निर्देशित समुच्चय: Difference between revisions

From Vigyanwiki
(Created page with "{{Short description|Mathematical ordering with upper bounds}} गणित में, एक निर्देशित सेट (या एक निर्देशित...")
 
No edit summary
Line 1: Line 1:
{{Short description|Mathematical ordering with upper bounds}}
{{Short description|Mathematical ordering with upper bounds}}
गणित में, एक निर्देशित सेट (या एक निर्देशित प्रीऑर्डर या एक फ़िल्टर्ड सेट) एक गैर-खाली [[सेट (गणित)]] है <math>A</math> एक साथ एक [[ प्रतिवर्त संबंध ]] और सकर्मक रिलेशन [[ द्विआधारी संबंध ]] के साथ <math>\,\leq\,</math> (अर्थात, एक पूर्व-आदेश), अतिरिक्त गुण के साथ कि तत्वों के प्रत्येक जोड़े की एक [[ऊपरी सीमा]] होती है।<ref>Kelley, p. 65.</ref> दूसरे शब्दों में, किसी के लिए <math>a</math> और <math>b</math> में <math>A</math> वहाँ मौजूद होना चाहिए <math>c</math> में <math>A</math> साथ <math>a \leq c</math> और <math>b \leq c.</math> एक निर्देशित सेट के प्रीऑर्डर को दिशा कहा जाता है।
गणित में, एक निर्देशित समुच्चय (या निर्देशित पूर्वक्रमी या निस्यंदित समुच्चय) एक अरिक्त [[सेट (गणित)|समुच्चय (गणित)]] <math>A</math> है एक साथ एक [[ प्रतिवर्त संबंध ]] और सकर्मक रिलेशन [[ द्विआधारी संबंध ]] के साथ <math>\,\leq\,</math> (अर्थात, एक पूर्व-आदेश), अतिरिक्त गुण के साथ कि तत्वों के प्रत्येक जोड़े की एक [[ऊपरी सीमा]] होती है।<ref>Kelley, p. 65.</ref> दूसरे शब्दों में, <math>A</math> में किसी <math>a</math> और <math>b</math> के लिए वहाँ <math>a \leq c</math> और <math>b \leq c.</math>   साथ <math>A</math> में <math>c</math> उपस्थित होना चाहिए। एक निर्देशित समुच्चय के पूर्वक्रमी को दिशा कहा जाता है।


ऊपर परिभाषित धारणा को कभी-कभी a कहा जाता है{{visible anchor|upward directed set}}. ए{{visible anchor|downward directed set}} को समान रूप से परिभाषित किया गया है,<ref>{{cite book|author=Robert S. Borden|title=उन्नत पथरी में एक कोर्स|year=1988|publisher=Courier Corporation|isbn=978-0-486-15038-3|page=20}}</ref> जिसका अर्थ है कि तत्वों की प्रत्येक जोड़ी नीचे बंधी हुई है।<ref name="Brown-Pearcy">{{cite book|author1=Arlen Brown|author2=Carl Pearcy|title=विश्लेषण का एक परिचय|url=https://archive.org/details/introductiontoan0000brow|url-access=registration|year=1995|publisher=Springer|isbn=978-1-4612-0787-0|page=[https://archive.org/details/introductiontoan0000brow/page/13 13]}}</ref> कुछ लेखक (और यह लेख) मानते हैं कि एक निर्देशित सेट ऊपर की ओर निर्देशित होता है, जब तक कि अन्यथा न कहा गया हो। अन्य लेखक एक सेट को निर्देशित कहते हैं यदि और केवल अगर यह ऊपर और नीचे दोनों ओर निर्देशित हो।<ref name="CarlHeikkilä2010">{{cite book|author1=Siegfried Carl|author2=Seppo Heikkilä|title=ऑर्डर किए गए सेट और एप्लिकेशन में फिक्स्ड पॉइंट थ्योरी: डिफरेंशियल और इंटीग्रल इक्वेशन से लेकर गेम थ्योरी तक|year=2010|publisher=Springer|isbn=978-1-4419-7585-0|pages=77}}</ref>
ऊपर परिभाषित धारणा को कभी-कभी a कहा जाता है{{visible anchor|upward directed set}}. ए{{visible anchor|downward directed set}} को समान रूप से परिभाषित किया गया है,<ref>{{cite book|author=Robert S. Borden|title=उन्नत पथरी में एक कोर्स|year=1988|publisher=Courier Corporation|isbn=978-0-486-15038-3|page=20}}</ref> जिसका अर्थ है कि तत्वों की प्रत्येक जोड़ी नीचे बंधी हुई है।<ref name="Brown-Pearcy">{{cite book|author1=Arlen Brown|author2=Carl Pearcy|title=विश्लेषण का एक परिचय|url=https://archive.org/details/introductiontoan0000brow|url-access=registration|year=1995|publisher=Springer|isbn=978-1-4612-0787-0|page=[https://archive.org/details/introductiontoan0000brow/page/13 13]}}</ref> कुछ लेखक (और यह लेख) मानते हैं कि एक निर्देशित समुच्चय ऊपर की ओर निर्देशित होता है, जब तक कि अन्यथा न कहा गया हो। अन्य लेखक एक समुच्चय को निर्देशित कहते हैं यदि और केवल अगर यह ऊपर और नीचे दोनों ओर निर्देशित हो।<ref name="CarlHeikkilä2010">{{cite book|author1=Siegfried Carl|author2=Seppo Heikkilä|title=ऑर्डर किए गए सेट और एप्लिकेशन में फिक्स्ड पॉइंट थ्योरी: डिफरेंशियल और इंटीग्रल इक्वेशन से लेकर गेम थ्योरी तक|year=2010|publisher=Springer|isbn=978-1-4419-7585-0|pages=77}}</ref>


निर्देशित सेट गैर-खाली [[पूरी तरह से आदेशित सेट]] का एक सामान्यीकरण है। अर्थात्, सभी पूरी तरह से ऑर्डर किए गए सेट निर्देशित सेट हैं (विपरीत आंशिक रूप से ऑर्डर किए गए सेट{{em|partially}} ऑर्डर किए गए सेट, जिन्हें निर्देशित करने की आवश्यकता नहीं है)। [[ज्वाइन-सेमी-जाली]] (जो आंशिक रूप से ऑर्डर किए गए सेट हैं) भी निर्देशित सेट हैं, लेकिन इसके विपरीत नहीं। इसी तरह, [[जाली (आदेश)]] ऊपर और नीचे दोनों ओर निर्देशित सेट हैं।
निर्देशित समुच्चय अरिक्त [[पूरी तरह से आदेशित सेट|पूरी तरह से आदेशित समुच्चय]] का एक सामान्यीकरण है। अर्थात्, सभी पूरी तरह से ऑर्डर किए गए समुच्चय निर्देशित समुच्चय हैं (विपरीत आंशिक रूप से ऑर्डर किए गए समुच्चय{{em|partially}} ऑर्डर किए गए समुच्चय, जिन्हें निर्देशित करने की आवश्यकता नहीं है)। [[ज्वाइन-सेमी-जाली]] (जो आंशिक रूप से ऑर्डर किए गए समुच्चय हैं) भी निर्देशित समुच्चय हैं, लेकिन इसके विपरीत नहीं। इसी तरह, [[जाली (आदेश)]] ऊपर और नीचे दोनों ओर निर्देशित समुच्चय हैं।


[[टोपोलॉजी]] में, [[नेट (टोपोलॉजी)]] को परिभाषित करने के लिए निर्देशित सेट का उपयोग किया जाता है, जो [[अनुक्रम]]ों को सामान्य करता है और [[गणितीय विश्लेषण]] में उपयोग की जाने वाली [[सीमा (गणित)]] की विभिन्न धारणाओं को एकजुट करता है। निर्देशित सेट अमूर्त बीजगणित और (अधिक सामान्यतः) [[श्रेणी सिद्धांत]] में [[प्रत्यक्ष सीमा]] को जन्म देते हैं।
[[टोपोलॉजी]] में, [[नेट (टोपोलॉजी)]] को परिभाषित करने के लिए निर्देशित समुच्चय का उपयोग किया जाता है, जो [[अनुक्रम]]ों को सामान्य करता है और [[गणितीय विश्लेषण]] में उपयोग की जाने वाली [[सीमा (गणित)]] की विभिन्न धारणाओं को एकजुट करता है। निर्देशित समुच्चय अमूर्त बीजगणित और (अधिक सामान्यतः) [[श्रेणी सिद्धांत]] में [[प्रत्यक्ष सीमा]] को जन्म देते हैं।


== समतुल्य परिभाषा ==
== समतुल्य परिभाषा ==


उपरोक्त परिभाषा के अतिरिक्त, एक समतुल्य परिभाषा भी है। एक निर्देशित सेट एक सेट है <math>A</math> एक पूर्व-आदेश के साथ जैसे कि प्रत्येक परिमित उपसमुच्चय <math>A</math> एक ऊपरी सीमा है। इस परिभाषा में, रिक्त समुच्चय की ऊपरी सीमा का अर्थ है कि <math>A</math> खाली नहीं है।
उपरोक्त परिभाषा के अतिरिक्त, एक समतुल्य परिभाषा भी है। एक निर्देशित समुच्चय एक समुच्चय है <math>A</math> एक पूर्व-आदेश के साथ जैसे कि प्रत्येक परिमित उपसमुच्चय <math>A</math> एक ऊपरी सीमा है। इस परिभाषा में, रिक्त समुच्चय की ऊपरी सीमा का अर्थ है कि <math>A</math> खाली नहीं है।


== उदाहरण ==
== उदाहरण ==


[[प्राकृतिक संख्या]]ओं का समुच्चय <math>\N</math> साधारण आदेश के साथ <math>\,\leq\,</math> निर्देशित सेट के सबसे महत्वपूर्ण उदाहरणों में से एक है (और ऐसा ही प्रत्येक [[कुल आदेश]] है)। परिभाषा के अनुसार, ए {{em|[[Net (mathematics)|net]]}} एक निर्देशित सेट से एक फ़ंक्शन है और [[अनुक्रम (गणित)]] प्राकृतिक संख्याओं से एक फ़ंक्शन है <math>\N.</math> प्रत्येक अनुक्रम विहित रूप से एंडोइंग द्वारा एक जाल बन जाता है <math>\N</math> साथ <math>\,\leq.\,</math> आंशिक रूप से ऑर्डर किए गए सेट का ए (तुच्छ) उदाहरण है{{em|not}} निर्देशित सेट है <math>\{a, b\},</math> जिसमें केवल क्रम संबंध हैं <math>a \leq a</math> और <math>b \leq b.</math> एक कम तुच्छ उदाहरण की ओर निर्देशित वास्तविक के पिछले उदाहरण की तरह है <math>x_0</math>लेकिन जिसमें आदेश देने का नियम केवल उसी तरफ तत्वों के जोड़े पर लागू होता है <math>x_0</math> (अर्थात, यदि कोई तत्व लेता है <math>a</math> के बाईं ओर <math>x_0,</math> और <math>b</math> इसके दाईं ओर, फिर <math>a</math> और <math>b</math> तुलनीय नहीं हैं, और सबसेट <math>\{ a, b \}</math> कोई ऊपरी सीमा नहीं है)।
[[प्राकृतिक संख्या]]ओं का समुच्चय <math>\N</math> साधारण आदेश के साथ <math>\,\leq\,</math> निर्देशित समुच्चय के सबसे महत्वपूर्ण उदाहरणों में से एक है (और ऐसा ही प्रत्येक [[कुल आदेश]] है)। परिभाषा के अनुसार, ए {{em|[[Net (mathematics)|net]]}} एक निर्देशित समुच्चय से एक फ़ंक्शन है और [[अनुक्रम (गणित)]] प्राकृतिक संख्याओं से एक फ़ंक्शन है <math>\N.</math> प्रत्येक अनुक्रम विहित रूप से एंडोइंग द्वारा एक जाल बन जाता है <math>\N</math> साथ <math>\,\leq.\,</math> आंशिक रूप से ऑर्डर किए गए समुच्चय का ए (तुच्छ) उदाहरण है{{em|not}} निर्देशित समुच्चय है <math>\{a, b\},</math> जिसमें केवल क्रम संबंध हैं <math>a \leq a</math> और <math>b \leq b.</math> एक कम तुच्छ उदाहरण की ओर निर्देशित वास्तविक के पिछले उदाहरण की तरह है <math>x_0</math>लेकिन जिसमें आदेश देने का नियम केवल उसी तरफ तत्वों के जोड़े पर लागू होता है <math>x_0</math> (अर्थात, यदि कोई तत्व लेता है <math>a</math> के बाईं ओर <math>x_0,</math> और <math>b</math> इसके दाईं ओर, फिर <math>a</math> और <math>b</math> तुलनीय नहीं हैं, और सबसमुच्चय <math>\{ a, b \}</math> कोई ऊपरी सीमा नहीं है)।


अगर <math>x_0</math> एक [[वास्तविक संख्या]] है तो सेट <math>I := \R \backslash \lbrace x_0 \rbrace</math> परिभाषित करके एक निर्देशित सेट में परिवर्तित किया जा सकता है <math>a \leq_I b</math> अगर <math>\left|a - x_0\right| \geq \left|b - x_0\right|</math> (इसलिए बड़े तत्व करीब हैं <math>x_0</math>). फिर हम कहते हैं कि वास्तविक को निर्देशित किया गया है <math>x_0.</math>यह एक निर्देशित सेट का एक उदाहरण है जो है {{em|neither}} [[आंशिक आदेश]] और न ही कुल आदेश। ऐसा इसलिए है क्योंकि हर जोड़ी के लिए एंटीसिमेट्रिक_रिलेशन टूट जाता है <math>a</math> और <math>b</math> से समान दूरी पर <math>x_0,</math> कहाँ <math>a</math> और <math>b</math> के विपरीत हैं <math>x_0.</math> स्पष्ट रूप से, ऐसा तब होता है जब <math>\{a, b\} = \left\{x_0 - r, x_0 + r\right\}</math> कुछ असली के लिए <math>r \neq 0,</math> किस स्थिति में <math>a \leq_I b</math> और <math>b \leq_I a</math> चाहे <math>a \neq b.</math> क्या इस पूर्व आदेश को परिभाषित किया गया था <math>\R</math> के बजाय <math>\R \backslash \lbrace x_0 \rbrace</math> तो यह अभी भी एक निर्देशित सेट बनायेगा लेकिन अब इसमें एक (अद्वितीय) सबसे बड़ा तत्व होगा, विशेष रूप से <math>x_0</math>; हालाँकि, यह अभी भी आंशिक रूप से आदेशित नहीं होगा। इस उदाहरण को एक [[मीट्रिक स्थान]] के लिए सामान्यीकृत किया जा सकता है <math>(X, d)</math> पर परिभाषित करके <math>X</math> या <math>X \setminus \left\{x_0\right\}</math> अग्रिम आदेश <math>a \leq b</math> अगर और केवल अगर <math>d\left(a, x_0\right) \geq d\left(b, x_0\right).</math>
अगर <math>x_0</math> एक [[वास्तविक संख्या]] है तो समुच्चय <math>I := \R \backslash \lbrace x_0 \rbrace</math> परिभाषित करके एक निर्देशित समुच्चय में परिवर्तित किया जा सकता है <math>a \leq_I b</math> अगर <math>\left|a - x_0\right| \geq \left|b - x_0\right|</math> (इसलिए बड़े तत्व करीब हैं <math>x_0</math>). फिर हम कहते हैं कि वास्तविक को निर्देशित किया गया है <math>x_0.</math>यह एक निर्देशित समुच्चय का एक उदाहरण है जो है {{em|neither}} [[आंशिक आदेश]] और न ही कुल आदेश। ऐसा इसलिए है क्योंकि हर जोड़ी के लिए एंटीसिमेट्रिक_रिलेशन टूट जाता है <math>a</math> और <math>b</math> से समान दूरी पर <math>x_0,</math> कहाँ <math>a</math> और <math>b</math> के विपरीत हैं <math>x_0.</math> स्पष्ट रूप से, ऐसा तब होता है जब <math>\{a, b\} = \left\{x_0 - r, x_0 + r\right\}</math> कुछ असली के लिए <math>r \neq 0,</math> किस स्थिति में <math>a \leq_I b</math> और <math>b \leq_I a</math> चाहे <math>a \neq b.</math> क्या इस पूर्व आदेश को परिभाषित किया गया था <math>\R</math> के बजाय <math>\R \backslash \lbrace x_0 \rbrace</math> तो यह अभी भी एक निर्देशित समुच्चय बनायेगा लेकिन अब इसमें एक (अद्वितीय) सबसे बड़ा तत्व होगा, विशेष रूप से <math>x_0</math>; हालाँकि, यह अभी भी आंशिक रूप से आदेशित नहीं होगा। इस उदाहरण को एक [[मीट्रिक स्थान]] के लिए सामान्यीकृत किया जा सकता है <math>(X, d)</math> पर परिभाषित करके <math>X</math> या <math>X \setminus \left\{x_0\right\}</math> अग्रिम आदेश <math>a \leq b</math> अगर और केवल अगर <math>d\left(a, x_0\right) \geq d\left(b, x_0\right).</math>




=== अधिकतम और सबसे बड़ा तत्व ===
=== अधिकतम और सबसे बड़ा तत्व ===


तत्व <math>m</math> एक पूर्व-आदेशित सेट का <math>(I, \leq)</math> यदि प्रत्येक के लिए एक [[अधिकतम और न्यूनतम तत्व]] है <math>j \in I,</math> <math>m \leq j</math> तात्पर्य <math>j \leq m.</math><ref>This implies <math>j = m</math> if <math>(I, \leq)</math> is a [[partially ordered set]].</ref>
तत्व <math>m</math> एक पूर्व-आदेशित समुच्चय का <math>(I, \leq)</math> यदि प्रत्येक के लिए एक [[अधिकतम और न्यूनतम तत्व]] है <math>j \in I,</math> <math>m \leq j</math> तात्पर्य <math>j \leq m.</math><ref>This implies <math>j = m</math> if <math>(I, \leq)</math> is a [[partially ordered set]].</ref>
यदि प्रत्येक के लिए यह एक महानतम तत्व और सबसे कम तत्व है <math>j \in I,</math> <math>j \leq m.</math>
यदि प्रत्येक के लिए यह एक महानतम तत्व और सबसे कम तत्व है <math>j \in I,</math> <math>j \leq m.</math>
सबसे बड़े तत्व के साथ कोई भी प्रीऑर्डर किया गया सेट उसी प्रीऑर्डर के साथ एक निर्देशित सेट है।
सबसे बड़े तत्व के साथ कोई भी पूर्वक्रमी किया गया समुच्चय उसी पूर्वक्रमी के साथ एक निर्देशित समुच्चय है।
उदाहरण के लिए, एक [[ poset ]] में <math>P,</math> हर ऊपरी सेट#ऊपरी बंद और किसी तत्व का निचला बंद होना; यानी फॉर्म का हर सबसेट <math>\{a \in P : a \leq x\}</math> कहाँ <math>x</math> से स्थिर तत्व है <math>P,</math> निर्देश दिया गया है।
उदाहरण के लिए, एक [[ poset ]] में <math>P,</math> हर ऊपरी समुच्चय#ऊपरी बंद और किसी तत्व का निचला बंद होना; यानी फॉर्म का हर सबसमुच्चय <math>\{a \in P : a \leq x\}</math> कहाँ <math>x</math> से स्थिर तत्व है <math>P,</math> निर्देश दिया गया है।


निर्देशित पूर्वनिर्धारित सेट का प्रत्येक अधिकतम तत्व सबसे बड़ा तत्व है। वास्तव में, एक निर्देशित पूर्ववर्ती सेट अधिकतम और सबसे बड़े तत्वों के (संभवतः खाली) सेटों की समानता की विशेषता है।
निर्देशित पूर्वनिर्धारित समुच्चय का प्रत्येक अधिकतम तत्व सबसे बड़ा तत्व है। वास्तव में, एक निर्देशित पूर्ववर्ती समुच्चय अधिकतम और सबसे बड़े तत्वों के (संभवतः खाली) समुच्चयों की समानता की विशेषता है।


=== निर्देशित सेट का उत्पाद ===
=== निर्देशित समुच्चय का उत्पाद ===


होने देना <math>\mathbb{D}_1</math> और <math>\mathbb{D}_2</math> निर्देशित सेट हो। फिर कार्टेशियन उत्पाद सेट <math>\mathbb{D}_1 \times \mathbb{D}_2</math> परिभाषित करके एक निर्देशित सेट में बनाया जा सकता है <math>\left(n_1, n_2\right) \leq \left(m_1, m_2\right)</math> अगर और केवल अगर <math>n_1 \leq m_1</math> और <math>n_2 \leq m_2.</math> [[उत्पाद क्रम]] के अनुरूप यह कार्टेशियन उत्पाद पर उत्पाद की दिशा है। उदाहरण के लिए, सेट <math>\N \times \N</math> परिभाषित करके प्राकृतिक संख्याओं के जोड़े को एक निर्देशित सेट में बनाया जा सकता है <math>\left(n_0, n_1\right) \leq \left(m_0, m_1\right)</math> अगर और केवल अगर <math>n_0 \leq m_0</math> और <math>n_1 \leq m_1.</math>
होने देना <math>\mathbb{D}_1</math> और <math>\mathbb{D}_2</math> निर्देशित समुच्चय हो। फिर कार्टेशियन उत्पाद समुच्चय <math>\mathbb{D}_1 \times \mathbb{D}_2</math> परिभाषित करके एक निर्देशित समुच्चय में बनाया जा सकता है <math>\left(n_1, n_2\right) \leq \left(m_1, m_2\right)</math> अगर और केवल अगर <math>n_1 \leq m_1</math> और <math>n_2 \leq m_2.</math> [[उत्पाद क्रम]] के अनुरूप यह कार्टेशियन उत्पाद पर उत्पाद की दिशा है। उदाहरण के लिए, समुच्चय <math>\N \times \N</math> परिभाषित करके प्राकृतिक संख्याओं के जोड़े को एक निर्देशित समुच्चय में बनाया जा सकता है <math>\left(n_0, n_1\right) \leq \left(m_0, m_1\right)</math> अगर और केवल अगर <math>n_0 \leq m_0</math> और <math>n_1 \leq m_1.</math>




=== [[सबसेट समावेशन]] ===
=== [[सबसेट समावेशन|सबसमुच्चय समावेशन]] ===


सबसेट समावेशन संबंध <math>\,\subseteq,\,</math> इसके [[द्वैत (आदेश सिद्धांत)]] के साथ <math>\,\supseteq,\,</math> सेट के किसी दिए गए परिवार पर आंशिक ऑर्डर परिभाषित करें।
सबसमुच्चय समावेशन संबंध <math>\,\subseteq,\,</math> इसके [[द्वैत (आदेश सिद्धांत)]] के साथ <math>\,\supseteq,\,</math> समुच्चय के किसी दिए गए परिवार पर आंशिक ऑर्डर परिभाषित करें।
आंशिक क्रम के संबंध में सेट का एक गैर-खाली परिवार एक निर्देशित सेट है <math>\,\supseteq\,</math> (क्रमश, <math>\,\subseteq\,</math>) अगर और केवल अगर इसके किसी भी दो सदस्यों के चौराहे (क्रमशः, संघ) में किसी तीसरे सदस्य के सबसेट (क्रमशः, एक सबसेट के रूप में शामिल है) के रूप में शामिल है।
आंशिक क्रम के संबंध में समुच्चय का एक अरिक्त परिवार एक निर्देशित समुच्चय है <math>\,\supseteq\,</math> (क्रमश, <math>\,\subseteq\,</math>) अगर और केवल अगर इसके किसी भी दो सदस्यों के चौराहे (क्रमशः, संघ) में किसी तीसरे सदस्य के सबसमुच्चय (क्रमशः, एक सबसमुच्चय के रूप में शामिल है) के रूप में शामिल है।
प्रतीकों में, एक परिवार <math>I</math> सेट के संबंध में निर्देशित किया जाता है <math>\,\supseteq\,</math> (क्रमश, <math>\,\subseteq\,</math>) अगर और केवल अगर
प्रतीकों में, एक परिवार <math>I</math> समुच्चय के संबंध में निर्देशित किया जाता है <math>\,\supseteq\,</math> (क्रमश, <math>\,\subseteq\,</math>) अगर और केवल अगर
:सभी के लिए <math>A, B \in I,</math> कुछ मौजूद है <math>C \in I</math> ऐसा है कि <math>A \supseteq C</math> और <math>B \supseteq C</math> (क्रमश, <math>A \subseteq C</math> और <math>B \subseteq C</math>)
:सभी के लिए <math>A, B \in I,</math> कुछ उपस्थित है <math>C \in I</math> ऐसा है कि <math>A \supseteq C</math> और <math>B \supseteq C</math> (क्रमश, <math>A \subseteq C</math> और <math>B \subseteq C</math>)
या समकक्ष,
या समकक्ष,
:सभी के लिए <math>A, B \in I,</math> कुछ मौजूद है <math>C \in I</math> ऐसा है कि <math>A \cap B \supseteq C</math> (क्रमश, <math>A \cap B \subseteq C</math>).
:सभी के लिए <math>A, B \in I,</math> कुछ उपस्थित है <math>C \in I</math> ऐसा है कि <math>A \cap B \supseteq C</math> (क्रमश, <math>A \cap B \subseteq C</math>).


इन आंशिक आदेशों का उपयोग करके निर्देशित सेटों के कई महत्वपूर्ण उदाहरणों को परिभाषित किया जा सकता है।
इन आंशिक आदेशों का उपयोग करके निर्देशित समुच्चयों के कई महत्वपूर्ण उदाहरणों को परिभाषित किया जा सकता है।
उदाहरण के लिए, परिभाषा के अनुसार, एक फ़िल्टर (सेट सिद्धांत) |{{em|prefilter}} या {{em|filter base}} सेट का एक गैर-रिक्त परिवार है जो आंशिक क्रम के संबंध में एक निर्देशित सेट है <math>\,\supseteq\,</math> और उसमें भी खाली सेट नहीं है (यह स्थिति तुच्छता को रोकती है क्योंकि अन्यथा, खाली सेट तब सबसे बड़ा तत्व होगा और कम से कम तत्व के संबंध में <math>\,\supseteq\,</math>).
उदाहरण के लिए, परिभाषा के अनुसार, एक फ़िल्टर (समुच्चय सिद्धांत) |{{em|prefilter}} या {{em|filter base}} समुच्चय का एक गैर-रिक्त परिवार है जो आंशिक क्रम के संबंध में एक निर्देशित समुच्चय है <math>\,\supseteq\,</math> और उसमें भी खाली समुच्चय नहीं है (यह स्थिति तुच्छता को रोकती है क्योंकि अन्यथा, खाली समुच्चय तब सबसे बड़ा तत्व होगा और कम से कम तत्व के संबंध में <math>\,\supseteq\,</math>).
हर पीआई-सिस्टम |{{pi}}-सिस्टम, जो सेट का एक गैर-रिक्त परिवार है जो इसके दो सदस्यों के चौराहे के नीचे बंद है, एक निर्देशित सेट है जिसके संबंध में <math>\,\supseteq\,.</math> प्रत्येक Dynkin system|λ-system के संबंध में एक निर्देशित सेट है <math>\,\subseteq\,.</math> प्रत्येक [[फ़िल्टर (सेट सिद्धांत)]], [[टोपोलॉजी (संरचना)]], और σ-बीजगणित दोनों के संबंध में एक निर्देशित सेट है <math>\,\supseteq\,</math> और <math>\,\subseteq\,.</math> अगर <math>x_{\bull} = \left(x_i\right)_{i \in I}</math> एक निर्देशित सेट से कोई [[नेट (गणित)]] है <math>(I, \leq)</math> फिर किसी भी इंडेक्स के लिए <math>i \in I,</math> सेट <math>x_{\geq i} := \left\{x_j : j \geq i \text{ with } j \in I\right\}</math> की पूँछ कहलाती है <math>(I, \leq)</math> पे शुरुवात <math>i.</math> परिवार <math>\operatorname{Tails}\left(x_{\bull}\right) := \left\{x_{\geq i} : i \in I\right\}</math> सभी पूंछों के संबंध में एक निर्देशित सेट है <math>\,\supseteq;\,</math> वास्तव में, यह एक प्रीफ़िल्टर भी है।
हर पीआई-सिस्टम |{{pi}}-सिस्टम, जो समुच्चय का एक गैर-रिक्त परिवार है जो इसके दो सदस्यों के चौराहे के नीचे बंद है, एक निर्देशित समुच्चय है जिसके संबंध में <math>\,\supseteq\,.</math> प्रत्येक Dynkin system|λ-system के संबंध में एक निर्देशित समुच्चय है <math>\,\subseteq\,.</math> प्रत्येक [[फ़िल्टर (सेट सिद्धांत)|फ़िल्टर (समुच्चय सिद्धांत)]], [[टोपोलॉजी (संरचना)]], और σ-बीजगणित दोनों के संबंध में एक निर्देशित समुच्चय है <math>\,\supseteq\,</math> और <math>\,\subseteq\,.</math> अगर <math>x_{\bull} = \left(x_i\right)_{i \in I}</math> एक निर्देशित समुच्चय से कोई [[नेट (गणित)]] है <math>(I, \leq)</math> फिर किसी भी इंडेक्स के लिए <math>i \in I,</math> समुच्चय <math>x_{\geq i} := \left\{x_j : j \geq i \text{ with } j \in I\right\}</math> की पूँछ कहलाती है <math>(I, \leq)</math> पे शुरुवात <math>i.</math> परिवार <math>\operatorname{Tails}\left(x_{\bull}\right) := \left\{x_{\geq i} : i \in I\right\}</math> सभी पूंछों के संबंध में एक निर्देशित समुच्चय है <math>\,\supseteq;\,</math> वास्तव में, यह एक प्रीफ़िल्टर भी है।


अगर <math>T</math> एक [[टोपोलॉजिकल स्पेस]] है और <math>x_0</math> में एक बिंदु है <math>T,</math> के सभी [[टोपोलॉजिकल पड़ोस]] का सेट <math>x_0</math> लिखकर निर्देशित सेट में बदला जा सकता है <math>U \leq V</math> अगर और केवल अगर <math>U</math> रोकना <math>V.</math> हरएक के लिए <math>U,</math> <math>V,</math> और <math>W</math>{{hairsp}}:
अगर <math>T</math> एक [[टोपोलॉजिकल स्पेस]] है और <math>x_0</math> में एक बिंदु है <math>T,</math> के सभी [[टोपोलॉजिकल पड़ोस]] का समुच्चय <math>x_0</math> लिखकर निर्देशित समुच्चय में बदला जा सकता है <math>U \leq V</math> अगर और केवल अगर <math>U</math> रोकना <math>V.</math> हरएक के लिए <math>U,</math> <math>V,</math> और <math>W</math>{{hairsp}}:
* <math>U \leq U</math> तब से <math>U</math> खुद को शामिल करता है।
* <math>U \leq U</math> तब से <math>U</math> खुद को शामिल करता है।
* अगर <math>U \leq V</math> और <math>V \leq W,</math> तब <math>U \supseteq V</math> और <math>V \supseteq W,</math> जो ये दर्शाता हे <math>U \supseteq W.</math> इस प्रकार <math>U \leq W.</math>
* अगर <math>U \leq V</math> और <math>V \leq W,</math> तब <math>U \supseteq V</math> और <math>V \supseteq W,</math> जो ये दर्शाता हे <math>U \supseteq W.</math> इस प्रकार <math>U \leq W.</math>
* क्योंकि <math>x_0 \in U \cap V,</math> और दोनों के बाद से <math>U \supseteq U \cap V</math> और <math>V \supseteq U \cap V,</math> अपने पास <math>U \leq U \cap V</math> और <math>V \leq U \cap V.</math>
* क्योंकि <math>x_0 \in U \cap V,</math> और दोनों के बाद से <math>U \supseteq U \cap V</math> और <math>V \supseteq U \cap V,</math> अपने पास <math>U \leq U \cap V</math> और <math>V \leq U \cap V.</math>
सेट <math>\operatorname{Finite}(I)</math> एक सेट के सभी परिमित उपसमुच्चय <math>I</math> के संबंध में निर्देशित किया गया है <math>\,\subseteq\,</math> चूँकि कोई दो दिया है <math>A, B \in \operatorname{Finite}(I),</math> उनका संघ <math>A \cup B \in \operatorname{Finite}(I)</math> की ऊपरी सीमा है <math>A</math> और <math>B</math> में <math>\operatorname{Finite}(I).</math> इस विशेष निर्देशित सेट का उपयोग योग को परिभाषित करने के लिए किया जाता है <math>{\textstyle\sum\limits_{i \in I}} r_i</math> एक की एक [[सामान्यीकृत श्रृंखला (गणित)]] की <math>I</math>संख्याओं का अनुक्रमित संग्रह <math>\left(r_i\right)_{i \in I}</math> (या अधिक आम तौर पर, श्रृंखला का योग (गणित) [[एबेलियन टोपोलॉजिकल ग्रुप]] समूह एबेलियन टोपोलॉजिकल समूह, जैसे कि श्रृंखला (गणित) # एक [[टोपोलॉजिकल वेक्टर स्पेस]] में टोपोलॉजिकल वेक्टर रिक्त स्थान में श्रृंखला) आंशिक रकम के [[जाल की सीमा]] के रूप में <math>F \in \operatorname{Finite}(I) \mapsto {\textstyle\sum\limits_{i \in F}} r_i;</math> वह है:
समुच्चय <math>\operatorname{Finite}(I)</math> एक समुच्चय के सभी परिमित उपसमुच्चय <math>I</math> के संबंध में निर्देशित किया गया है <math>\,\subseteq\,</math> चूँकि कोई दो दिया है <math>A, B \in \operatorname{Finite}(I),</math> उनका संघ <math>A \cup B \in \operatorname{Finite}(I)</math> की ऊपरी सीमा है <math>A</math> और <math>B</math> में <math>\operatorname{Finite}(I).</math> इस विशेष निर्देशित समुच्चय का उपयोग योग को परिभाषित करने के लिए किया जाता है <math>{\textstyle\sum\limits_{i \in I}} r_i</math> एक की एक [[सामान्यीकृत श्रृंखला (गणित)]] की <math>I</math>संख्याओं का अनुक्रमित संग्रह <math>\left(r_i\right)_{i \in I}</math> (या अधिक आम तौर पर, श्रृंखला का योग (गणित) [[एबेलियन टोपोलॉजिकल ग्रुप]] समूह एबेलियन टोपोलॉजिकल समूह, जैसे कि श्रृंखला (गणित) # एक [[टोपोलॉजिकल वेक्टर स्पेस]] में टोपोलॉजिकल वेक्टर रिक्त स्थान में श्रृंखला) आंशिक रकम के [[जाल की सीमा]] के रूप में <math>F \in \operatorname{Finite}(I) \mapsto {\textstyle\sum\limits_{i \in F}} r_i;</math> वह है:
<math display=block>\sum_{i \in I} r_i ~:=~ \lim_{F \in \operatorname{Finite}(I)} \ \sum_{i \in F} r_i ~=~ \lim \left\{\sum_{i \in F} r_i \,: F \subseteq I, F \text{ finite }\right\}.</math>
<math display=block>\sum_{i \in I} r_i ~:=~ \lim_{F \in \operatorname{Finite}(I)} \ \sum_{i \in F} r_i ~=~ \lim \left\{\sum_{i \in F} r_i \,: F \subseteq I, F \text{ finite }\right\}.</math>




== सेमीलेटिस के साथ तुलना करें ==
== सेमीलेटिस के साथ तुलना करें ==
[[File:Directed_set,_but_no_join_semi-lattice.png|thumb|x100px|एक निर्देशित सेट का उदाहरण जो ज्वाइन-सेमिलैटिस नहीं है]]निर्देशित सेट अर्ध-जाल (जुड़ना) की तुलना में अधिक सामान्य अवधारणा है: प्रत्येक अर्ध-जाल एक निर्देशित सेट है, क्योंकि दो तत्वों का जुड़ाव या कम से कम ऊपरी सीमा वांछित है <math>c.</math> हालांकि, बातचीत पकड़ में नहीं आती है, निर्देशित सेट {1000,0001,1101,1011,1111} [[समन्वय क्रम]] (जैसे। <math>1000 \leq 1011</math> रखता है, लेकिन <math>0001 \leq 1000</math> नहीं, क्योंकि अंतिम बिट 1 > 0) में, जहां {1000,0001} की तीन ऊपरी सीमाएं हैं लेकिन नहीं {{em|least}} ऊपरी सीमा, cf. चित्र। (यह भी ध्यान दें कि 1111 के बिना, सेट निर्देशित नहीं है।)
[[File:Directed_set,_but_no_join_semi-lattice.png|thumb|x100px|एक निर्देशित समुच्चय का उदाहरण जो ज्वाइन-सेमिलैटिस नहीं है]]निर्देशित समुच्चय अर्ध-जाल (जुड़ना) की तुलना में अधिक सामान्य अवधारणा है: प्रत्येक अर्ध-जाल एक निर्देशित समुच्चय है, क्योंकि दो तत्वों का जुड़ाव या कम से कम ऊपरी सीमा वांछित है <math>c.</math> हालांकि, बातचीत पकड़ में नहीं आती है, निर्देशित समुच्चय {1000,0001,1101,1011,1111} [[समन्वय क्रम]] (जैसे। <math>1000 \leq 1011</math> रखता है, लेकिन <math>0001 \leq 1000</math> नहीं, क्योंकि अंतिम बिट 1 > 0) में, जहां {1000,0001} की तीन ऊपरी सीमाएं हैं लेकिन नहीं {{em|least}} ऊपरी सीमा, cf. चित्र। (यह भी ध्यान दें कि 1111 के बिना, समुच्चय निर्देशित नहीं है।)


== निर्देशित सबसेट ==
== निर्देशित सबसमुच्चय ==
निर्देशित सेट में आदेश संबंध को [[एंटीसिमेट्रिक संबंध]] होने की आवश्यकता नहीं है, और इसलिए निर्देशित सेट हमेशा आंशिक आदेश नहीं होते हैं। हालाँकि, शब्द {{em|directed set}पोसेट के संदर्भ में } का भी अक्सर उपयोग किया जाता है। इस सेटिंग में, एक सबसेट <math>A</math> आंशिक रूप से आदेशित सेट का <math>(P, \leq)</math> एक निर्देशित उपसमुच्चय कहा जाता है यदि यह एक ही आंशिक क्रम के अनुसार निर्देशित सेट है: दूसरे शब्दों में, यह खाली सेट नहीं है, और तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है। यहाँ के तत्वों पर क्रम संबंध <math>A</math> से विरासत में मिला है <math>P</math>; इस कारण से, रिफ्लेक्सिविटी और ट्रांज़िटिविटी को स्पष्ट रूप से आवश्यक नहीं होना चाहिए।
निर्देशित समुच्चय में आदेश संबंध को [[एंटीसिमेट्रिक संबंध]]<nowiki> होने की आवश्यकता नहीं है, और इसलिए निर्देशित समुच्चय हमेशा आंशिक आदेश नहीं होते हैं। हालाँकि, शब्द {{em|directed set}पोसमुच्चय के संदर्भ में } का भी अक्सर उपयोग किया जाता है। इस समुच्चयिंग में, एक सबसमुच्चय </nowiki><math>A</math> आंशिक रूप से आदेशित समुच्चय का <math>(P, \leq)</math> एक निर्देशित उपसमुच्चय कहा जाता है यदि यह एक ही आंशिक क्रम के अनुसार निर्देशित समुच्चय है: दूसरे शब्दों में, यह खाली समुच्चय नहीं है, और तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है। यहाँ के तत्वों पर क्रम संबंध <math>A</math> से विरासत में मिला है <math>P</math>; इस कारण से, रिफ्लेक्सिविटी और ट्रांज़िटिविटी को स्पष्ट रूप से आवश्यक नहीं होना चाहिए।


किसी पोसेट के निर्देशित उपसमुच्चय को निचला समुच्चय होना आवश्यक नहीं है; एक पॉसेट का एक सबसेट निर्देशित किया जाता है अगर और केवल अगर इसका डाउनवर्ड क्लोजर एक आदर्श (ऑर्डर थ्योरी) है। जबकि एक निर्देशित सेट की परिभाषा ऊपर की ओर निर्देशित सेट के लिए है (तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है), नीचे की ओर निर्देशित सेट को परिभाषित करना भी संभव है जिसमें प्रत्येक जोड़ी तत्वों की एक सामान्य निचली सीमा होती है। पॉसेट का एक सबसेट नीचे की ओर निर्देशित होता है अगर और केवल अगर इसका ऊपरी बंद एक फ़िल्टर (सेट सिद्धांत) है।
किसी पोसमुच्चय के निर्देशित उपसमुच्चय को निचला समुच्चय होना आवश्यक नहीं है; एक पॉसमुच्चय का एक सबसमुच्चय निर्देशित किया जाता है अगर और केवल अगर इसका डाउनवर्ड क्लोजर एक आदर्श (ऑर्डर थ्योरी) है। जबकि एक निर्देशित समुच्चय की परिभाषा ऊपर की ओर निर्देशित समुच्चय के लिए है (तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है), नीचे की ओर निर्देशित समुच्चय को परिभाषित करना भी संभव है जिसमें प्रत्येक जोड़ी तत्वों की एक सामान्य निचली सीमा होती है। पॉसमुच्चय का एक सबसमुच्चय नीचे की ओर निर्देशित होता है अगर और केवल अगर इसका ऊपरी बंद एक फ़िल्टर (समुच्चय सिद्धांत) है।


[[डोमेन सिद्धांत]] में निर्देशित सबसेट का उपयोग किया जाता है, जो [[पूर्ण आंशिक आदेश]] | निर्देशित-पूर्ण आंशिक आदेश का अध्ययन करता है।<ref>Gierz, p. 2.</ref> ये पॉसेट्स हैं जिनमें प्रत्येक ऊपर की ओर निर्देशित सेट को कम से कम ऊपरी बाउंड होना आवश्यक है। इस संदर्भ में, निर्देशित उपसमुच्चय फिर से अभिसरण अनुक्रमों का सामान्यीकरण प्रदान करते हैं।{{explain|reason=Again? Convergent sequences are never mentioned in this article.|date=December 2020}}
[[डोमेन सिद्धांत]] में निर्देशित सबसमुच्चय का उपयोग किया जाता है, जो [[पूर्ण आंशिक आदेश]] | निर्देशित-पूर्ण आंशिक आदेश का अध्ययन करता है।<ref>Gierz, p. 2.</ref> ये पॉसमुच्चय्स हैं जिनमें प्रत्येक ऊपर की ओर निर्देशित समुच्चय को कम से कम ऊपरी बाउंड होना आवश्यक है। इस संदर्भ में, निर्देशित उपसमुच्चय फिर से अभिसरण अनुक्रमों का सामान्यीकरण प्रदान करते हैं।{{explain|reason=Again? Convergent sequences are never mentioned in this article.|date=December 2020}}


== यह भी देखें ==
== यह भी देखें ==

Revision as of 21:08, 27 April 2023

गणित में, एक निर्देशित समुच्चय (या निर्देशित पूर्वक्रमी या निस्यंदित समुच्चय) एक अरिक्त समुच्चय (गणित) है एक साथ एक प्रतिवर्त संबंध और सकर्मक रिलेशन द्विआधारी संबंध के साथ (अर्थात, एक पूर्व-आदेश), अतिरिक्त गुण के साथ कि तत्वों के प्रत्येक जोड़े की एक ऊपरी सीमा होती है।[1] दूसरे शब्दों में, में किसी और के लिए वहाँ और साथ में उपस्थित होना चाहिए। एक निर्देशित समुच्चय के पूर्वक्रमी को दिशा कहा जाता है।

ऊपर परिभाषित धारणा को कभी-कभी a कहा जाता हैupward directed set. एdownward directed set को समान रूप से परिभाषित किया गया है,[2] जिसका अर्थ है कि तत्वों की प्रत्येक जोड़ी नीचे बंधी हुई है।[3] कुछ लेखक (और यह लेख) मानते हैं कि एक निर्देशित समुच्चय ऊपर की ओर निर्देशित होता है, जब तक कि अन्यथा न कहा गया हो। अन्य लेखक एक समुच्चय को निर्देशित कहते हैं यदि और केवल अगर यह ऊपर और नीचे दोनों ओर निर्देशित हो।[4]

निर्देशित समुच्चय अरिक्त पूरी तरह से आदेशित समुच्चय का एक सामान्यीकरण है। अर्थात्, सभी पूरी तरह से ऑर्डर किए गए समुच्चय निर्देशित समुच्चय हैं (विपरीत आंशिक रूप से ऑर्डर किए गए समुच्चयpartially ऑर्डर किए गए समुच्चय, जिन्हें निर्देशित करने की आवश्यकता नहीं है)। ज्वाइन-सेमी-जाली (जो आंशिक रूप से ऑर्डर किए गए समुच्चय हैं) भी निर्देशित समुच्चय हैं, लेकिन इसके विपरीत नहीं। इसी तरह, जाली (आदेश) ऊपर और नीचे दोनों ओर निर्देशित समुच्चय हैं।

टोपोलॉजी में, नेट (टोपोलॉजी) को परिभाषित करने के लिए निर्देशित समुच्चय का उपयोग किया जाता है, जो अनुक्रमों को सामान्य करता है और गणितीय विश्लेषण में उपयोग की जाने वाली सीमा (गणित) की विभिन्न धारणाओं को एकजुट करता है। निर्देशित समुच्चय अमूर्त बीजगणित और (अधिक सामान्यतः) श्रेणी सिद्धांत में प्रत्यक्ष सीमा को जन्म देते हैं।

समतुल्य परिभाषा

उपरोक्त परिभाषा के अतिरिक्त, एक समतुल्य परिभाषा भी है। एक निर्देशित समुच्चय एक समुच्चय है एक पूर्व-आदेश के साथ जैसे कि प्रत्येक परिमित उपसमुच्चय एक ऊपरी सीमा है। इस परिभाषा में, रिक्त समुच्चय की ऊपरी सीमा का अर्थ है कि खाली नहीं है।

उदाहरण

प्राकृतिक संख्याओं का समुच्चय साधारण आदेश के साथ निर्देशित समुच्चय के सबसे महत्वपूर्ण उदाहरणों में से एक है (और ऐसा ही प्रत्येक कुल आदेश है)। परिभाषा के अनुसार, ए net एक निर्देशित समुच्चय से एक फ़ंक्शन है और अनुक्रम (गणित) प्राकृतिक संख्याओं से एक फ़ंक्शन है प्रत्येक अनुक्रम विहित रूप से एंडोइंग द्वारा एक जाल बन जाता है साथ आंशिक रूप से ऑर्डर किए गए समुच्चय का ए (तुच्छ) उदाहरण हैnot निर्देशित समुच्चय है जिसमें केवल क्रम संबंध हैं और एक कम तुच्छ उदाहरण की ओर निर्देशित वास्तविक के पिछले उदाहरण की तरह है लेकिन जिसमें आदेश देने का नियम केवल उसी तरफ तत्वों के जोड़े पर लागू होता है (अर्थात, यदि कोई तत्व लेता है के बाईं ओर और इसके दाईं ओर, फिर और तुलनीय नहीं हैं, और सबसमुच्चय कोई ऊपरी सीमा नहीं है)।

अगर एक वास्तविक संख्या है तो समुच्चय परिभाषित करके एक निर्देशित समुच्चय में परिवर्तित किया जा सकता है अगर (इसलिए बड़े तत्व करीब हैं ). फिर हम कहते हैं कि वास्तविक को निर्देशित किया गया है यह एक निर्देशित समुच्चय का एक उदाहरण है जो है neither आंशिक आदेश और न ही कुल आदेश। ऐसा इसलिए है क्योंकि हर जोड़ी के लिए एंटीसिमेट्रिक_रिलेशन टूट जाता है और से समान दूरी पर कहाँ और के विपरीत हैं स्पष्ट रूप से, ऐसा तब होता है जब कुछ असली के लिए किस स्थिति में और चाहे क्या इस पूर्व आदेश को परिभाषित किया गया था के बजाय तो यह अभी भी एक निर्देशित समुच्चय बनायेगा लेकिन अब इसमें एक (अद्वितीय) सबसे बड़ा तत्व होगा, विशेष रूप से ; हालाँकि, यह अभी भी आंशिक रूप से आदेशित नहीं होगा। इस उदाहरण को एक मीट्रिक स्थान के लिए सामान्यीकृत किया जा सकता है पर परिभाषित करके या अग्रिम आदेश अगर और केवल अगर


अधिकतम और सबसे बड़ा तत्व

तत्व एक पूर्व-आदेशित समुच्चय का यदि प्रत्येक के लिए एक अधिकतम और न्यूनतम तत्व है तात्पर्य [5] यदि प्रत्येक के लिए यह एक महानतम तत्व और सबसे कम तत्व है सबसे बड़े तत्व के साथ कोई भी पूर्वक्रमी किया गया समुच्चय उसी पूर्वक्रमी के साथ एक निर्देशित समुच्चय है। उदाहरण के लिए, एक poset में हर ऊपरी समुच्चय#ऊपरी बंद और किसी तत्व का निचला बंद होना; यानी फॉर्म का हर सबसमुच्चय कहाँ से स्थिर तत्व है निर्देश दिया गया है।

निर्देशित पूर्वनिर्धारित समुच्चय का प्रत्येक अधिकतम तत्व सबसे बड़ा तत्व है। वास्तव में, एक निर्देशित पूर्ववर्ती समुच्चय अधिकतम और सबसे बड़े तत्वों के (संभवतः खाली) समुच्चयों की समानता की विशेषता है।

निर्देशित समुच्चय का उत्पाद

होने देना और निर्देशित समुच्चय हो। फिर कार्टेशियन उत्पाद समुच्चय परिभाषित करके एक निर्देशित समुच्चय में बनाया जा सकता है अगर और केवल अगर और उत्पाद क्रम के अनुरूप यह कार्टेशियन उत्पाद पर उत्पाद की दिशा है। उदाहरण के लिए, समुच्चय परिभाषित करके प्राकृतिक संख्याओं के जोड़े को एक निर्देशित समुच्चय में बनाया जा सकता है अगर और केवल अगर और


सबसमुच्चय समावेशन

सबसमुच्चय समावेशन संबंध इसके द्वैत (आदेश सिद्धांत) के साथ समुच्चय के किसी दिए गए परिवार पर आंशिक ऑर्डर परिभाषित करें। आंशिक क्रम के संबंध में समुच्चय का एक अरिक्त परिवार एक निर्देशित समुच्चय है (क्रमश, ) अगर और केवल अगर इसके किसी भी दो सदस्यों के चौराहे (क्रमशः, संघ) में किसी तीसरे सदस्य के सबसमुच्चय (क्रमशः, एक सबसमुच्चय के रूप में शामिल है) के रूप में शामिल है। प्रतीकों में, एक परिवार समुच्चय के संबंध में निर्देशित किया जाता है (क्रमश, ) अगर और केवल अगर

सभी के लिए कुछ उपस्थित है ऐसा है कि और (क्रमश, और )

या समकक्ष,

सभी के लिए कुछ उपस्थित है ऐसा है कि (क्रमश, ).

इन आंशिक आदेशों का उपयोग करके निर्देशित समुच्चयों के कई महत्वपूर्ण उदाहरणों को परिभाषित किया जा सकता है। उदाहरण के लिए, परिभाषा के अनुसार, एक फ़िल्टर (समुच्चय सिद्धांत) |prefilter या filter base समुच्चय का एक गैर-रिक्त परिवार है जो आंशिक क्रम के संबंध में एक निर्देशित समुच्चय है और उसमें भी खाली समुच्चय नहीं है (यह स्थिति तुच्छता को रोकती है क्योंकि अन्यथा, खाली समुच्चय तब सबसे बड़ा तत्व होगा और कम से कम तत्व के संबंध में ). हर पीआई-सिस्टम |π-सिस्टम, जो समुच्चय का एक गैर-रिक्त परिवार है जो इसके दो सदस्यों के चौराहे के नीचे बंद है, एक निर्देशित समुच्चय है जिसके संबंध में प्रत्येक Dynkin system|λ-system के संबंध में एक निर्देशित समुच्चय है प्रत्येक फ़िल्टर (समुच्चय सिद्धांत), टोपोलॉजी (संरचना), और σ-बीजगणित दोनों के संबंध में एक निर्देशित समुच्चय है और अगर एक निर्देशित समुच्चय से कोई नेट (गणित) है फिर किसी भी इंडेक्स के लिए समुच्चय की पूँछ कहलाती है पे शुरुवात परिवार सभी पूंछों के संबंध में एक निर्देशित समुच्चय है वास्तव में, यह एक प्रीफ़िल्टर भी है।

अगर एक टोपोलॉजिकल स्पेस है और में एक बिंदु है के सभी टोपोलॉजिकल पड़ोस का समुच्चय लिखकर निर्देशित समुच्चय में बदला जा सकता है अगर और केवल अगर रोकना हरएक के लिए और  :

  • तब से खुद को शामिल करता है।
  • अगर और तब और जो ये दर्शाता हे इस प्रकार
  • क्योंकि और दोनों के बाद से और अपने पास और

समुच्चय एक समुच्चय के सभी परिमित उपसमुच्चय के संबंध में निर्देशित किया गया है चूँकि कोई दो दिया है उनका संघ की ऊपरी सीमा है और में इस विशेष निर्देशित समुच्चय का उपयोग योग को परिभाषित करने के लिए किया जाता है एक की एक सामान्यीकृत श्रृंखला (गणित) की संख्याओं का अनुक्रमित संग्रह (या अधिक आम तौर पर, श्रृंखला का योग (गणित) एबेलियन टोपोलॉजिकल ग्रुप समूह एबेलियन टोपोलॉजिकल समूह, जैसे कि श्रृंखला (गणित) # एक टोपोलॉजिकल वेक्टर स्पेस में टोपोलॉजिकल वेक्टर रिक्त स्थान में श्रृंखला) आंशिक रकम के जाल की सीमा के रूप में वह है:


सेमीलेटिस के साथ तुलना करें

एक निर्देशित समुच्चय का उदाहरण जो ज्वाइन-सेमिलैटिस नहीं है

निर्देशित समुच्चय अर्ध-जाल (जुड़ना) की तुलना में अधिक सामान्य अवधारणा है: प्रत्येक अर्ध-जाल एक निर्देशित समुच्चय है, क्योंकि दो तत्वों का जुड़ाव या कम से कम ऊपरी सीमा वांछित है हालांकि, बातचीत पकड़ में नहीं आती है, निर्देशित समुच्चय {1000,0001,1101,1011,1111} समन्वय क्रम (जैसे। रखता है, लेकिन नहीं, क्योंकि अंतिम बिट 1 > 0) में, जहां {1000,0001} की तीन ऊपरी सीमाएं हैं लेकिन नहीं least ऊपरी सीमा, cf. चित्र। (यह भी ध्यान दें कि 1111 के बिना, समुच्चय निर्देशित नहीं है।)

निर्देशित सबसमुच्चय

निर्देशित समुच्चय में आदेश संबंध को एंटीसिमेट्रिक संबंध होने की आवश्यकता नहीं है, और इसलिए निर्देशित समुच्चय हमेशा आंशिक आदेश नहीं होते हैं। हालाँकि, शब्द {{em|directed set}पोसमुच्चय के संदर्भ में } का भी अक्सर उपयोग किया जाता है। इस समुच्चयिंग में, एक सबसमुच्चय आंशिक रूप से आदेशित समुच्चय का एक निर्देशित उपसमुच्चय कहा जाता है यदि यह एक ही आंशिक क्रम के अनुसार निर्देशित समुच्चय है: दूसरे शब्दों में, यह खाली समुच्चय नहीं है, और तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है। यहाँ के तत्वों पर क्रम संबंध से विरासत में मिला है ; इस कारण से, रिफ्लेक्सिविटी और ट्रांज़िटिविटी को स्पष्ट रूप से आवश्यक नहीं होना चाहिए।

किसी पोसमुच्चय के निर्देशित उपसमुच्चय को निचला समुच्चय होना आवश्यक नहीं है; एक पॉसमुच्चय का एक सबसमुच्चय निर्देशित किया जाता है अगर और केवल अगर इसका डाउनवर्ड क्लोजर एक आदर्श (ऑर्डर थ्योरी) है। जबकि एक निर्देशित समुच्चय की परिभाषा ऊपर की ओर निर्देशित समुच्चय के लिए है (तत्वों की प्रत्येक जोड़ी की ऊपरी सीमा होती है), नीचे की ओर निर्देशित समुच्चय को परिभाषित करना भी संभव है जिसमें प्रत्येक जोड़ी तत्वों की एक सामान्य निचली सीमा होती है। पॉसमुच्चय का एक सबसमुच्चय नीचे की ओर निर्देशित होता है अगर और केवल अगर इसका ऊपरी बंद एक फ़िल्टर (समुच्चय सिद्धांत) है।

डोमेन सिद्धांत में निर्देशित सबसमुच्चय का उपयोग किया जाता है, जो पूर्ण आंशिक आदेश | निर्देशित-पूर्ण आंशिक आदेश का अध्ययन करता है।[6] ये पॉसमुच्चय्स हैं जिनमें प्रत्येक ऊपर की ओर निर्देशित समुच्चय को कम से कम ऊपरी बाउंड होना आवश्यक है। इस संदर्भ में, निर्देशित उपसमुच्चय फिर से अभिसरण अनुक्रमों का सामान्यीकरण प्रदान करते हैं।[further explanation needed]

यह भी देखें

टिप्पणियाँ

  1. Kelley, p. 65.
  2. Robert S. Borden (1988). उन्नत पथरी में एक कोर्स. Courier Corporation. p. 20. ISBN 978-0-486-15038-3.
  3. Arlen Brown; Carl Pearcy (1995). विश्लेषण का एक परिचय. Springer. p. 13. ISBN 978-1-4612-0787-0.
  4. Siegfried Carl; Seppo Heikkilä (2010). ऑर्डर किए गए सेट और एप्लिकेशन में फिक्स्ड पॉइंट थ्योरी: डिफरेंशियल और इंटीग्रल इक्वेशन से लेकर गेम थ्योरी तक. Springer. p. 77. ISBN 978-1-4419-7585-0.
  5. This implies if is a partially ordered set.
  6. Gierz, p. 2.


संदर्भ

  • J. L. Kelley (1955), General Topology.
  • Gierz, Hofmann, Keimel, et al. (2003), Continuous Lattices and Domains, Cambridge University Press. ISBN 0-521-80338-1.