नलिकाकार प्रतिवेश: Difference between revisions
No edit summary |
No edit summary |
||
(3 intermediate revisions by 2 users not shown) | |||
Line 76: | Line 76: | ||
}} | }} | ||
{{commons category|Tubular neighborhood}} | {{commons category|Tubular neighborhood}} | ||
[[Category:Commons category link is locally defined]] | |||
[[Category: | |||
[[Category:Created On 28/02/2023]] | [[Category:Created On 28/02/2023]] | ||
[[Category:Machine Translated Page]] | |||
[[Category:Pages with maths render errors]] | |||
[[Category:Pages with script errors]] | |||
[[Category:Templates Vigyan Ready]] | |||
[[Category:कई गुना]] | |||
[[Category:चिकना कई गुना]] | |||
[[Category:ज्यामितीय टोपोलॉजी]] |
Latest revision as of 16:12, 8 May 2023
गणित में, एक समतल प्रसमष्टि के उप-प्रसमष्टि का एक नलिकाकार प्रतिवेश सामान्य बंडल जैसा दिखने वाला एक विवृत समुच्चय है।
नलिकाकार प्रतिवेश के पीछे के विचार को एक सरल उदाहरण में समझाया जा सकता है। स्व-प्रतिच्छेदन के बिना समतल में एक निष्कोण वक्र पर विचार करें। वक्र के प्रत्येक बिंदु पर वक्र के लंबवत एक रेखा खींचें। जब तक वक्र सीधा न हो, ये रेखाएँ एक जटिल तरीके से आपस में प्रतिच्छेद करेंगी। हालांकि, यदि कोई केवल वक्र के चारों ओर एक संकीर्ण बैंड में दिखता है, तो उस बैंड में रेखाओं के भाग एक दूसरे को प्रतिच्छेद नहीं करेगा, और पूरे बैंड को बिना अंतराल के आच्छादित करेंगे। यह बैंड एक नलिकाकार प्रतिवेश है।
सामान्य रूप से, S को प्रसमष्टि M का उप-प्रसमष्टि होने दें, और N को M में S का सामान्य बंडल मान लीजिए। यहाँ S वक्र की भूमिका निभाता है और M वक्र वाले तल की भूमिका निभाता है। प्राकृतिक मानचित्र पर विचार करें
जो शून्य खंड N का और M का उप-प्रसमष्टि S के बीच एकैकी संगतता स्थापित करता है। M में मानों के साथ पूरे सामान्य बंडल N के लिए इस मानचित्र का विस्तार J जैसे M में एक विवृत समुच्चय है और के बीच एक होमियोमोर्फिज्म है जिसे नलिकाकार प्रतिवेश कहा जाता है।
अधिकांशतः कोई विवृत समुच्चय को j के अतिरिक्त, S का एक नलिकाकार प्रतिवेश कहा जाता है, यह निहित रूप से माना जाता है कि होमोमोर्फिज्म j मानचित्रण N से T उपस्थित है।
सामान्य नलिका
निष्कोण वक्र के लिए एक सामान्य नलिका प्रसमष्टि है जिसे सभी बिम्ब के संयोजन (समुच्चय सिद्धांत) के रूप में परिभाषित किया गया है
- सभी बिंब की समान निश्चित त्रिज्या होती है;
- प्रत्येक बिंब का केंद्र वक्र पर स्थित होता है; और
- प्रत्येक बिम्ब वक्र के सामान्य तल में स्थित होती है जहां वक्र बिम्ब के केंद्र से होकर गुजरता है।
औपचारिक परिभाषा
म्मान लीजिए प्रसमष्टि निष्कोण है। M में S का एक नलिकाकार प्रतिवेश एक सदिश बंडल एक साथ एक समतल मानचित्र के साथ है जैसे कि
- जहाँ अन्तः स्थापित और शून्य खंड है,
- और के साथ कुछ और सम्मिलित है जैसे कि अवकलनीय तद्वता है।
सामान्य बंडल एक नलिकाकार प्रतिवेश है और दूसरे बिंदु में अवकलनीय तद्वता की स्थिति के कारण, सभी नलिकाकार प्रतिवेश का समान आयाम है, अर्थात् सदिश बंडल के आयाम को प्रसमष्टि माना जाता है।
सामान्यीकरण
समतल प्रसमष्टि के सामान्यीकरण से नलिकाकार प्रतिवेश का सामान्यीकरण होता है, जैसे कि नियमित प्रतिवेश, या पोंकारे समष्टि के लिए गोलाकार तन्तु उत्पन्न होते हैं।
इन सामान्यीकरणों का उपयोग सामान्य बंडल के अनुरूप या स्थिर सामान्य बंडल के लिए किया जाता है, जो स्पर्शरेखा बंडल के लिए प्रतिस्थापन हैं जो इन प्रसमष्टि के लिए प्रत्यक्ष विवरण स्वीकार नहीं करता है।
यह भी देखें
- समानांतर वक्र (उर्फ समंजन वक्र)
- नालिका लेम्मा – सांस्थिति में प्रमाण
संदर्भ
- Raoul Bott, Loring W. Tu (1982). Differential forms in algebraic topology. Berlin: Springer-Verlag. ISBN 0-387-90613-4.
- Morris W. Hirsch (1976). Differential Topology. Berlin: Springer-Verlag. ISBN 0-387-90148-5.
- Waldyr Muniz Oliva (2002). Geometric Mechanics. Berlin: Springer-Verlag. ISBN 3-540-44242-1.