कम्यूटेटर उपसमूह: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
 
(5 intermediate revisions by 3 users not shown)
Line 5: Line 5:


== कम्यूटेटर ==
== कम्यूटेटर ==
{{main|Commutator}}
{{main|कम्यूटेटर}}
तत्वों के लिए <math>g</math> और <math>h</math> समूह G का, का कम्यूटेटर <math>g</math> और <math>h</math> है <math>[g,h] = g^{-1}h^{-1}gh</math>. कम्यूटेटर <math>[g,h]</math> [[पहचान तत्व]] ई के बराबर है यदि और केवल यदि <math>gh = hg</math> , यानी, यदि और केवल यदि <math>g</math> और <math>h</math> आना-जाना। सामान्य रूप में, <math>gh = hg[g,h]</math>.


हालांकि, संकेतन कुछ हद तक मनमाना है और कम्यूटेटर के लिए गैर-समतुल्य संस्करण परिभाषा है जिसमें समीकरण के दाहिने हाथ की ओर व्युत्क्रम हैं: <math>[g,h] = ghg^{-1}h^{-1}</math> किस स्थिति में <math>gh \neq hg[g,h]</math> लेकिन इसके बजाय <math>gh = [g,h]hg</math>.
समूह G के तत्व <math>g</math> और <math>h</math> के लिए, <math>g</math> और <math>h</math> का कम्यूटेटर <math>[g,h] = g^{-1}h^{-1}gh</math> है। कम्यूटेटर <math>[g,h]</math> [[पहचान तत्व]] e के बराबर है यदि और केवल यदि <math>gh = hg</math> अर्थात् यदि और केवल यदि <math>g</math> और <math>h</math> बदलाव करते हैं। सामान्य रूप में, <math>gh = hg[g,h]</math>.


फॉर्म के जी का तत्व <math>[g,h]</math> कुछ के लिए g और h को कम्यूटेटर कहा जाता है। पहचान तत्व ई = [, ] हमेशा कम्यूटेटर है, और यह एकमात्र कम्यूटेटर है यदि और केवल यदि जी एबेलियन है।
चूंकि, संकेतन कुछ सीमा तक स्वैच्छिक है और कम्यूटेटर के लिए गैर-समतुल्य संस्करण परिभाषा है जिसमें समीकरण: <math>[g,h] = ghg^{-1}h^{-1}</math>के दाहिने हाथ की ओर व्युत्क्रम हैं जिस स्थिति में <math>gh \neq hg[g,h]</math> किन्तु इसके अतिरिक्त <math>gh = [g,h]hg</math> होता है।


यहां कुछ सरल लेकिन उपयोगी कम्यूटेटर पहचान हैं, समूह जी के किसी भी तत्व एस, जी, एच के लिए सच है:
कुछ g और h के लिए <math>[g,h]</math> रूप के G के एक तत्व को कम्यूटेटर कहा जाता है। पहचान तत्व e = [e, e] सदैव एक कम्यूटेटर है, और यह एकमात्र कम्यूटेटर है यदि और केवल यदि G एबेलियन है।
 
यहां कुछ सरल किन्तु उपयोगी कम्यूटेटर पहचान हैं, समूह G के किसी भी तत्व ''s'', ''g'', ''h'' के लिए सच है:


* <math>[g,h]^{-1} = [h,g],</math>
* <math>[g,h]^{-1} = [h,g],</math>
* <math>[g,h]^s = [g^s,h^s],</math> कहाँ <math>g^s = s^{-1}gs</math> (या, क्रमशः, <math> g^s = sgs^{-1}</math>) का संयुग्मी वर्ग है <math>g</math> द्वारा <math>s,</math>
* <math>[g,h]^s = [g^s,h^s],</math> जहाँ <math>g^s = s^{-1}gs</math> (या, क्रमशः, <math> g^s = sgs^{-1}</math>) <math>g</math> द्वारा <math>s</math> का संयुग्मी वर्ग है
* किसी भी [[समूह समरूपता]] के लिए <math>f: G \to H </math>, <math>f([g, h]) = [f(g), f(h)].</math>
* किसी भी [[समूह समरूपता]] <math>f: G \to H </math>, <math>f([g, h]) = [f(g), f(h)]</math>के लिए।
पहली और दूसरी पहचान का अर्थ है कि G में कम्यूटेटर का [[सेट (गणित)]] व्युत्क्रम और संयुग्मन के तहत बंद है। यदि तीसरी पहचान में हम एच = जी लेते हैं, तो हम पाते हैं कि जी के किसी भी [[एंडोमोर्फिज्म]] के तहत कम्यूटेटर का सेट स्थिर है। यह वास्तव में दूसरी पहचान का सामान्यीकरण है, क्योंकि हम जी पर संयुग्मन [[ automorphism |automorphism]] होने के लिए एफ ले सकते हैं, <math> x \mapsto x^s </math>, दूसरी पहचान पाने के लिए।
पहली और दूसरी पहचान का अर्थ है कि G में कम्यूटेटर का [[सेट (गणित)|समुच्चय (गणित)]] व्युत्क्रम और संयुग्मन के अनुसार बंद है। यदि तीसरी पहचान में हम ''H'' = ''G'' लेते हैं, तो हम पाते हैं कि G के किसी भी [[एंडोमोर्फिज्म]] के अनुसार कम्यूटेटर का समुच्चय स्थिर है। यह वास्तव में दूसरी पहचान का एक सामान्यीकरण है, क्योंकि हम दूसरी पहचान प्राप्त करने के लिए f को G, <math> x \mapsto x^s </math> पर संयुग्मन [[ automorphism |ऑटोमोर्फिज्म]] के रूप में ले सकते हैं।


हालाँकि, दो या दो से अधिक कम्यूटेटर के उत्पाद को कम्यूटेटर होने की आवश्यकता नहीं है। , बी, सी, डी पर [[मुक्त समूह]] में सामान्य उदाहरण [, बी] [सी, डी] है। यह ज्ञात है कि परिमित समूह का कम से कम क्रम जिसके लिए दो कम्यूटेटर मौजूद हैं जिनका उत्पाद कम्यूटेटर नहीं है 96 है; वास्तव में इस संपत्ति के साथ क्रम 96 के दो गैर-समरूपी समूह हैं।<ref>{{harvtxt|Suárez-Alvarez}}</ref>
चूँकि, दो या दो से अधिक कम्यूटेटर के उत्पाद को कम्यूटेटर होने की आवश्यकता नहीं है। ''a'',''b'',''c'',''d'' पर [[मुक्त समूह]] में सामान्य उदाहरण [''a'',''b''][''c'',''d''] है। यह ज्ञात है कि परिमित समूह का कम से कम क्रम जिसके लिए दो कम्यूटेटर उपस्थित हैं जिनका उत्पाद कम्यूटेटर नहीं है 96 है; वास्तव में इस गुण के साथ क्रम 96 के दो गैर-समरूपी समूह हैं।<ref>{{harvtxt|Suárez-Alvarez}}</ref>




== परिभाषा ==
== परिभाषा ==
यह कम्यूटेटर उपसमूह की परिभाषा को प्रेरित करता है <math>[G, G]</math> (जिसे व्युत्पन्न उपसमूह भी कहा जाता है, और निरूपित किया जाता है <math>G'</math> या <math>G^{(1)}</math>) G का: यह सभी कम्यूटेटर द्वारा समूह का उपसमूह जनरेटिंग सेट है।
यह G के कम्यूटेटर उपसमूह <math>[G, G]</math> (जिसे व्युत्पन्न उपसमूह भी कहा जाता है, और <math>G'</math> या <math>G^{(1)}</math> की परिभाषा को प्रेरित करता है) : यह सभी कम्यूटेटरों द्वारा उत्पन्न उपसमूह है।


यह इस परिभाषा से इस प्रकार है कि कोई भी तत्व <math>[G, G]</math> स्वरूप का है
यह इस परिभाषा से इस प्रकार है कि कोई भी तत्व <math>[G, G]</math> स्वरूप का है


:<math>[g_1,h_1] \cdots [g_n,h_n] </math>
:<math>[g_1,h_1] \cdots [g_n,h_n] </math>
कुछ [[प्राकृतिक संख्या]] के लिए <math>n</math>, जहां जी<sub>''i''</sub> और वह<sub>''i''</sub> जी के तत्व हैं। इसके अलावा, चूंकि <math>([g_1,h_1] \cdots [g_n,h_n])^s = [g_1^s,h_1^s] \cdots [g_n^s,h_n^s]</math>, जी में कम्यूटेटर उपसमूह सामान्य है। किसी भी समरूपता के लिए f: G → H,
कुछ [[प्राकृतिक संख्या]] के लिए <math>n</math>, जहां g<sub>''i''</sub> और h<sub>''i''</sub> G के तत्व हैं। इसके अतिरिक्त, चूंकि <math>([g_1,h_1] \cdots [g_n,h_n])^s = [g_1^s,h_1^s] \cdots [g_n^s,h_n^s]</math>, G में कम्यूटेटर उपसमूह सामान्य है। किसी भी समरूपता f: G → H के लिए,


:<math>f([g_1,h_1] \cdots [g_n,h_n]) = [f(g_1),f(h_1)] \cdots [f(g_n),f(h_n)]</math>,
:<math>f([g_1,h_1] \cdots [g_n,h_n]) = [f(g_1),f(h_1)] \cdots [f(g_n),f(h_n)]</math>,


ताकि <math>f([G,G]) \subseteq [H,H]</math>.
जिससे <math>f([G,G]) \subseteq [H,H]</math>.


इससे पता चलता है कि कम्यूटेटर उपसमूह को [[समूहों की श्रेणी]] पर [[ऑपरेटर]] के रूप में देखा जा सकता है, जिसके कुछ निहितार्थ नीचे दिए गए हैं। इसके अलावा, जी = एच लेने से पता चलता है कि जी के प्रत्येक एंडोमोर्फिज्म के तहत कम्यूटेटर उपसमूह स्थिर है: यानी, [जी, जी] जी का पूरी तरह से विशिष्ट उपसमूह है, जो सामान्यता से काफी मजबूत है।
इससे पता चलता है कि कम्यूटेटर उपसमूह को [[समूहों की श्रेणी]] पर [[ऑपरेटर]] के रूप में देखा जा सकता है, जिसके कुछ निहितार्थ नीचे दिए गए हैं। इसके अतिरिक्त, ''G'' = ''H'' लेने से पता चलता है कि G के प्रत्येक एंडोमोर्फिज्म के अनुसार कम्यूटेटर उपसमूह स्थिर है: अर्थात्, [''G'',''G''] जी का पूरी तरह से विशिष्ट उपसमूह है, जो सामान्यता से अधिक शक्तिशाली है।


कम्यूटेटर उपसमूह को समूह के तत्वों जी के सेट के रूप में भी परिभाषित किया जा सकता है जिसमें उत्पाद जी = जी के रूप में अभिव्यक्ति होती है<sub>1</sub> g<sub>2</sub> ... जी<sub>''k''</sub> जिसे पहचान देने के लिए पुनर्व्यवस्थित किया जा सकता है।
कम्यूटेटर उपसमूह को समूह के तत्वों g के समुच्चय के रूप में भी परिभाषित किया जा सकता है जिसमें उत्पाद ''g'' = ''g''<sub>1</sub> ''g''<sub>2</sub> ... ''g<sub>k</sub>'' के रूप में अभिव्यक्ति होती है जिसे पहचान देने के लिए पुनर्व्यवस्थित किया जा सकता है।


=== व्युत्पन्न श्रृंखला ===
=== व्युत्पन्न श्रृंखला ===
Line 44: Line 45:
समूह <math>G^{(2)}, G^{(3)}, \ldots</math> दूसरे व्युत्पन्न उपसमूह, तीसरे व्युत्पन्न उपसमूह, और आगे, और अवरोही [[सामान्य श्रृंखला]] कहलाते हैं
समूह <math>G^{(2)}, G^{(3)}, \ldots</math> दूसरे व्युत्पन्न उपसमूह, तीसरे व्युत्पन्न उपसमूह, और आगे, और अवरोही [[सामान्य श्रृंखला]] कहलाते हैं
:<math>\cdots \triangleleft G^{(2)} \triangleleft G^{(1)} \triangleleft G^{(0)} = G</math>
:<math>\cdots \triangleleft G^{(2)} \triangleleft G^{(1)} \triangleleft G^{(0)} = G</math>
व्युत्पन्न श्रृंखला कहलाती है। इसे [[निचली केंद्रीय श्रृंखला]] के साथ भ्रमित नहीं होना चाहिए, जिसकी शर्तें हैं <math>G_n := [G_{n-1},G]</math>.
व्युत्पन्न श्रृंखला कहलाती है। इसे [[निचली केंद्रीय श्रृंखला]] के साथ भ्रमित नहीं होना चाहिए, जिसकी शर्तें <math>G_n := [G_{n-1},G]</math> है।


परिमित समूह के लिए, व्युत्पन्न श्रृंखला पूर्ण समूह में समाप्त होती है, जो तुच्छ हो भी सकती है और नहीं भी। अनंत समूह के लिए, व्युत्पन्न श्रृंखला को परिमित अवस्था में समाप्त करने की आवश्यकता नहीं होती है, और कोई भी इसे अनंत क्रमिक संख्याओं के लिए [[ट्रांसफिनिट रिकर्सन]] के माध्यम से जारी रख सकता है, जिससे ट्रांसफिनिट व्युत्पन्न श्रृंखला प्राप्त होती है, जो अंततः समूह के [[सही कोर]] पर समाप्त हो जाती है।
परिमित समूह के लिए, व्युत्पन्न श्रृंखला पूर्ण समूह में समाप्त होती है, जो तुच्छ हो भी सकती है और नहीं भी हो सकती है। अनंत समूह के लिए, व्युत्पन्न श्रृंखला को परिमित अवस्था में समाप्त करने की आवश्यकता नहीं होती है, और कोई भी इसे अनंत क्रमिक संख्याओं के लिए [[ट्रांसफिनिट रिकर्सन|ट्रांसफिनिट पुनरावर्तन]] के माध्यम से जारी रख सकता है, जिससे '''ट्रांसफिनिट व्युत्पन्न श्रृंखला''' प्राप्त होती है, जो अंततः समूह के [[सही कोर|पूर्ण कोर]] पर समाप्त हो जाती है।


=== एबेलियनाइजेशन ===
=== एबेलियनाइजेशन ===
समूह दिया <math>G</math>, भागफल समूह <math>G/N</math> एबेलियन है यदि और केवल यदि <math>[G, G]\subseteq N</math>.
एक समूह <math>G</math> दिया गया है, एक भागफल समूह <math>G/N</math> एबेलियन है यदि और केवल <math>[G, G]\subseteq N</math>


भागफल <math>G/[G, G]</math> एबेलियन समूह है जिसे का एबेलियनाइजेशन कहा जाता है <math>G</math> या <math>G</math> एबेलियन बनाया।<ref>{{harvtxt|Fraleigh|1976|p=108}}</ref> इसे आमतौर पर द्वारा दर्शाया जाता है <math>G^{\operatorname{ab}}</math> या <math>G_{\operatorname{ab}}</math>.
भागफल <math>G/[G, G]</math> एक एबेलियन समूह है जिसे <math>G</math> या <math>G</math> का एबेलियनाइजेशन कहा जाता है।<ref>{{harvtxt|Fraleigh|1976|p=108}}</ref> इसे सामान्यतः <math>G^{\operatorname{ab}}</math> या <math>G_{\operatorname{ab}}</math> द्वारा दर्शाया जाता है।


मानचित्र की उपयोगी श्रेणीबद्ध व्याख्या है <math>\varphi: G \rightarrow G^{\operatorname{ab}}</math>. यानी <math>\varphi</math> से समरूपता के लिए सार्वभौमिक है <math>G</math> एबेलियन समूह के लिए <math>H</math>: किसी भी एबेलियन समूह के लिए <math>H</math> और समूहों की समरूपता <math>f: G \to H</math> अद्वितीय समरूपता मौजूद है <math>F: G^{\operatorname{ab}}\to H</math> ऐसा है कि <math>f = F \circ \varphi</math>. सार्वभौमिक मैपिंग गुणों द्वारा परिभाषित वस्तुओं के लिए हमेशा की तरह, यह एबेलियनाइजेशन की विशिष्टता को दर्शाता है <math>G^{\operatorname{ab}}</math> विहित समरूपता तक, जबकि स्पष्ट निर्माण <math>G\to G/[G, G]</math> अस्तित्व दर्शाता है।
माप <math>\varphi: G \rightarrow G^{\operatorname{ab}}</math> की उपयोगी श्रेणीबद्ध व्याख्या है। अर्थात <math>\varphi</math> <math>G</math> से एक एबेलियन समूह <math>H</math> के समरूपता के लिए सार्वभौमिक है: किसी भी एबेलियन समूह <math>H</math> और समूह <math>f: G \to H</math> के समरूपता के लिए एक अद्वितीय समरूपता <math>F: G^{\operatorname{ab}}\to H</math> उपस्थित है जैसे कि <math>f = F \circ \varphi</math>सार्वभौमिक माप गुणों द्वारा परिभाषित वस्तुओं के लिए सदैव की तरह, यह विहित समरूपता तक एबेलियनाइजेशन <math>G^{\operatorname{ab}}</math> की विशिष्टता को दर्शाता है, जबकि स्पष्ट निर्माण <math>G\to G/[G, G]</math> अस्तित्व दिखाता है।


एबेलियनाइजेशन फ़ंक्टर, [[एबेलियन समूहों की श्रेणी]] से समूहों की श्रेणी में सम्मिलित किए जाने वाले फ़ंक्टर का सहायक फ़ंक्टर है। एबेलियनाइज़ेशन फ़ंक्टर Grp → Ab का अस्तित्व श्रेणी Ab को समूहों की श्रेणी की [[चिंतनशील उपश्रेणी]] बनाता है, जिसे पूर्ण उपश्रेणी के रूप में परिभाषित किया गया है, जिसके समावेशन फ़ंक्टर के पास बायाँ जोड़ है।
एबेलियनाइजेशन फ़ंक्टर, [[एबेलियन समूहों की श्रेणी]] से समूहों की श्रेणी में सम्मिलित किए जाने वाले फ़ंक्टर का सहायक फ़ंक्टर है। एबेलियनाइज़ेशन फ़ंक्टर Grp → Ab का अस्तित्व श्रेणी Ab को समूहों की श्रेणी की [[चिंतनशील उपश्रेणी|परावर्तनी उपश्रेणी]] बनाता है, जिसे पूर्ण उपश्रेणी के रूप में परिभाषित किया गया है, जिसके समावेशन फ़ंक्टर के पास बायाँ जोड़ है।


की और महत्वपूर्ण व्याख्या <math>G^{\operatorname{ab}}</math> के रूप में है <math>H_1(G, \mathbb{Z})</math>, का पहला [[समूह समरूपता]] <math>G</math> अभिन्न गुणांक के साथ।
<math>G^{\operatorname{ab}}</math> की एक अन्य महत्वपूर्ण व्याख्या <math>H_1(G, \mathbb{Z})</math> के रूप में है, जो अभिन्न गुणांकों के साथ <math>G</math> का पहला होमोलॉजी [[समूह समरूपता]] है।


=== समूहों के वर्ग ===
=== समूहों के वर्ग ===
समूह <math>G</math> एबेलियन समूह है यदि और केवल यदि व्युत्पन्न समूह छोटा है: [''जी'',''जी''] = {''''}समतुल्य रूप से, यदि और केवल यदि समूह अपने अपमान के बराबर है। समूह के अपमान की परिभाषा के लिए ऊपर देखें।
समूह <math>G</math> एक एबेलियन समूह है यदि और केवल यदि व्युत्पन्न समूह तुच्छ [''G'',''G''] = {''e''} है। समतुल्य रूप से, यदि और केवल यदि समूह अपने एबेलियनाइजेशन के बराबर है। समूह के एबेलियनाइजेशन की परिभाषा के लिए ऊपर देखें।
 
समूह <math>G</math> आदर्श समूह है यदि और केवल यदि व्युत्पन्न समूह समूह के बराबर: [''G'',''G''] = ''G है''। समान रूप से, यदि और केवल यदि समूह का एबेलियनाइजेशन तुच्छ है। यह एबेलियन के विपरीत है।


समूह <math>G</math> आदर्श समूह है यदि और केवल यदि व्युत्पन्न समूह समूह के बराबर है: [''G'',''G''] = ''G''। समान रूप से, यदि और केवल यदि समूह का अपमान तुच्छ है। यह एबेलियन के विपरीत है।
N में कुछ n के लिए <math>G^{(n)}=\{e\}</math> वाले समूह को समाधान करने योग्य समूह कहा जाता है; यह एबेलियन से कमजोर है, जो स्थिति n = 1 है।


के साथ समूह <math>G^{(n)}=\{e\}</math> कुछ n के लिए 'N' में 'सुलझाने योग्य समूह' कहा जाता है; यह एबेलियन से कमजोर है, जो मामला n = 1 है।
N में सभी n के लिए <math>G^{(n)} \neq \{e\}</math> वाले समूह को अघुलनशील समूह कहा जाता है।


के साथ समूह <math>G^{(n)} \neq \{e\}</math> सभी n के लिए 'N' में 'अघुलनशील समूह' कहा जाता है।
किसी क्रमिक संख्या के लिए <math>G^{(\alpha)}=\{e\}</math> वाला एक समूह, संभवतः अनंत, एक हाइपोबेलियन समूह कहलाता है; यह समाधान करने योग्य से कमजोर है, जो कि ''α'' परिमित (प्राकृतिक संख्या)  स्थिति है।


के साथ समूह <math>G^{(\alpha)}=\{e\}</math> किसी क्रमसूचक संख्या के लिए, संभवतः अनंत, पूर्ण मूलक कहलाती है; यह सॉल्व करने योग्य से कमजोर है, जो कि मामला है ''α'' परिमित (प्राकृतिक संख्या) है।
=== परीपूर्ण समूह ===
{{Main articles|परीपूर्ण समूह}}


=== परफेक्ट ग्रुप ===
जब भी एक समूह <math>G</math> ने उपसमूह को अपने बराबर, <math>G^{(1)} =G</math> व्युत्पन्न किया है, इसे एक पूर्ण समूह कहा जाता है। इसमें एक निश्चित क्षेत्र <math>k</math> के लिए गैर-एबेलियन [[ साधारण समूह |साधारण समूह]] और [[ विशेष रैखिक समूह |विशेष रैखिक समूह]] <math>\operatorname{SL}_n(k)</math> सम्मिलित हैं।
{{Main articles|Perfect group}}
जब भी कोई समूह <math>G</math> व्युत्पन्न उपसमूह स्वयं के बराबर है, <math>G^{(1)} =G</math>, इसे पूर्ण समूह कहा जाता है। इसमें नॉन-एबेलियन [[ साधारण समूह |साधारण समूह]] और [[ विशेष रैखिक समूह |विशेष रैखिक समूह]] सम्मिलित हैं <math>\operatorname{SL}_n(k)</math> निश्चित क्षेत्र के लिए <math>k</math>.


== उदाहरण ==
== उदाहरण ==
* किसी एबेलियन समूह का कम्यूटेटर उपसमूह [[तुच्छ समूह]] है।
* किसी एबेलियन समूह का कम्यूटेटर उपसमूह [[तुच्छ समूह]] है।
* [[सामान्य रैखिक समूह]] का कम्यूटेटर उपसमूह <math>\operatorname{GL}_n(k)</math> फील्ड (गणित) या [[ विभाजन की अंगूठी |विभाजन की अंगूठी]] के ऊपर k विशेष रैखिक समूह के बराबर होता है <math>\operatorname{SL}_n(k)</math> उसे उपलब्ध कराया <math>n \ne 2</math> या k [[परिमित क्षेत्र]] नहीं है।<ref>{{citation|author=Suprunenko|first=D.A.|title=Matrix groups|publisher=American Mathematical Society|year=1976|series=Translations of Mathematical Monographs}}, Theorem II.9.4</ref>
*[[सामान्य रैखिक समूह]] का कम्यूटेटर उपसमूह <math>\operatorname{GL}_n(k)</math> क्षेत्र (गणित) या [[ विभाजन की अंगूठी |विभाजन की रिंग]] k पर विशेष रैखिक समूह <math>\operatorname{SL}_n(k)</math> के बराबर होता है परन्तु <math>n \ne 2</math> या k दो तत्वों वाला [[परिमित क्षेत्र]] नहीं है।<ref>{{citation|author=Suprunenko|first=D.A.|title=Matrix groups|publisher=American Mathematical Society|year=1976|series=Translations of Mathematical Monographs}}, Theorem II.9.4</ref>
* प्रत्यावर्ती समूह A का कम्यूटेटर उपसमूह<sub>4</sub> [[क्लेन चार समूह]] है।
* प्रत्यावर्ती समूह A<sub>4</sub> का कम्यूटेटर उपसमूह [[क्लेन चार समूह]] है।
* [[सममित समूह]] S का कम्यूटेटर उपसमूह<sub>n</sub>वैकल्पिक समूह ए है<sub>n</sub>.
* [[सममित समूह]] S<sub>n</sub> का कम्यूटेटर उपसमूह वैकल्पिक समूह A<sub>n</sub> है.
* चतुर्भुज समूह Q = {1, -1, i, -i, j, -j, k, -k} का कम्यूटेटर उपसमूह [Q,Q] = {1, -1} है।
* चतुर्भुज समूह Q = {1, -1, i, -i, j, -j, k, -k} का कम्यूटेटर उपसमूह [Q,Q] = {1, -1} है।


=== बाहर से मानचित्र ===
=== बाहर से माप ===
चूँकि व्युत्पन्न उपसमूह अभिलक्षणिक उपसमूह है, इसलिए G का कोई भी स्वरूपवाद अपभ्रंशीकरण के स्वारूपवाद को प्रेरित करता है। चूँकि एबेलियनाइज़ेशन एबेलियन है, [[आंतरिक ऑटोमोर्फिज्म]] तुच्छ रूप से कार्य करते हैं, इसलिए यह मानचित्र उत्पन्न करता है
चूँकि व्युत्पन्न उपसमूह अभिलक्षणिक उपसमूह है, इसलिए G का कोई भी स्वरूपवाद अपभ्रंशीकरण के स्वारूपवाद को प्रेरित करता है। चूँकि एबेलियनाइज़ेशन एबेलियन है, [[आंतरिक ऑटोमोर्फिज्म]] तुच्छ रूप से कार्य करते हैं, इसलिए यह माप उत्पन्न करता है
:<math>\operatorname{Out}(G) \to \operatorname{Aut}(G^{\mbox{ab}})</math>
:<math>\operatorname{Out}(G) \to \operatorname{Aut}(G^{\mbox{ab}})</math>


Line 104: Line 106:
==बाहरी संबंध==
==बाहरी संबंध==
* {{springer|title=Commutator subgroup|id=p/c023440}}
* {{springer|title=Commutator subgroup|id=p/c023440}}
[[Category: समूह सिद्धांत]] [[Category: कार्यात्मक उपसमूह]] [[Category: प्रमाण युक्त लेख]] [[Category: उपसमूह गुण]]


[[Category: Machine Translated Page]]
[[Category:Articles with hatnote templates targeting a nonexistent page]]
[[Category:Created On 26/04/2023]]
[[Category:Created On 26/04/2023]]
[[Category:Lua-based templates]]
[[Category:Machine Translated Page]]
[[Category:Pages with maths render errors]]
[[Category:Pages with script errors]]
[[Category:Templates Vigyan Ready]]
[[Category:Templates that add a tracking category]]
[[Category:Templates that generate short descriptions]]
[[Category:Templates using TemplateData]]
[[Category:उपसमूह गुण]]
[[Category:कार्यात्मक उपसमूह]]
[[Category:प्रमाण युक्त लेख]]
[[Category:समूह सिद्धांत]]

Latest revision as of 08:49, 8 May 2023

गणित में, विशेष रूप से अमूर्त बीजगणित में, कम्यूटेटर उपसमूह या समूह (गणित) का व्युत्पन्न उपसमूह समूह के सभी कम्यूटेटरों द्वारा समूह का उपसमूह (गणित) उत्पन्न करता है।[1][2]

कम्यूटेटर उपसमूह महत्वपूर्ण है क्योंकि यह सबसे छोटा सामान्य उपसमूह है जैसे कि इस उपसमूह द्वारा मूल समूह का अंश समूह एबेलियन समूह है। दूसरे शब्दों में, एबेलियन है यदि और केवल यदि में का कम्यूटेटर उपसमूह सम्मिलित है। तो कुछ अर्थों में यह उपाय प्रदान करता है कि समूह एबेलियन होने से कितनी दूर है; कम्यूटेटर उपसमूह जितना बड़ा होता है, समूह उतना ही कम एबेलियन होता है।

कम्यूटेटर

समूह G के तत्व और के लिए, और का कम्यूटेटर है। कम्यूटेटर पहचान तत्व e के बराबर है यदि और केवल यदि अर्थात् यदि और केवल यदि और बदलाव करते हैं। सामान्य रूप में, .

चूंकि, संकेतन कुछ सीमा तक स्वैच्छिक है और कम्यूटेटर के लिए गैर-समतुल्य संस्करण परिभाषा है जिसमें समीकरण: के दाहिने हाथ की ओर व्युत्क्रम हैं जिस स्थिति में किन्तु इसके अतिरिक्त होता है।

कुछ g और h के लिए रूप के G के एक तत्व को कम्यूटेटर कहा जाता है। पहचान तत्व e = [e, e] सदैव एक कम्यूटेटर है, और यह एकमात्र कम्यूटेटर है यदि और केवल यदि G एबेलियन है।

यहां कुछ सरल किन्तु उपयोगी कम्यूटेटर पहचान हैं, समूह G के किसी भी तत्व s, g, h के लिए सच है:

  • जहाँ (या, क्रमशः, ) द्वारा का संयुग्मी वर्ग है
  • किसी भी समूह समरूपता , के लिए।

पहली और दूसरी पहचान का अर्थ है कि G में कम्यूटेटर का समुच्चय (गणित) व्युत्क्रम और संयुग्मन के अनुसार बंद है। यदि तीसरी पहचान में हम H = G लेते हैं, तो हम पाते हैं कि G के किसी भी एंडोमोर्फिज्म के अनुसार कम्यूटेटर का समुच्चय स्थिर है। यह वास्तव में दूसरी पहचान का एक सामान्यीकरण है, क्योंकि हम दूसरी पहचान प्राप्त करने के लिए f को G, पर संयुग्मन ऑटोमोर्फिज्म के रूप में ले सकते हैं।

चूँकि, दो या दो से अधिक कम्यूटेटर के उत्पाद को कम्यूटेटर होने की आवश्यकता नहीं है। a,b,c,d पर मुक्त समूह में सामान्य उदाहरण [a,b][c,d] है। यह ज्ञात है कि परिमित समूह का कम से कम क्रम जिसके लिए दो कम्यूटेटर उपस्थित हैं जिनका उत्पाद कम्यूटेटर नहीं है 96 है; वास्तव में इस गुण के साथ क्रम 96 के दो गैर-समरूपी समूह हैं।[3]


परिभाषा

यह G के कम्यूटेटर उपसमूह (जिसे व्युत्पन्न उपसमूह भी कहा जाता है, और या की परिभाषा को प्रेरित करता है) : यह सभी कम्यूटेटरों द्वारा उत्पन्न उपसमूह है।

यह इस परिभाषा से इस प्रकार है कि कोई भी तत्व स्वरूप का है

कुछ प्राकृतिक संख्या के लिए , जहां gi और hi G के तत्व हैं। इसके अतिरिक्त, चूंकि , G में कम्यूटेटर उपसमूह सामान्य है। किसी भी समरूपता f: G → H के लिए,

,

जिससे .

इससे पता चलता है कि कम्यूटेटर उपसमूह को समूहों की श्रेणी पर ऑपरेटर के रूप में देखा जा सकता है, जिसके कुछ निहितार्थ नीचे दिए गए हैं। इसके अतिरिक्त, G = H लेने से पता चलता है कि G के प्रत्येक एंडोमोर्फिज्म के अनुसार कम्यूटेटर उपसमूह स्थिर है: अर्थात्, [G,G] जी का पूरी तरह से विशिष्ट उपसमूह है, जो सामान्यता से अधिक शक्तिशाली है।

कम्यूटेटर उपसमूह को समूह के तत्वों g के समुच्चय के रूप में भी परिभाषित किया जा सकता है जिसमें उत्पाद g = g1 g2 ... gk के रूप में अभिव्यक्ति होती है जिसे पहचान देने के लिए पुनर्व्यवस्थित किया जा सकता है।

व्युत्पन्न श्रृंखला

इस निर्माण को पुनरावृत्त किया जा सकता है:

समूह दूसरे व्युत्पन्न उपसमूह, तीसरे व्युत्पन्न उपसमूह, और आगे, और अवरोही सामान्य श्रृंखला कहलाते हैं

व्युत्पन्न श्रृंखला कहलाती है। इसे निचली केंद्रीय श्रृंखला के साथ भ्रमित नहीं होना चाहिए, जिसकी शर्तें है।

परिमित समूह के लिए, व्युत्पन्न श्रृंखला पूर्ण समूह में समाप्त होती है, जो तुच्छ हो भी सकती है और नहीं भी हो सकती है। अनंत समूह के लिए, व्युत्पन्न श्रृंखला को परिमित अवस्था में समाप्त करने की आवश्यकता नहीं होती है, और कोई भी इसे अनंत क्रमिक संख्याओं के लिए ट्रांसफिनिट पुनरावर्तन के माध्यम से जारी रख सकता है, जिससे ट्रांसफिनिट व्युत्पन्न श्रृंखला प्राप्त होती है, जो अंततः समूह के पूर्ण कोर पर समाप्त हो जाती है।

एबेलियनाइजेशन

एक समूह दिया गया है, एक भागफल समूह एबेलियन है यदि और केवल

भागफल एक एबेलियन समूह है जिसे या का एबेलियनाइजेशन कहा जाता है।[4] इसे सामान्यतः या द्वारा दर्शाया जाता है।

माप की उपयोगी श्रेणीबद्ध व्याख्या है। अर्थात से एक एबेलियन समूह के समरूपता के लिए सार्वभौमिक है: किसी भी एबेलियन समूह और समूह के समरूपता के लिए एक अद्वितीय समरूपता उपस्थित है जैसे कि । सार्वभौमिक माप गुणों द्वारा परिभाषित वस्तुओं के लिए सदैव की तरह, यह विहित समरूपता तक एबेलियनाइजेशन की विशिष्टता को दर्शाता है, जबकि स्पष्ट निर्माण अस्तित्व दिखाता है।

एबेलियनाइजेशन फ़ंक्टर, एबेलियन समूहों की श्रेणी से समूहों की श्रेणी में सम्मिलित किए जाने वाले फ़ंक्टर का सहायक फ़ंक्टर है। एबेलियनाइज़ेशन फ़ंक्टर Grp → Ab का अस्तित्व श्रेणी Ab को समूहों की श्रेणी की परावर्तनी उपश्रेणी बनाता है, जिसे पूर्ण उपश्रेणी के रूप में परिभाषित किया गया है, जिसके समावेशन फ़ंक्टर के पास बायाँ जोड़ है।

की एक अन्य महत्वपूर्ण व्याख्या के रूप में है, जो अभिन्न गुणांकों के साथ का पहला होमोलॉजी समूह समरूपता है।

समूहों के वर्ग

समूह एक एबेलियन समूह है यदि और केवल यदि व्युत्पन्न समूह तुच्छ [G,G] = {e} है। समतुल्य रूप से, यदि और केवल यदि समूह अपने एबेलियनाइजेशन के बराबर है। समूह के एबेलियनाइजेशन की परिभाषा के लिए ऊपर देखें।

समूह आदर्श समूह है यदि और केवल यदि व्युत्पन्न समूह समूह के बराबर: [G,G] = G है। समान रूप से, यदि और केवल यदि समूह का एबेलियनाइजेशन तुच्छ है। यह एबेलियन के विपरीत है।

N में कुछ n के लिए वाले समूह को समाधान करने योग्य समूह कहा जाता है; यह एबेलियन से कमजोर है, जो स्थिति n = 1 है।

N में सभी n के लिए वाले समूह को अघुलनशील समूह कहा जाता है।

किसी क्रमिक संख्या के लिए वाला एक समूह, संभवतः अनंत, एक हाइपोबेलियन समूह कहलाता है; यह समाधान करने योग्य से कमजोर है, जो कि α परिमित (प्राकृतिक संख्या) स्थिति है।

परीपूर्ण समूह

जब भी एक समूह ने उपसमूह को अपने बराबर, व्युत्पन्न किया है, इसे एक पूर्ण समूह कहा जाता है। इसमें एक निश्चित क्षेत्र के लिए गैर-एबेलियन साधारण समूह और विशेष रैखिक समूह सम्मिलित हैं।

उदाहरण

  • किसी एबेलियन समूह का कम्यूटेटर उपसमूह तुच्छ समूह है।
  • सामान्य रैखिक समूह का कम्यूटेटर उपसमूह क्षेत्र (गणित) या विभाजन की रिंग k पर विशेष रैखिक समूह के बराबर होता है परन्तु या k दो तत्वों वाला परिमित क्षेत्र नहीं है।[5]
  • प्रत्यावर्ती समूह A4 का कम्यूटेटर उपसमूह क्लेन चार समूह है।
  • सममित समूह Sn का कम्यूटेटर उपसमूह वैकल्पिक समूह An है.
  • चतुर्भुज समूह Q = {1, -1, i, -i, j, -j, k, -k} का कम्यूटेटर उपसमूह [Q,Q] = {1, -1} है।

बाहर से माप

चूँकि व्युत्पन्न उपसमूह अभिलक्षणिक उपसमूह है, इसलिए G का कोई भी स्वरूपवाद अपभ्रंशीकरण के स्वारूपवाद को प्रेरित करता है। चूँकि एबेलियनाइज़ेशन एबेलियन है, आंतरिक ऑटोमोर्फिज्म तुच्छ रूप से कार्य करते हैं, इसलिए यह माप उत्पन्न करता है


यह भी देखें

  • समाधान करने योग्य समूह
  • निलपोटेंट समूह
  • उपसमूह H/H' का एबेलियनाइज़ेशन उपसमूह H < G उपसमूह (G:H) के परिमित सूचकांक का आर्टिन स्थानांतरण (समूह सिद्धांत)#Artin स्थानांतरण T(G,H) है।

टिप्पणियाँ

  1. Dummit & Foote (2004)
  2. Lang (2002)
  3. Suárez-Alvarez
  4. Fraleigh (1976, p. 108)
  5. Suprunenko, D.A. (1976), Matrix groups, Translations of Mathematical Monographs, American Mathematical Society, Theorem II.9.4


संदर्भ


बाहरी संबंध