गुणनखण्ड: Difference between revisions
(text) |
|||
Line 199: | Line 199: | ||
यदि {{math|''P''(''x'')}}के गुणांक वास्तविक या सम्मिश्र संख्याएँ हैं, तो बीजगणित का मूल प्रमेय दावा करता है कि {{math|''P''(''x'')}} का एक वास्तविक या सम्मिश्र मूल है। गुणनखंड प्रमेय का पुनरावर्ती रूप से प्रयोग करने पर यह परिणाम मिलता है कि | यदि {{math|''P''(''x'')}}के गुणांक वास्तविक या सम्मिश्र संख्याएँ हैं, तो बीजगणित का मूल प्रमेय दावा करता है कि {{math|''P''(''x'')}} का एक वास्तविक या सम्मिश्र मूल है। गुणनखंड प्रमेय का पुनरावर्ती रूप से प्रयोग करने पर यह परिणाम मिलता है कि | ||
:<math>P(x)=a_0(x-r_1)\cdots (x-r_n),</math> | :<math>P(x)=a_0(x-r_1)\cdots (x-r_n),</math> | ||
जहां <math>r_1, \ldots, r_n</math> {{mvar|P}} P के वास्तविक या जटिल मूल हैं, जिनमें से कुछ को संभवतः दोहराया जा सकता है। यह पूर्ण गुणनखंडन कारकों के क्रम तक अद्वितीय है। | |||
यदि | यदि {{math|''P''(''x'')}} के गुणांक वास्तविक हैं, तो आम तौर पर एक ऐसा गुणनखंडन चाहता है जहां कारकों के वास्तविक गुणांक हों। इस मामले में, पूर्ण गुणनखंड में कुछ द्विघात (डिग्री दो) कारक हो सकते हैं। ह गुणनखंड उपरोक्त पूर्ण गुणनखंड से आसानी से निकाला जा सकता है। वास्तव में, यदि {{math|1=''r'' = ''a'' + ''ib''}}, {{math|''P''(''x'')}} का अवास्तविक मूल है, तो इसका सम्मिश्र संयुग्म {{math|1=''s'' = ''a'' - ''ib''}} भी {{math|''P''(''x'')}} का मूल है। तो, उत्पाद | ||
:<math>(x-r)(x-s) = x^2-(r+s)x+rs =x^2+2ax+a^2+b^2</math> | :<math>(x-r)(x-s) = x^2-(r+s)x+rs =x^2+2ax+a^2+b^2</math> | ||
वास्तविक गुणांकों के साथ {{math|''P''(''x'')}} का एक गुणनखंड है। सभी अवास्तविक कारकों के लिए इसे दोहराने से रैखिक या द्विघात वास्तविक कारकों के साथ एक गुणनखंड मिलता है। | |||
इन वास्तविक या जटिल | इन वास्तविक या जटिल गुणनखंडों की गणना के लिए, किसी को बहुपद की जड़ों की आवश्यकता होती है, जिसकी गणना ठीक से नहीं की जा सकती है, और केवल रूट-फाइंडिंग एल्गोरिदम का उपयोग करके अनुमानित किया जाता है। | ||
व्यवहार में, ब्याज के अधिकांश | व्यवहार में, ब्याज के अधिकांश बीजीय समीकरणों में पूर्णांक या परिमेय गुणांक होते हैं, और एक ही प्रकार के कारकों के साथ एक गुणनखंडन चाहता है। अंकगणित के मौलिक प्रमेय को इस मामले में सामान्यीकृत किया जा सकता है, जिसमें कहा गया है कि पूर्णांक या तर्कसंगत गुणांक वाले बहुपदों में अद्वितीय गुणन गुण होते हैं। अधिक सटीक रूप से, तर्कसंगत गुणांक वाले प्रत्येक बहुपद को उत्पाद में गुणनखंडित किया जा सकता है | ||
:<math>P(x)=q\,P_1(x)\cdots P_k(x),</math> | :<math>P(x)=q\,P_1(x)\cdots P_k(x),</math> | ||
जहाँ {{mvar|q}} एक परिमेय संख्या है और <math>P_1(x), \ldots, P_k(x)</math> पूर्णांक गुणांक वाले गैर-स्थिर बहुपद हैं जो इरेड्यूसेबल और आदिम हैं, इसका मतलब यह है कि <math>P_i(x)</math> में से कोई भी उत्पाद दो बहुपद (पूर्णांक गुणांक वाले) के रूप में नहीं लिखा जा सकता है जो न तो 1 है और न ही -1 (पूर्णांकों को बहुपद माना जाता है) शून्य डिग्री)। इसके अलावा, यह गुणनखंड कारकों के क्रम और कारकों के संकेतों तक अद्वितीय है। | |||
इस | इस गुणनखंड की गणना के लिए कुशल एल्गोरिदम हैं, जिन्हें अधिकांश कंप्यूटर बीजगणित प्रणालियों में लागू किया जाता है। बहुपदों का गुणनखंडन देखें। दुर्भाग्य से, ये एल्गोरिदम कागज और पेंसिल गणना के लिए उपयोग करने के लिए बहुत जटिल हैं। उपरोक्त अनुमानों के अलावा, केवल कुछ विधियां हाथ की गणना के लिए उपयुक्त हैं, जो आम तौर पर केवल कम डिग्री के बहुपदों के लिए काम करती हैं, कुछ गैर-शून्य गुणांक के साथ। इस तरह की मुख्य विधियों का वर्णन अगले उपखंडों में किया गया है। | ||
=== आदिम-भाग और सामग्री कारक === | === आदिम-भाग और सामग्री कारक === |
Revision as of 17:03, 5 September 2022
गणित में, फ़ैक्टराइज़ेशन (या फ़ैक्टराइज़ेशन, अंग्रेजी वर्तनी अंतर देखें) या फ़ैक्टरिंग में एक संख्या या अन्य गणितीय वस्तु को कई कारकों के उत्पाद के रूप में लिखना होता है, आमतौर पर एक ही तरह की छोटी या सरल उद्देश्य है। उदाहरण के लिए, 3 × 5 का गुणनखंडन पूर्णांक 15 है, और बहुपद (x - 2)(x + 2) का गुणनखंडन x2 - 4 है।
गुणनखंडन को आमतौर पर विभाजन वाली संख्या प्रणालियों के भीतर सार्थक नहीं माना जाता है, जैसे वास्तविक या जटिल संख्याएं है, क्योंकि किसी भी को तुच्छ रूप से लिखा जा सकता है जब भी शून्य नहीं है। हालांकि, एक परिमेय संख्या या एक परिमेय फलन के लिए एक सार्थक गुणनखंडन को सबसे कम शब्दों में लिखकर और उसके अंश और हर को अलग-अलग करके प्राप्त किया जा सकता है।
प्राचीन यूनानी गणितज्ञों ने सबसे पहले पूर्णांकों के मामले में गुणनखंडन पर विचार किया था। उन्होंने अंकगणित के मूलभूत प्रमेय को सिद्ध किया, जो यह दावा करता है कि प्रत्येक सकारात्मक पूर्णांक को अभाज्य संख्याओं के गुणनफल में विभाजित किया जा सकता है, जिसे आगे 1 से अधिक पूर्णांकों में विभाजित नहीं किया जा सकता है।इसके अलावा, यह गुणनखंड कारकों के क्रम तक अद्वितीय है। हालांकि पूर्णांक गुणनखंड गुणन का एक प्रकार है, यह एल्गोरिथम की दृष्टि से कहीं अधिक कठिन है, एक तथ्य है जिसका सार्वजनिक-कुंजी बीज-लेखन को लागू करने के लिए RSA क्रिप्टोसिस्टम में उपयोग किया जाता है।
सदियों से बहुपद गुणनखंड का भी अध्ययन किया गया है। प्रारंभिक बीजगणित में, बहुपद का गुणनखंड करने से इसकी जड़ों को खोजने की समस्या को कारकों की जड़ों को खोजने की समस्या कम हो जाती है। पूर्णांकों में या किसी क्षेत्र में गुणांक वाले बहुपदों में अद्वितीय गुणनखंडन गुण होते हैं, जो अभाज्य संख्याओं के साथ अंकगणित के मौलिक प्रमेय का एक संस्करण है जिसे अखंडनीय बहुपद द्वारा प्रतिस्थापित किया जाता है। विशेष रूप से, जटिल गुणांक वाला एक अविभाज्य बहुपद रैखिक बहुपदों में एक अद्वितीय (आदेश देने तक) गुणनखंड को स्वीकार करता है: यह बीजगणित के मौलिक प्रमेय का एक संस्करण है। इस मामले में, कारककरण मूल निकालने की विधि के साथ किया जा सकता है। पूर्णांक गुणांक के साथ बहुपद का मामला कंप्यूटर बीजगणित के लिए मौलिक है। तर्कसंगत संख्या गुणांक के साथ बहुपद की अंगूठी के भीतर कंप्यूटिंग (पूर्ण) कारक के लिए कुशल कंप्यूटर एल्गोरिदम हैं (बहुपदों का कारक देखें)।
अद्वितीय कारक संपत्ति वाले एक कम्यूटेटिव रिंग को एक अद्वितीय कारककरण डोमेन कहा जाता है। संख्या प्रणालियाँ हैं, जैसे कि बीजगणितीय पूर्णांक के कुछ छल्ले, जो अद्वितीय कारक नहीं हैं। हालांकि, बीजगणितीय पूर्णांक के छल्ले डेडेकिंड डोमेन की कमजोर संपत्ति को आदर्श कारक विशिष्ट आदर्शों में विशिष्ट रूप से संतुष्ट करते हैं।
गुणनखंडन एक गणितीय वस्तु के अधिक सामान्य अपघटन को छोटी या सरल वस्तुओं के उत्पाद में भी संदर्भित कर सकता है। उदाहरण के लिए, प्रत्येक फलन को इंजेक्शन फलन के साथ एक विशेषण फलन की संरचना में शामिल किया जा सकता है। मैट्रिक्स में कई प्रकार के मैट्रिक्स कारक होते हैं। उदाहरण के लिए, प्रत्येक मैट्रिक्स में एक निचले त्रिकोणीय मैट्रिक्स L के उत्पाद के रूप में एक अद्वितीय LUP गुणनखंडन होता है, जिसमें सभी विकर्ण प्रविष्टियाँ एक के बराबर होती हैं, एक ऊपरी त्रिकोणीय मैट्रिक्स U, और एक क्रमपरिवर्तन मैट्रिक्स प, यह गाऊसी उन्मूलन का एक मैट्रिक्स सूत्रीकरण है।
पूर्णांक
अंकगणित के मौलिक प्रमेय के अनुसार, 1 से अधिक के प्रत्येक पूर्णांक में अभाज्य संख्याओं में अद्वितीय (कारकों के क्रम तक) गुणनखंड होता है, जो वे पूर्णांक होते हैं जिन्हें एक से अधिक पूर्णांकों के गुणनफल में और अधिक गुणनखंडित नहीं किया जा सकता है।
पूर्णांक n के गुणनखंडन की गणना के लिए, किसी को n के भाजक q को खोजने या यह तय करने के लिए एक एल्गोरिथ्म की आवश्यकता होती है कि n अभाज्य है। जब ऐसा भाजक पाया जाता है, तो q और n / q के कारकों के लिए इस एल्गोरिथ्म का बार-बार आवेदन अंततः n का पूर्ण गुणनखंडन देता है।.[1]
n का भाजक q ज्ञात करने के लिए, यदि कोई हो, तो q के सभी मानों का इस प्रकार परीक्षण करना पर्याप्त है कि 1 < q तथा q2 ≤ n। वास्तव में, अगर r का भाजक है n तो r2 > n, फिर q = n / r का भाजक है n तो q2 ≤ n।
यदि कोई q के मानों को बढ़ते क्रम में परीक्षण करता है, तो पाया जाने वाला पहला भाजक अनिवार्य रूप से एक अभाज्य संख्या है, और सहकारक r = n / q मेंसे छोटा कोई भाजक नहीं हो सकता है। पूर्ण गुणनखंडन प्राप्त करने के लिए, इस प्रकार r के भाजक की खोज करके एल्गोरिथ्म को जारी रखना पर्याप्त है जो q से छोटा नहीं है और√r से बड़ा नहीं है।
विधि को लागू करने के लिए q के सभी मानों का परीक्षण करने की कोई आवश्यकता नहीं है। सिद्धांत रूप में, यह केवल अभाज्य भाजक का परीक्षण करने के लिए पर्याप्त है। इसके लिए अभाज्य संख्याओं की एक तालिका होनी चाहिए जो उदाहरण के लिए एराटोस्थनीज की चलनी के साथ उत्पन्न हो सकती है। चूंकि गुणनखंडन की विधि अनिवार्य रूप से एराटोस्थनीज की छलनी के समान काम करती है, इसलिए आमतौर पर केवल उन संख्याओं के भाजक के लिए परीक्षण करना अधिक कुशल होता है जिनके लिए यह तुरंत स्पष्ट नहीं होता है कि वे अभाज्य हैं या नहीं है। आमतौर पर, कोई 2, 3, 5, और संख्या >5 का परीक्षण करके आगे बढ़ सकता है, जिसका अंतिम अंक 1, 3, 7, 9 है और अंकों का योग 3 का गुणज नहीं है।
यह विधि छोटे पूर्णांकों के गुणनखंड के लिए अच्छी तरह से काम करती है, लेकिन बड़े पूर्णांकों के लिए अक्षम है। उदाहरण के लिए, पियरे डी फ़र्मेट यह पता लगाने में असमर्थ था कि 6 वीं फ़र्मेट नंबर
एक प्रमुख संख्या नहीं है।वास्तव में, उपरोक्त विधि को लागू करने के लिए अधिक से अधिक की आवश्यकता होगी10000 divisions, एक संख्या के लिए जिसमें 10 & nbsp; दशमलव अंक हैं।
अधिक कुशल फैक्टरिंग एल्गोरिदम हैं। हालाँकि, वे अपेक्षाकृत अक्षम रहते हैं, क्योंकि, कला की वर्तमान स्थिति के साथ, कोई भी अधिक शक्तिशाली कंप्यूटरों के साथ, 500 दशमलव अंकों की संख्या का गुणनखंड नहीं कर सकता है, जो कि दो यादृच्छिक रूप से चुनी गई अभाज्य संख्याओं का उत्पाद है। यह RSA क्रिप्टोसिस्टम की सुरक्षा सुनिश्चित करता है, जिसका व्यापक रूप से सुरक्षित इंटरनेट संचार के लिए उपयोग किया जाता है।
उदाहरण
फैक्टरिंग के लिए n = 1386 प्राइम्स में:
- 2 से विभाजन से शुरू करें: संख्या सम है, और n = 2 · 693। 693 और 2 को पहले भाजक उम्मीदवार के रूप में जारी रखें।
- 693 विषम है (2 एक विभाजक नहीं है), लेकिन 3 में से एक है: एक है 693 = 3 · 231 तथा n = 2 · 3 · 231। 231, और 3 के साथ पहले भाजक के उम्मीदवार के रूप में जारी रखें।
- 231 भी 3 का गुणज है: एक में 231 = 3 · 77, और इस प्रकार n = 2 · 32 · 77 है। 77 के साथ जारी रखें, और 3 पहले भाजक उम्मीदवार के रूप में।
- 77 का गुणज 3 नहीं है, क्योंकि इसके अंकों का योग 14 है, 3 का गुणज नहीं है। यह 5 का गुण ज भी नहीं है क्योंकि इसका अंतिम अंक 7 है। परीक्षण किया जाने वाला अगला विषम भाजक 7 है। 77 = 7 · 11, और इस प्रकार n = 2 · 32 · 7 · 11. इससे पता चलता है कि 7 अभाज्य है (सीधे परीक्षण करने में आसान)। पहले भाजक उम्मीदवार के रूप में 11, और 7 के साथ जारी रखें।
- 72 > 11 के रूप में, समाप्त हो गया है। इस प्रकार 11 अभाज्य है, और अभाज्य गुणनखंड है
- 1386 = 2 · 32 · 7 · 11।
व्यंजक
व्यंजक में हेर-फेर करना बीजगणित का आधार है। कई कारणों से अभिव्यक्ति हेरफेर के लिए गुणनखण्ड सबसे महत्वपूर्ण तरीकों में से एक है। यदि कोई समीकरण को गुणनखंडित रूप E⋅F = 0, में रख सकता है, तो समीकरण को हल करने की समस्या दो स्वतंत्र (और आम तौर पर आसान) समस्याओं E = 0 तथा F = 0 में विभाजित हो जाती है। जब किसी व्यंजक को गुणनखंडित किया जा सकता है, तो कारक अक्सर बहुत सरल होते हैं, और इस प्रकार समस्या पर कुछ अंतर्दृष्टि प्रदान कर सकते हैं। उदाहरण के लिए,
16 गुणन, 4 घटाव और 3 परिवर्धन, बहुत सरल अभिव्यक्ति में फैक्टर किया जा सकता है
- केवल दो गुणा और तीन घटाव के साथ होता है। इसके अलावा, गुणनखंडित रूप तुरंत x = a, b, c को बहुपद के मूल के रूप में देता है।
दूसरी ओर, गुणनखंडन हमेशा संभव नहीं होता है, और जब यह संभव होता है, तो कारक हमेशा सरल नहीं होते हैं। उदाहरण के लिए, को दो अपरिवर्तनीय कारकों में विभाजित किया जा सकता है तथा।
गुणनखंडों को खोजने के लिए विभिन्न विधियों का विकास किया गया है, कुछ नीचे वर्णित हैं।
बीजीय समीकरणों को हल करना बहुपद गुणनखंडन की समस्या के रूप में देखा जा सकता है। वास्तव में, बीजगणित के मूल प्रमेय को इस प्रकार बताया जा सकता है: जटिल गुणांक वाले डिग्री n के x में प्रत्येक बहुपद को n रैखिक कारकों में विभाजित किया जा सकता है के लिये i = 1, ..., n, जहां ais बहुपद की जड़ें हैं।[2] भले ही इन मामलों में गुणनखंडन की संरचना ज्ञात हो, ais की गणना आम तौर पर एबेल-रफिनी प्रमेय द्वारा रेडिकल्स (nthरूट्स) के रूप में नहीं की जा सकती है। ज्यादातर मामलों में, सबसे अच्छा जो किया जा सकता है वह है रूट-फाइंडिंग एल्गोरिथम के साथ जड़ों के अनुमानित मूल्यों की गणना है।
व्यंजक के गुणनखंड का इतिहास
अभिव्यक्तियों को सरल बनाने के लिए बीजगणितीय जोड़तोड़ का व्यवस्थित उपयोग (अधिक विशेष रूप से समीकरण)) अल-ख्वारिज्मी की पुस्तक द कम्पेंडिअस बुक ऑन कैलकुलेशन बाय कंप्लीशन एंड बैलेंसिंग के साथ 9वीं शताब्दी तक की जा सकती है, जिसका शीर्षक दो प्रकार के हेरफेर के साथ है।
हालांकि, द्विघात समीकरणों को हल करने के लिए भी, उनकी मृत्यु के दस साल बाद, 1631 में प्रकाशित हैरियट के काम से पहले फैक्टरिंग पद्धति का उपयोग नहीं किया गया था।[3] अपनी पुस्तक आर्टिस एनालिटिका प्रैक्सिस एड एसेक्यूज एज़ेब्रेकास रिजेल्डस, हैरियट ड्रू, टेबल्स फॉर एडिशन, सबटेक्शन, मल्टीप्लेशन और डिवीजन ऑफ मोनोमिअल, बिनोमियल और ट्रिनोमियल। फिर, एक दूसरे खंड में, उन्होंने समीकरण aa − ba + ca = + bc, स्थापित किया, और दिखाया कि यह गुणन(a − b)(a + c) देते हुए, उनके द्वारा पहले प्रदान किए गए गुणन के रूप से मेल खाता है।.[4]
सामान्य तरीके
निम्नलिखित विधियाँ किसी भी व्यंजक पर लागू होती हैं जो एक योग है, या जिसे योग में परिवर्तित किया जा सकता है। इसलिए, वे अक्सर बहुपदों पर लागू होते हैं, हालांकि उन्हें तब भी लागू किया जा सकता है जब योग की शर्तें एकपदी नहीं होती हैं, यानी योग की शर्तें चर और स्थिरांक का उत्पाद होती हैं।
समापवर्तक
ऐसा हो सकता है कि किसी योग के सभी पद उत्पाद हों और कुछ कारक सभी पदों के लिए समान हों। इस मामले में, वितरण कानून इस समापवर्तक को अलग करने की अनुमति देता है। यदि ऐसे कई समापवर्तक हैं, तो ऐसे सबसे बड़े समापवर्तक को विभाजित करना बेहतर होता है। इसके अलावा, यदि पूर्णांक गुणांक हैं, तो कोई इन गुणांकों के सबसे बड़े सामान्य भाजक को निकाल सकता है।
उदाहरण के लिए,[5]
चूंकि 2 6, 8, और 10 का सबसे बड़ा सामान्य भाजक है, और सभी शर्तों को विभाजित करता है।
समूहन
समूहीकरण शब्द एक कारक प्राप्त करने के लिए अन्य तरीकों का उपयोग करने की अनुमति दे सकते हैं।
उदाहरण के लिए, कारक के लिए
कोई टिप्पणी कर सकता है कि पहले दो पदों में एक उभयनिष्ठ गुणनखंड x, है, और अंतिम दो पदों में उभयनिष्ठ गुणनखंड y है। इस प्रकार
फिर एक साधारण निरीक्षण समापवर्तक x + 5 दिखाता है, जिससे गुणनखंड हो जाता है
सामान्य तौर पर, यह 4 पदों के योग के लिए कार्य करता है जो दो द्विपदों के गुणनफल के रूप में प्राप्त हुए हैं। हालांकि अक्सर नहीं, यह अधिक जटिल उदाहरणों के लिए भी काम कर सकता है।
जोड़ना और घटाना शर्तें
कभी-कभी, कुछ शब्द समूहन एक पहचानने योग्य पैटर्न के हिस्से को प्रकट करता है। फिर पैटर्न को पूरा करने के लिए शब्दों को जोड़ना और घटाना उपयोगी होता है।
इसका एक विशिष्ट उपयोग द्विघात सूत्र प्राप्त करने के लिए वर्ग विधि को पूरा करना है।
अन्य उदाहरण का गुणनखंडन है। यदि कोई -1 के अवास्तविक वर्गमूल का परिचय देता है, जिसे आमतौर पर i कहा जाता है, तो उसके पास वर्गों का अंतर होता है
हालाँकि, कोई वास्तविक संख्या गुणांक के साथ एक गुणनखंड भी चाहता है। को जोड़कर और घटाकर और तीन शब्दों को एक साथ समूहीकृत करके, कोई व्यक्ति द्विपद के वर्ग को पहचान सकता है
को घटाने और जोड़ने से भी गुणनखंड प्राप्त होता है:
ये गुणनखंडन केवल सम्मिश्र संख्याओं पर ही नहीं, बल्कि किसी भी क्षेत्र पर भी कार्य करते हैं, जहाँ या तो-1, 2 या -2 एक वर्ग है। एक परिमित क्षेत्र में, दो गैर-वर्गों का गुणनफल एक वर्ग होता है; इसका तात्पर्य यह है कि बहुपद जो पूर्णांकों के ऊपर इरेड्यूसेबल है, प्रत्येक अभाज्य संख्या में रिड्यूसेबल मॉड्यूलो है। उदाहरण के लिए,
- जबसे
- जबसे
- जबसे
पहचानने योग्य पैटर्न
कई सर्वसमिकाएँ योग और उत्पाद के बीच समानता प्रदान करती हैं। उपरोक्त विधियों का उपयोग किसी पहचान के योग पक्ष को एक अभिव्यक्ति में प्रकट होने देने के लिए किया जा सकता है, जिसे एक उत्पाद द्वारा प्रतिस्थापित किया जा सकता है।
नीचे वे पहचानें दी गई हैं जिनके बाएं हाथ के पक्षों को आमतौर पर पैटर्न के रूप में उपयोग किया जाता है (इसका मतलब है कि इन पहचानों में दिखाई देने वाले चर ई और एफ अभिव्यक्ति के किसी भी उप-अभिव्यक्ति का प्रतिनिधित्व कर सकते हैं जिसे गुणनखंडित किया जाना है)।[6]
- दो वर्गों का अंतर
- उदाहरण के लिए,
- दो घनों का योग/अंत
- दो चौथी घात का अंतर
- दो nवें घात का योग/अंतर
- निम्नलिखित पहचानों में, कारकों को अक्सर आगे बढ़ाया जा सकता है:
- अंतर, यहां तक कि घातांक
- अंतर, यहां तक कि या विषम प्रतिपादक
- यह एक उदाहरण है जो यह दिखाता है कि कारक उस राशि से बहुत बड़े हो सकते हैं जो कारक किया गया है।
- संक्षेप, विषम प्रतिपादक
- (पूर्ववर्ती सूत्र में F को –F से बदलकर प्राप्त किया गया)
- संक्षेप, यहां तक कि घातांक
- यदि घातांक दो की घात है तो व्यंजक को, सामान्य रूप से, सम्मिश्र संख्याओं को प्रस्तुत किए बिना गुणनखंडित नहीं किया जा सकता है (यदि E और F में सम्मिश्र संख्याएँ हैं, तो यह मामला नहीं हो सकता है)। यदि n में एक विषम भाजक है, अर्थात यदि n = pq साथ p विषम, पर लागू पूर्ववर्ती सूत्र ("योग, विषम घातांक" में) का उपयोग कर सकता है
- त्रिपद और घन सूत्र
- द्विपद विस्तार द्विपद प्रमेय उन पैटर्नों की आपूर्ति करता है जिन्हें आसानी से उन पूर्णांकों से पहचाना जा सकता है जो उनमें दिखाई देते हैं
- कम डिग्री में:
- अधिक सामान्यतः, तथा के विस्तारित रूपों के गुणांक द्विपद गुणांक हैं, जो प्रकट होते हैं पास्कल त्रिभुज की nवीं पंक्ति में है।
इकाई के मूल
ईकाई के nवें मूल सम्मिश्र संख्याएँ जिनमें से प्रत्येक बहुपद का मूल है। वे इस प्रकार संख्याएं हैं
के लिये
यह इस प्रकार है कि किसी भी दो अभिव्यक्तियों के लिए E तथा F, किसी के पास:
यदि E और F वास्तविक व्यंजक हैं, और कोई वास्तविक गुणनखंड चाहता है, तो जटिल संयुग्मी गुणनखंडों के प्रत्येक युग्म को उसके गुणनफल से बदलना होगा। है के जटिल संयुग्म के रूप में तथा
एक में निम्नलिखित वास्तविक गुणनखंड होते हैं (एक k को n - k या n 1 - k में बदलकर और सामान्य त्रिकोणमितीय सूत्रों को लागू करके एक से दूसरे में जाता है:
इन गुणनखंडों में दिखाई देने वाली कोसाइन (cosines ) बीजगणितीय संख्याएँ हैं, और इन्हें मूलांक के रूप में व्यक्त किया जा सकता है (यह संभव है क्योंकि उनका गैलोइस समूह चक्रीय है), हालाँकि, n के निम्न मानों को छोड़कर, ये मूल अभिव्यक्तियाँ उपयोग करने के लिए बहुत जटिल हैं। उदाहरण के लिए,
अक्सर कोई तर्कसंगत गुणांक के साथ एक गुणनखंड चाहता है। इस तरह के एक कारक में साइक्लोटोमिक बहुपद शामिल हैं। योगों और अंतरों या घातों के तर्कसंगत गुणनखंडों को व्यक्त करने के लिए, हमें एक बहुपद के समरूपीकरण के लिए एक संकेतन की आवश्यकता होती है: यदि इसका समरूपीकरण द्विचर है बहुपद फिर, एक है
जहां उत्पादों को n के सभी भाजक पर ले लिया जाता है, या 2n के सभी भाजक जो n को विभाजित नहीं करते हैं, और ) nth साइक्लोटॉमिक बहुपद है।
उदाहरण के लिए,
चूंकि 6 के विभाजक 1, 2, 3, 6 हैं, और 12 के विभाजक जो 6 को विभाजित नहीं करते हैं, वे 4 और 12 हैं।
बहुपद
बहुपदों के लिए, गुणनखंडन का बीजीय समीकरणों को हल करने की समस्या से गहरा संबंध है। एक बीजीय समीकरण का रूप होता है
जहाँ P(x) में एक बहुपद है x साथइस समीकरण का एक हल (जिसे बहुपद का मूल भी कहा जाता है) है x का मान r ऐसा है कि
अगर दो के गुणनफल के रूप में P(x) = 0 का गुणनखंडन है बहुपद, तो P(x) की मूल Q(x)की मूल और R(x) की मूल का मिलन हैं। इस प्रकार P(x) = 0 को हल करना Q(x) = 0 तथा R(x) = 0 को हल करने की सरल समस्याओं में कम हो जाता है।
इसके विपरीत, गुणनखंड प्रमेय यह दावा करता है कि, यदि r, P(x) = 0, का मूल है, तो फिर P(x) का गुणनखंड इस प्रकार किया जा सकता है
जहां Q(x) रैखिक (डिग्री एक) कारकx – r द्वारा P(x) = 0 के यूक्लिडियन विभाजन का भागफल है।
यदि P(x)के गुणांक वास्तविक या सम्मिश्र संख्याएँ हैं, तो बीजगणित का मूल प्रमेय दावा करता है कि P(x) का एक वास्तविक या सम्मिश्र मूल है। गुणनखंड प्रमेय का पुनरावर्ती रूप से प्रयोग करने पर यह परिणाम मिलता है कि
जहां P P के वास्तविक या जटिल मूल हैं, जिनमें से कुछ को संभवतः दोहराया जा सकता है। यह पूर्ण गुणनखंडन कारकों के क्रम तक अद्वितीय है।
यदि P(x) के गुणांक वास्तविक हैं, तो आम तौर पर एक ऐसा गुणनखंडन चाहता है जहां कारकों के वास्तविक गुणांक हों। इस मामले में, पूर्ण गुणनखंड में कुछ द्विघात (डिग्री दो) कारक हो सकते हैं। ह गुणनखंड उपरोक्त पूर्ण गुणनखंड से आसानी से निकाला जा सकता है। वास्तव में, यदि r = a + ib, P(x) का अवास्तविक मूल है, तो इसका सम्मिश्र संयुग्म s = a - ib भी P(x) का मूल है। तो, उत्पाद
वास्तविक गुणांकों के साथ P(x) का एक गुणनखंड है। सभी अवास्तविक कारकों के लिए इसे दोहराने से रैखिक या द्विघात वास्तविक कारकों के साथ एक गुणनखंड मिलता है।
इन वास्तविक या जटिल गुणनखंडों की गणना के लिए, किसी को बहुपद की जड़ों की आवश्यकता होती है, जिसकी गणना ठीक से नहीं की जा सकती है, और केवल रूट-फाइंडिंग एल्गोरिदम का उपयोग करके अनुमानित किया जाता है।
व्यवहार में, ब्याज के अधिकांश बीजीय समीकरणों में पूर्णांक या परिमेय गुणांक होते हैं, और एक ही प्रकार के कारकों के साथ एक गुणनखंडन चाहता है। अंकगणित के मौलिक प्रमेय को इस मामले में सामान्यीकृत किया जा सकता है, जिसमें कहा गया है कि पूर्णांक या तर्कसंगत गुणांक वाले बहुपदों में अद्वितीय गुणन गुण होते हैं। अधिक सटीक रूप से, तर्कसंगत गुणांक वाले प्रत्येक बहुपद को उत्पाद में गुणनखंडित किया जा सकता है
जहाँ q एक परिमेय संख्या है और पूर्णांक गुणांक वाले गैर-स्थिर बहुपद हैं जो इरेड्यूसेबल और आदिम हैं, इसका मतलब यह है कि में से कोई भी उत्पाद दो बहुपद (पूर्णांक गुणांक वाले) के रूप में नहीं लिखा जा सकता है जो न तो 1 है और न ही -1 (पूर्णांकों को बहुपद माना जाता है) शून्य डिग्री)। इसके अलावा, यह गुणनखंड कारकों के क्रम और कारकों के संकेतों तक अद्वितीय है।
इस गुणनखंड की गणना के लिए कुशल एल्गोरिदम हैं, जिन्हें अधिकांश कंप्यूटर बीजगणित प्रणालियों में लागू किया जाता है। बहुपदों का गुणनखंडन देखें। दुर्भाग्य से, ये एल्गोरिदम कागज और पेंसिल गणना के लिए उपयोग करने के लिए बहुत जटिल हैं। उपरोक्त अनुमानों के अलावा, केवल कुछ विधियां हाथ की गणना के लिए उपयुक्त हैं, जो आम तौर पर केवल कम डिग्री के बहुपदों के लिए काम करती हैं, कुछ गैर-शून्य गुणांक के साथ। इस तरह की मुख्य विधियों का वर्णन अगले उपखंडों में किया गया है।
आदिम-भाग और सामग्री कारक
तर्कसंगत गुणांक के साथ प्रत्येक बहुपद, एक अद्वितीय तरीके से, एक तर्कसंगत संख्या के उत्पाद के रूप में, एक अनोखे तरीके से और पूर्णांक गुणांक के साथ एक बहुपद के रूप में, जो आदिम है (यानी, गुणांक का सबसे बड़ा सामान्य विभाजक 1 है), और एक हैसकारात्मक अग्रणी गुणांक (उच्चतम डिग्री के शब्द का गुणांक)।उदाहरण के लिए:
इस कारक में, तर्कसंगत संख्या को सामग्री कहा जाता है, और आदिम बहुपद आदिम भाग है।इस कारक की गणना निम्नानुसार की जा सकती है: सबसे पहले, एक पूर्णांक द्वारा भागफल प्राप्त करने के लिए, एक सामान्य भाजक के लिए सभी गुणांक को कम करेंq पूर्णांक गुणांक के साथ एक बहुपद।फिर एक अधिक से अधिक सामान्य विभाजक को विभाजित करता हैp आदिम भाग प्राप्त करने के लिए इस बहुपद के गुणांक, सामग्री है अंत में, यदि आवश्यक हो, तो कोई संकेत बदल देता हैp और आदिम भाग के सभी गुणांक।
यह कारक एक परिणाम उत्पन्न कर सकता है जो मूल बहुपद की तुलना में बड़ा है (आमतौर पर जब कई कोपरीम भाजक होते हैं), लेकिन, यहां तक कि जब यह मामला होता है, तो आदिम हिस्सा आम तौर पर आगे के कारक के लिए हेरफेर करना आसान होता है।
कारक प्रमेय का उपयोग करना
कारक प्रमेय कहता है कि, अगरr एक बहुपद की जड़ है
अर्थP(r) = 0, फिर एक कारक है
कहाँ पे
साथ।तब बहुपद लॉन्ग डिवीजन या सिंथेटिक डिवीजन देते हैं:
यह उपयोगी हो सकता है जब कोई जानता है या बहुपद की जड़ का अनुमान लगा सकता है।
उदाहरण के लिए, के लिए कोई आसानी से देख सकता है कि इसके गुणांक का योग 0 है, इसलिएr = 1 एक जड़ है।जैसाr + 0 = 1, तथा किसी के पास
तर्कसंगत जड़ें
तर्कसंगत संख्या गुणांक के साथ बहुपद के लिए, कोई भी जड़ों की खोज कर सकता है जो तर्कसंगत संख्याएं हैं।आदिम पार्ट-कंटेंट फैक्टरकरण (देखें #Primitive पार्ट-कंटेंट फैक्टराइजेशन | ऊपर) पूर्णांक गुणांक वाले बहुपद के मामले में तर्कसंगत जड़ों की खोज की समस्या को कम करता है, जिसमें कोई गैर-तुच्छ सामान्य विभाजक नहीं है।
यदि इस तरह के एक बहुपद का तर्कसंगत जड़ है
कारक प्रमेय से पता चलता है कि एक का कारक है
जहां दोनों कारकों में पूर्णांक गुणांक होते हैं (तथ्य यह है किQ के भागफल के लिए उपरोक्त सूत्र से पूर्णांक गुणांक परिणाम हैंP(x) द्वारा)।
डिग्री के गुणांक की तुलना करनाn और उपरोक्त समानता में निरंतर गुणांक दिखाता है कि, अगर कम रूप में एक तर्कसंगत जड़ है, फिरq का भाजक है तथाp का भाजक है इसलिए, संभावनाओं की एक सीमित संख्या हैp तथाq, जिसे व्यवस्थित रूप से जांच की जा सकती है।[7] उदाहरण के लिए, यदि बहुपद
एक तर्कसंगत जड़ है साथq > 0, फिरp 6 को विभाजित करना चाहिए;वह है तथाq 2 को विभाजित करना चाहिए, वह है इसके अलावा, अगरx < 0, बहुपद के सभी शब्द नकारात्मक हैं, और इसलिए, एक जड़ नकारात्मक नहीं हो सकती है।वह है, एक होना चाहिए
एक प्रत्यक्ष संगणना से पता चलता है कि केवल एक जड़ है, इसलिए कोई अन्य तर्कसंगत जड़ नहीं हो सकती है।कारक प्रमेय को लागू करने से अंत में कारक की ओर जाता है
द्विघात एसी विधि =
उपरोक्त विधि को द्विघात बहुपद के लिए अनुकूलित किया जा सकता है, जिससे कारक की एसी विधि होती है।[8] द्विघात बहुपद पर विचार करें
पूर्णांक गुणांक के साथ।यदि इसकी एक तर्कसंगत जड़ है, तो इसके भाजक को विभाजित करना होगाa समान रूप से और इसे संभवतः एक रिड्यूसिबल अंश के रूप में लिखा जा सकता है विएता के सूत्रों द्वारा, दूसरी जड़ है
साथ इस प्रकार दूसरी जड़ भी तर्कसंगत है, और विएता का दूसरा सूत्र है देता है
वह है
पूर्णांक के सभी जोड़े की जाँच करना जिसका उत्पाद हैac यदि कोई हो तो तर्कसंगत जड़ें देता है।
सारांश में, अगर तर्कसंगत जड़ें हैं पूर्णांक हैंr तथाs ऐसा तथा (परीक्षण करने के लिए मामलों की एक परिमित संख्या), और जड़ें हैं तथा दूसरे शब्दों में, एक का कारक है
उदाहरण के लिए, द्विघात बहुपद पर विचार करें
के कारकों का निरीक्षणac = 36 फलस्वरूप होता है4 + 9 = 13 = b, दो जड़ें दे रहे हैं
और कारक
बहुपद जड़ों के लिए सूत्रों का उपयोग करना
कोई भी अविभाज्य द्विघात बहुपद द्विघात सूत्र का उपयोग करके फैक्टर किया जा सकता है:
कहाँ पे तथा बहुपद की दो जड़ें हैं।
यदिa, b, c सभी वास्तविक हैं, कारक वास्तविक हैं यदि और केवल अगर भेदभावपूर्ण हैं गैर-नकारात्मक है।अन्यथा, द्विघात बहुपद को गैर-स्थिर वास्तविक कारकों में कारक नहीं किया जा सकता है।
द्विघात सूत्र तब मान्य होता है जब गुणांक दो से अलग विशेषता के किसी भी क्षेत्र से संबंधित होते हैं, और, विशेष रूप से, एक विषम संख्या के तत्वों के साथ एक परिमित क्षेत्र में गुणांक के लिए।[9] क्यूबिक और क्वार्टिक बहुपद की जड़ों के लिए भी सूत्र हैं, जो सामान्य रूप से, व्यावहारिक उपयोग के लिए बहुत जटिल हैं।एबेल -रफ़िनी प्रमेय से पता चलता है कि डिग्री पांच या उच्चतर के बहुपद के लिए कट्टरपंथी के संदर्भ में कोई सामान्य रूट सूत्र नहीं हैं।
जड़ों के बीच संबंधों का उपयोग करना
यह हो सकता है कि कोई एक बहुपद और उसके गुणांक की जड़ों के बीच कुछ संबंध जानता है।इस ज्ञान का उपयोग करने से बहुपद को फैक्टर करने और इसकी जड़ों को खोजने में मदद मिल सकती है।गैलोइस सिद्धांत जड़ों और गुणांक के बीच संबंधों के एक व्यवस्थित अध्ययन पर आधारित है, जिसमें विएता के सूत्र शामिल हैं।
यहां, हम सरल मामले पर विचार करते हैं जहां दो जड़ें हैं तथा एक बहुपद का संबंध को संतुष्ट करें
कहाँ पेQ एक बहुपद है।
यह बताता है कि की एक सामान्य जड़ है तथा इसलिए यह इन दो बहुपदों के सबसे बड़े आम भाजक की जड़ है।यह निम्नानुसार है कि यह सबसे बड़ा सामान्य विभाजक एक गैर -निरंतर कारक है बहुपद के लिए यूक्लिडियन एल्गोरिथ्म इस सबसे बड़े समापवर्तक की गणना करने की अनुमति देता है।
उदाहरण के लिए,[10] यदि कोई जानता है या अनुमान लगाता है कि: दो जड़ें हैं जो शून्य पर हैं, एक यूक्लिडियन एल्गोरिथ्म को लागू कर सकता है तथा पहला डिवीजन स्टेप जोड़ने में होता है प्रति शेष को दे रहा है
फिर, विभाजित करना द्वारा एक नए शेष के रूप में शून्य देता है, औरx – 5 एक भागफल के रूप में, पूर्ण कारक के लिए अग्रणी
अद्वितीय गुणनखंड डोमेन
एक क्षेत्र में पूर्णांक और बहुपद अद्वितीय गुणनखंड की संपत्ति को साझा करते हैं, अर्थात, प्रत्येक गैर-शून्य तत्व को एक व्युत्क्रम तत्व (एक इकाई, पूर्णांक के मामले में ± 1) के उत्पाद और इरेड्यूसबल तत्वों के उत्पाद में विभाजित किया जा सकता है ( अभाज्य संख्याएँ, पूर्णांकों के मामले में), और यह गुणनखंड गुणनखंडों को पुनर्व्यवस्थित करने और इकाइयों को कारकों के बीच स्थानांतरित करने तक अद्वितीय है। इंटीग्रल डोमेन जो इस संपत्ति को साझा करते हैं उन्हें यूनिक गुणनखंड डोमेन (UFD) कहा जाता है।
UFDs में महत्तम समापवर्तक मौजूद होते हैं, और इसके विपरीत, प्रत्येक अभिन्न डोमेन जिसमें महत्तम समापवर्तक मौजूद होता है, एक UFD होता है। प्रत्येक प्रमुख आदर्श डोमेन एक UFD होता है।
यूक्लिडियन डोमेन एक अभिन्न डोमेन है जिस पर पूर्णांक के समान एक यूक्लिडियन विभाजन परिभाषित किया गया है। प्रत्येक यूक्लिडियन डोमेन एक प्रमुख आदर्श डोमेन है, और इस प्रकार एक UFD है।
यूक्लिडियन डोमेन में, यूक्लिडियन डिवीजन महत्तम समापवर्तक की गणना के लिए एक यूक्लिडियन एल्गोरिथ्म को परिभाषित करने की अनुमति देता है। हालांकि यह एक गुणनखंड एल्गोरिथ्म के अस्तित्व को नहीं दर्शाता है। फ़ील्ड F का एक स्पष्ट उदाहरण है कि F के ऊपर यूक्लिडियन डोमेन F[x] में यूक्लिडियन डोमेन F[x] में कोई फ़ैक्टराइज़ेशन एल्गोरिथम मौजूद नहीं हो सकता है।
आदर्श
बीजगणितीय संख्या सिद्धांत में, डायोफैंटाइन समीकरणों के अध्ययन ने 19वीं शताब्दी के दौरान, बीजगणितीय पूर्णांक नामक पूर्णांकों के सामान्यीकरण को प्रस्तुत करने के लिए गणितज्ञों का नेतृत्व किया था। बीजगणितीय पूर्णांकों की पहली अंगूठी जिसे माना गया है, वे गॉसियन पूर्णांक और ईसेनस्टीन पूर्णांक थे, जो सामान्य पूर्णांकों के साथ प्रमुख आदर्श डोमेन होने की संपत्ति साझा करते हैं, और इस प्रकार अद्वितीय गुणन गुण होते हैं।
दुर्भाग्य से, यह जल्द ही प्रकट हुआ कि बीजीय पूर्णांकों के अधिकांश वलय मूलधन नहीं होते हैं और उनमें अद्वितीय गुणनखंडन नहीं होता है। सबसे सरल उदाहरण है जिसमें
और ये सभी कारक अपूरणीय हैं।
अद्वितीय गुणनखंडन की यह कमी डायोफैंटाइन समीकरणों को हल करने के लिए एक बड़ी कठिनाई है। उदाहरण के लिए, फ़र्मेट के अंतिम प्रमेय के कई गलत प्रमाण (शायद फ़र्मेट के "इसका वास्तव में अद्भुत प्रमाण, जिसमें यह मार्जिन शामिल करने के लिए बहुत संकीर्ण है" सहित) अद्वितीय गुणनखंडन के निहित अनुमान पर आधारित थे।
इस कठिनाई को डेडेकिंड ने हल किया, जिन्होंने साबित किया कि बीजीय पूर्णांकों के छल्ले में आदर्शों का अद्वितीय गुणनखंड होता है: इन छल्लों में, प्रत्येक आदर्श प्रमुख आदर्शों का एक उत्पाद होता है, और यह गुणनखंड कारकों के क्रम में अद्वितीय होता है। अभिन्न डोमेन जिनके पास यह अद्वितीय गुणनखंडन गुण है, अब डेडेकाइंड डोमेन कहलाते हैं। उनके पास कई अच्छे गुण हैं जो उन्हें बीजीय संख्या सिद्धांत में मौलिक बनाते हैं।
मैट्रिसेस
आव्यूह रिंग गैर-कम्यूटेटिव हैं और इनमें कोई अद्वितीय गुणनखंड नहीं है: सामान्य तौर पर, मैट्रिक्स के उत्पाद के रूप में आव्यूह को लिखने के कई तरीके हैं। इस प्रकार, गुणनखंडन समस्या में निर्दिष्ट प्रकार के कारकों का पता लगाना शामिल है। उदाहरण के लिए, LU अपघटन आव्यूह को ऊपरी त्रिकोणीय मैट्रिक्स द्वारा निचले त्रिकोणीय आव्यूह के उत्पाद के रूप में देता है। जैसा कि यह हमेशा संभव नहीं होता है, आम तौर पर एक "LUP अपघटन" को क्रमपरिवर्तन आव्यूह वाले अपने तीसरे कारक के रूप में माना जाता है।
सबसे सामान्य प्रकार के अव्यूह गुणनखण्ड के लिए अव्यूहअपघटन देखें।
तार्किक अव्यूह एक द्विआधारी संबंध का प्रतिनिधित्व करता है, और अव्यूह गुणन संबंधों की संरचना से मेल खाता है। गुणनखंड के माध्यम से एक संबंध का अपघटन संबंध की प्रकृति को वर्णन करने के लिए कार्य करता है, जैसे कि एक अलग संबंध करता है।
यह भी देखें
- पूर्णांक के लिए यूलर का कारक विधि
- पूर्णांक के लिए Fermat का कारक विधि
- मोनोइड कारक
- गुणक विभाजन
- गौसियन पूर्णांक कारक की तालिका
टिप्पणियाँ
- ↑ Hardy; Wright (1980). An Introduction to the Theory of Numbers (5th ed.). Oxford Science Publications. ISBN 978-0198531715.
- ↑ Klein 1925, pp. 101–102
- ↑ In Sanford, Vera (2008) [1930], A Short History of Mathematics, Read Books, ISBN 9781409727101, the author notes "In view of the present emphasis given to the solution of quadratic equations by factoring, it is interesting to note that this method was not used until Harriot's work of 1631".
- ↑ Harriot, Artis Analyticae Praxis ad Aequationes Algebraicas Resolvendas
- ↑ Fite 1921, p. 19
- ↑ Selby 1970, p. 101
- ↑ Dickson 1922, p. 27
- ↑ Stover, Christopher AC Method - Mathworld Archived 2014-11-12 at the Wayback Machine
- ↑ In a field of characteristic 2, one has 2 = 0, and the formula produces a division by zero.
- ↑ Burnside & Panton 1960, p. 38
संदर्भ
- Burnside, William Snow; Panton, Arthur William (1960) [1912], The Theory of Equations with an introduction to the theory of binary algebraic forms (Volume one), Dover
- Dickson, Leonard Eugene (1922), First Course in the Theory of Equations, New York: John Wiley & Sons
- Fite, William Benjamin (1921), College Algebra (Revised), Boston: D. C. Heath & Co.
- Klein, Felix (1925), Elementary Mathematics from an Advanced Standpoint; Arithmetic, Algebra, Analysis, Dover
- Selby, Samuel M., CRC Standard Mathematical Tables (18th ed.), The Chemical Rubber Co.
बाहरी संबंध
]