फिन्सलर कई गुना: Difference between revisions
(→उदाहरण) |
No edit summary |
||
Line 4: | Line 4: | ||
[[रीमैनियन कई गुना|रीमैनियन मैनिफोल्ड]] की तुलना में फिन्सलर मैनिफोल्ड्स अधिक सामान्य हैं क्योंकि स्पर्शरेखा मानदंडों को आंतरिक उत्पादों द्वारा प्रेरित करने की आवश्यकता नहीं है। | [[रीमैनियन कई गुना|रीमैनियन मैनिफोल्ड]] की तुलना में फिन्सलर मैनिफोल्ड्स अधिक सामान्य हैं क्योंकि स्पर्शरेखा मानदंडों को आंतरिक उत्पादों द्वारा प्रेरित करने की आवश्यकता नहीं है। | ||
प्रत्येक फिन्सलर मैनिफोल्ड एक [[आंतरिक मीट्रिक|आंतरिक | प्रत्येक फिन्सलर मैनिफोल्ड एक [[आंतरिक मीट्रिक|आंतरिक]] क्वासिमीट्रिक स्थान बन जाता है जब दो बिंदुओं के बीच की दूरी को उनके साथ जुड़ने वाले घटता की न्यूनतम लंबाई के रूप में परिभाषित किया जाता है। | ||
{{harvs|txt|authorlink=एली कार्टन|last=कार्टन|first=एली|year1=1933}} द्वारा [[पॉल फिन्सलर]] के नाम पर फिन्सलर मैनिफोल्ड्स नाम दिया गया, जिन्होंने अपने शोध प्रबंध में इस ज्यामिति का अध्ययन किया था {{harv|फिन्सलर|1918}}। | {{harvs|txt|authorlink=एली कार्टन|last=कार्टन|first=एली|year1=1933}} द्वारा [[पॉल फिन्सलर]] के नाम पर फिन्सलर मैनिफोल्ड्स नाम दिया गया, जिन्होंने अपने शोध प्रबंध में इस ज्यामिति का अध्ययन किया था {{harv|फिन्सलर|1918}}। | ||
Line 12: | Line 12: | ||
* {{math|''F''(''v'' + ''w'') ≤ ''F''(''v'') + ''F''(''w'')}}, हर दो वैक्टर के लिए {{math|''v'',''w''}} स्पर्शरेखा {{math|''M''}} पर {{math|''x''}} ([[उप-विषमता]]) व्यक्त करता है। | * {{math|''F''(''v'' + ''w'') ≤ ''F''(''v'') + ''F''(''w'')}}, हर दो वैक्टर के लिए {{math|''v'',''w''}} स्पर्शरेखा {{math|''M''}} पर {{math|''x''}} ([[उप-विषमता]]) व्यक्त करता है। | ||
* {{math|''F''(λ''v'') {{=}} λ''F''(''v'')}}, सभी के लिए {{math|λ ≥ 0}} ( | * {{math|''F''(λ''v'') {{=}} λ''F''(''v'')}}, सभी के लिए {{math|λ ≥ 0}} (किन्तु आवश्यक नहीं कि इसके लिए {{math|λ < 0)}} (सकारात्मक एकरूपता)। | ||
* {{math|''F''(''v'') > 0}} ([[सकारात्मक-निश्चित कार्य|सकारात्मक-निश्चित फलन]]) होगा जब तक {{math|''v'' {{=}} 0}} है। | * {{math|''F''(''v'') > 0}} ([[सकारात्मक-निश्चित कार्य|सकारात्मक-निश्चित फलन]]) होगा जब तक {{math|''v'' {{=}} 0}} है। | ||
दूसरे शब्दों में, {{math|''F''(''x'', −)}} प्रत्येक स्पर्शरेखा स्थान पर एक असममित मानदंड {{math|T<sub>''x''</sub>''M''}} है। द फिन्सलर | दूसरे शब्दों में, {{math|''F''(''x'', −)}} प्रत्येक स्पर्शरेखा स्थान पर एक असममित मानदंड {{math|T<sub>''x''</sub>''M''}} है। द फिन्सलर मीट्रिक {{math|''F''}} धरातलीय समतल होने पर अधिक यथार्थ होने की भी आवश्यकता है जैसे कि: | ||
* {{math|''F''}} के शून्य खंड के पूरक पर सुचारू फलन {{math|T''M''}} है। | * {{math|''F''}} के शून्य खंड के पूरक पर सुचारू फलन {{math|T''M''}} है। | ||
Line 21: | Line 21: | ||
उप-योगात्मकता अभिगृहीत को निम्नलिखित प्रबल उत्तल स्थिति द्वारा प्रतिस्थापित किया जा सकता है: | उप-योगात्मकता अभिगृहीत को निम्नलिखित प्रबल उत्तल स्थिति द्वारा प्रतिस्थापित किया जा सकता है: | ||
* प्रत्येक स्पर्शरेखा | * प्रत्येक स्पर्शरेखा सदिश v ≠ 0 के लिए, v पर F<sup>2</sup> का [[हेस्सियन आव्यूह]] सकारात्मक निश्चित है। | ||
यहाँ पर हेसियन, {{math|''F''<sup>2</sup>}} पर {{math|''v''}} सममित टेन्सर [[द्विरेखीय रूप]] है | यहाँ पर हेसियन, {{math|''F''<sup>2</sup>}} पर {{math|''v''}} सममित टेन्सर [[द्विरेखीय रूप]] है | ||
Line 35: | Line 35: | ||
===रेंडर मैनिफोल्ड === | ===रेंडर मैनिफोल्ड === | ||
सरल <math>(M, a)</math> एक रीमैनियन | सरल <math>(M, a)</math> एक रीमैनियन मैनिफोल्ड हो और b एक अंतर रूप m के साथ अवकल रूप में निर्दिष्ट होता है | ||
:<math>\|b\|_a := \sqrt{a^{ij}b_i b_j} < 1,</math> | :<math>\|b\|_a := \sqrt{a^{ij}b_i b_j} < 1,</math> | ||
जहाँ <math>\left(a^{ij}\right)</math> का व्युत्क्रम मैट्रिक्स <math>(a_{ij})</math> है और इसमें [[आइंस्टीन संकेतन]] का उपयोग किया जाता है। तब | जहाँ <math>\left(a^{ij}\right)</math> का व्युत्क्रम मैट्रिक्स <math>(a_{ij})</math> है और इसमें [[आइंस्टीन संकेतन]] का उपयोग किया जाता है। तब |
Revision as of 20:13, 1 May 2023
गणित में, विशेष रूप से अवकल ज्यामिति, कोई फिन्सलर मैनिफोल्ड एक भिन्नात्मक मैनिफोल्ड है, जहां M एक (संभवतः असममित मानदंड) मिंकोवस्की के रूप में फलनात्मक फलन F(x, −) प्रत्येक स्पर्शरेखा स्थान पर प्रदान किया गया है, जो किसी भी धरातलीय समतल वक्र TxM की लंबाई γ : [a, b] → M को परिभाषित करने में सक्षम बनाता है।
- जैसा कि में दर्शाया गया है।
रीमैनियन मैनिफोल्ड की तुलना में फिन्सलर मैनिफोल्ड्स अधिक सामान्य हैं क्योंकि स्पर्शरेखा मानदंडों को आंतरिक उत्पादों द्वारा प्रेरित करने की आवश्यकता नहीं है।
प्रत्येक फिन्सलर मैनिफोल्ड एक आंतरिक क्वासिमीट्रिक स्थान बन जाता है जब दो बिंदुओं के बीच की दूरी को उनके साथ जुड़ने वाले घटता की न्यूनतम लंबाई के रूप में परिभाषित किया जाता है।
एली कार्टन (1933) द्वारा पॉल फिन्सलर के नाम पर फिन्सलर मैनिफोल्ड्स नाम दिया गया, जिन्होंने अपने शोध प्रबंध में इस ज्यामिति का अध्ययन किया था (फिन्सलर 1918) ।
परिभाषा
फिन्सलर मैनिफोल्ड एक असममित मानदंड योग्य मैनिफोल्ड है। फिन्सलर मीट्रिक M के साथ, जो एक निरंतर गैर-नकारात्मक फलन F: TM → [0, +∞) है। मैनिफोल्ड स्पर्शरेखा बंडल पर परिभाषित किया गया है ताकि प्रत्येक बिंदु के लिए x का M निम्न हो,
- F(v + w) ≤ F(v) + F(w), हर दो वैक्टर के लिए v,w स्पर्शरेखा M पर x (उप-विषमता) व्यक्त करता है।
- F(λv) = λF(v), सभी के लिए λ ≥ 0 (किन्तु आवश्यक नहीं कि इसके लिए λ < 0) (सकारात्मक एकरूपता)।
- F(v) > 0 (सकारात्मक-निश्चित फलन) होगा जब तक v = 0 है।
दूसरे शब्दों में, F(x, −) प्रत्येक स्पर्शरेखा स्थान पर एक असममित मानदंड TxM है। द फिन्सलर मीट्रिक F धरातलीय समतल होने पर अधिक यथार्थ होने की भी आवश्यकता है जैसे कि:
- F के शून्य खंड के पूरक पर सुचारू फलन TM है।
उप-योगात्मकता अभिगृहीत को निम्नलिखित प्रबल उत्तल स्थिति द्वारा प्रतिस्थापित किया जा सकता है:
- प्रत्येक स्पर्शरेखा सदिश v ≠ 0 के लिए, v पर F2 का हेस्सियन आव्यूह सकारात्मक निश्चित है।
यहाँ पर हेसियन, F2 पर v सममित टेन्सर द्विरेखीय रूप है
इस प्रकार के फलन को मूलभूत काल के रूप में भी जाना जाता है, F पर v की प्रबल उत्तलता F एक सुदृण असमानता के साथ उप-विषमता का सार्थक तात्पर्य निर्गत करती है यदि u⁄F(u) ≠ v⁄F(v). F दृढ़ता से उत्तल है, तो यह प्रत्येक स्पर्शरेखा स्थान पर मिंकोव्स्की मानदंड है।
- एक फिन्सलर मीट्रिक उत्क्रमणीय है, यदि इसके अतिरिक्त F(−v) = F(v) सभी स्पर्शरेखा सदिशों के लिए v, किसी प्रतिवर्ती फिन्सलर मीट्रिक प्रत्येक स्पर्शरेखा स्थान पर एक मानदंड (गणित) (सामान्य अर्थ में) को परिभाषित करता है।
उदाहरण
- परिमित आयाम के एक आदर्श सदिश स्थान के धरातलीय समतल सबमनीफोल्ड (खुले उपसमुच्चय सहित) फिन्सलर मैनिफोल्ड हैं यदि सदिश स्थान का मानदंड मूल के बाहर धरातलीय समतल है।
- रीमैनियन मैनिफोल्ड्स (लेकिन स्यूडो-रीमैनियन मैनिफोल्ड नहीं) फिन्सलर मैनिफोल्ड्स के विशेष प्रकरण हैं।
रेंडर मैनिफोल्ड
सरल एक रीमैनियन मैनिफोल्ड हो और b एक अंतर रूप m के साथ अवकल रूप में निर्दिष्ट होता है
जहाँ का व्युत्क्रम मैट्रिक्स है और इसमें आइंस्टीन संकेतन का उपयोग किया जाता है। तब
'm' पर एक रैंडर्स मीट्रिक को परिभाषित करता है और एक रैंडर्स मैनिफोल्ड है, जो कि एक गैर-प्रतिवर्ती फिन्सलर मैनिफोल्ड का विशेष प्रकरण है।[1]
- ↑ Randers, G. (1941). "सामान्य सापेक्षता के चार-अंतरिक्ष में एक असममित मीट्रिक पर". Phys. Rev. 59 (2): 195–199. doi:10.1103/PhysRev.59.195. hdl:10338.dmlcz/134230.