ||
=== विस्तार का अभिसरण === | === विस्तार का अभिसरण === |
Revision as of 00:09, 1 May 2023
1907-1990 में, गणित और भौतिकी को विल्हेम मैग्नस के नाम पर रखा गया था। मैग्नस विस्तार एक रेखीय ऑपरेटर के रूप में जाना जाता है। पहले क्रम के सजातीय रैखिक अंतर समीकरण के समाधान में एक घातीय निरूपण के रूप में प्रदान करता है। और यह विशेष रूप से यह भिन्न -भिन्न गुणांक वाले क्रम n के रैखिक अवकल समीकरणों की एक प्रणाली के मौलिक आव्यूह को प्रस्तुत करता है और घातांक को एक अनंत श्रृंखला के रूप में प्रदर्शित करता है, जिसकी शर्तों में एकाधिक समाकलन और नेस्टेड कम्यूटेटर के रूप में सम्मिलत होता हैं।
मैग्नस दृष्टिकोण और इसकी व्याख्या
यदि n × n गुणांक आव्यूह A(t), के रूप में होते है और रैखिक अवकल समीकरण से जुड़ी प्रारंभिक-मूल्य समस्या को हल करते है।
यदि फलन Y(t).के लिए n-आयामी सदिश के रूप में होता है
जहाँ n = 1, समाधान के रूप में पढ़ता है
यदि n > 1 के लिए मान्य रूप में है, यदि आव्यूह At1 At2 = At2 At1 को t t1 और t2 के मानों के किसी भी जोड़े के लिए संतुष्ट करता है। यदि आव्यूह A t के रूप में स्वतंत्र है। चूकि सामान्य स्थिति में उपरोक्त अभिव्यक्ति की समस्या का समाधान नहीं है।
आव्यूह प्रारंभिक-मूल्य समस्या को हल करने के लिए मैग्नस द्वारा प्रस्तुत किया गया दृष्टिकोण है, यह एक निश्चित n × n आव्यूह Ω(t, t0) के घातांक के माध्यम से समाधान को व्यक्त करता है
जिसे बाद में श्रृंखला (गणित) के विस्तार रूप में बनाया गया है
जहां सरलता से लिखने का अभ्यास Ω(t) के लिए Ω(t, t0) और t0 = 0.के रूप में बनाया गया है।
मैग्नस ने इसकी सराहना की d/dt (eΩ) e−Ω = A(t), पॉइनकेयर हौसडॉर्फ आव्यूह इकाई का उपयोग करते है, इसलिए वह Ω के व्युत्पन्न समय को बर्नौली संख्याओं के निर्माण फलन और Ω के आसन्न एंडोमोर्फिज्म से संबंधित होता है।
सीबीएच विस्तार के निरंतर एनालॉग A के संदर्भ में Ω के लिए आवर्ती रूप से हल करने के लिए बनाया गया है, जैसा कि बाद के खंड में बताया गया है।
आव्यूह के रैखिक प्रारंभिक-मूल्य समस्या के समाधान के लिए उपरोक्त समीकरण मैग्नस विस्तार या मैग्नस श्रृंखला का गठन करता है। इस श्रृंखला के पहले चार पदों को इस रूप में दर्शाते है
जहां [A, B] ≡ A B − B A है। A और B का आव्यूह कम्प्यूटटेर के रूप में होता है।
इन समीकरणों की व्याख्या इस प्रकार की जा सकती है कि Ω1(t) अदिश घातांक के (n = 1) स्थिति में सामंजस्यपूर्ण मेल खाता है, लेकिन यह समीकरण समस्त समाधान के रूप में नहीं होता है। यदि कोई घातीय प्रतिनिधित्व लही समूह पर जोर देता है, तो घातांक को सही करने की आवश्यकता होती है। मैग्नस श्रृंखला के शेष भागो में यह सुधार व्यवस्थित रूप से किया जाता है। और इस प्रकार Ω या इसके कुछ भागो के समाधान में लही समूह के अस्तित्व को बीजगणित रूप प्रदान करता है।
अनुप्रयोगों में संभवतया कभी मैग्नस श्रृंखला का योग किया जा सकता है और अनुमानित समाधान प्राप्त करने के लिए इसे कम करना पड़ता है। मैग्नस प्रस्ताव का मुख्य लाभ यह है ,कि काट-छाँट की गई श्रृंखला अधिकांशतः महत्वपूर्ण गुणात्मक गुणों को सटीक समाधान के रूप में साझा करती है, जो अन्य पारंपरिक क्वांटम यांत्रिकी के साथ भिन्न रूप में होती है। उदाहरण के लिए, मौलिक यांत्रिकी में समय के विकास के संसुघटित गुण को सन्निकटन के हर क्रम में संरक्षित किया जाता है। इसी तरह, क्वांटम यांत्रिकी में समय विस्तार ऑपरेटर के एकात्मक गुण को भी इसके विपरीत संरक्षित किया जाता है, उदाहरण के लिए, उसी समस्या को हल करने वाली डायसन श्रृंखला के लिए उपयोग किया जाता है।
विस्तार का अभिसरण
गणितीय दृष्टिकोण से अभिसरण समस्या के लिए एक विशिष्ट आव्यूह A(t), दिया गया है,जब घातांक Ωt को मैग्नस श्रृंखला के योग के रूप में प्राप्त किया जाता है।
अभिसरण श्रृंखला के लिए t ∈ [0,T) लिए पर्याप्त स्थिति है।
यहाँ एक आव्यूह विशिष्ट गुण को दर्शाता है। यह परिणाम इस अर्थ में सामान्य है, कि कोई विशिष्ट आव्यूह का निर्माण कर सकता है जिसके लिए A(t) श्रृंखला किसी के लिए भिन्न हो जाती है t > T.
मैग्नस जनरेटर
मैग्नस विस्तार में सभी शर्तों को उत्पन्न करने के लिए एक आवर्ती प्रक्रिया मेट्रिसेस का उपयोग करती है Sn(k) के माध्यम से आवर्ती रूप को परिभाषित किया गया है।
जो फिर प्रस्तुत करता है
यहाँ adkΩ एक आवृत्ति है ,यहाँ उच्चारण के लिए एक संक्षिप्त लिपि है,अनुमानित अन्तःआकृतिक देखे जा सकते है।
जबकि Bj के साथ एक बर्नूली नंबर हैं B1 = −1/2.
अंत में जब इस पुनर्चक्रण पर स्पष्ट रूप से काम किया जाता है तो Ωn(t) को n आव्यूह A वाले n- 1 नेस्टेड कम्यूटेटर के n-फोल्ड इंटीग्रल के रैखिक संयोजन के रूप में व्यक्त किया जा सकता हैं.
जो अधिक जटिल हो जाता है n.
स्टोकेस्टिक केस
स्टोकेस्टिक साधारण अंतर समीकरणों का विस्तार
स्टोकेस्टिक स्थितिके विस्तार के लिए अनुमति एक प्रणाली है। -आयामी एक प्रकार कि गति,है। , प्रायिकता के स्थान पर को रखा गया है,
परिमित समय क्षितिज के साथ प्राकृतिक निस्पंदन को दर्शाती है।अब, रैखिक आव्यूह -मूल्यवान स्टोचैस्टिक इटो डिफरेंशियल समीकरण (आइंस्टीन सूचकांक के समीकरण सम्मेलन j के साथ विचार कर रहे थे
जहाँ क्रमिक रूप से मापने योग्य हैं -वैल्यूड बाउंड स्टचास्तिक प्रक्रिया और इकाई आव्यूह है। स्टोचैस्टिक समायोजन के कारण परिवर्तन के साथ नियतात्मक स्थितिभी उसी दृष्टिकोण का पालन करते है [1] संबंधित आव्यूह लघुगणक एक इटो-प्रक्रिया के रूप में निकलते है, जिसके पहले दो प्रसार आदेश द्वारा दिए गए हैं और
जहाँआइंस्टीन के योग सम्मेलन के साथ i और j काम करते है.
विस्तार का अभिसरण
स्टोकेस्टिक समायोजन में अभिसरण अब रुकने के समय के अधीन होगा और पहला अभिसरण परिणाम इसके द्वारा दिया जाता है:[2]
गुणांकों पर पिछली धारणा के अनुसार एक मजबूत समाधान उपलब्ध है , साथ ही एक सख्ती से सकारात्मक
रुकने का समय ऐसा है कि:
- एक वास्तविक लघुगणक है समय तक , अर्थात
- निम्नलिखित प्रतिनिधित्व धारण करता है -लगभग निश्चित रूप से:
- कहाँ है n-वाँ शब्द स्टोचैस्टिक मैग्नस विस्तार में जैसा कि उपखंड मैग्नस विस्तार सूत्र में नीचे परिभाषित किया गया है;
- एक सकारात्मक स्थिरांक उपलब्ध है C, मात्र पर निर्भर है , साथ , ऐसा कि
मैग्नस विस्तार सूत्र
स्टोचैस्टिक मैग्नस विस्तार के लिए सामान्य विस्तार सूत्र द्वारा दिया गया है:
जहां सामान्य शब्द प्रपत्र की एक इटो-प्रक्रिया है:
शर्तें आवर्ती के रूप में परिभाषित किया गया है
साथ
और ऑपरेटरों के साथ S के रूप में परिभाषित किया जा रहा है
अनुप्रयोग
1960 के दशक के बाद से, परमाणु भौतिकी और आणविक भौतिकी से लेकर परमाणु चुंबकीय अनुनाद तक, भौतिकी और रसायन विज्ञान के कई क्षेत्रों में मैग्नस विस्तार को एक प्रेरक उपकरण के रूप में सफलतापूर्वक लागू किया गया है।[3] और क्वांटम इलेक्ट्रोडायनामिक्स। इसका उपयोग 1998 से आव्यूह रैखिक अंतर समीकरणों के संख्यात्मक एकीकरण के लिए व्यावहारिक एल्गोरिदम बनाने के लिए एक उपकरण के रूप में भी किया गया है। जैसा कि वे मैग्नस विस्तार से प्राप्त करते हैं
समस्या के गुणात्मक लक्षणों के संरक्षण से संबंधित योजनाएं ज्यामितीय इंटीग्रेटर प्रोटोटाइपिक इसके उदाहरण हैं।
यह भी देखें
- बेकर-कैंपबेल-हॉसडॉर्फ सूत्र
- घातीय मानचित्र का व्युत्पन्न
टिप्पणियाँ
- ↑ Kamm, Pagliarani & Pascucci 2020
- ↑ Kamm, Pagliarani & Pascucci 2020, Theorem 1.1
- ↑ Haeberlen, U.; Waugh, J.S. (1968). "चुंबकीय अनुनाद में सुसंगत औसत प्रभाव". Phys. Rev. 175 (2): 453–467. Bibcode:1968PhRv..175..453H. doi:10.1103/PhysRev.175.453.
संदर्भ
- Magnus, W. (1954). "On the exponential solution of differential equations for a linear operator". Comm. Pure Appl. Math. VII (4): 649–673. doi:10.1002/cpa.3160070404.
- Blanes, S.; Casas, F.; Oteo, J.A.; Ros, J. (1998). "Magnus and Fer expansions for matrix differential equations: The convergence problem". J. Phys. A: Math. Gen. 31 (1): 259–268. Bibcode:1998JPhA...31..259B. doi:10.1088/0305-4470/31/1/023.
- Iserles, A.; Nørsett, S. P. (1999). "On the solution of linear differential equations in Lie groups". Phil. Trans. R. Soc. Lond. A. 357 (1754): 983–1019. Bibcode:1999RSPTA.357..983I. CiteSeerX 10.1.1.15.4614. doi:10.1098/rsta.1999.0362. S2CID 90949835.
- Blanes, S.; Casas, F.; Oteo, J.A.; Ros, J. (2009). "The Magnus expansion and some of its applications". Phys. Rep. 470 (5–6): 151–238. arXiv:0810.5488. Bibcode:2009PhR...470..151B. doi:10.1016/j.physrep.2008.11.001. S2CID 115177329.
- Kamm, K.; Pagliarani, S.; Pascucci, A. (2021). "On the Stochastic Magnus Expansion and Its Application to SPDEs". Journal of Scientific Computing. 89 (3): 56. arXiv:2001.01098. doi:10.1007/s10915-021-01633-6. S2CID 211259118.