गैर रेखीय सिग्मा मॉडल: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 31: Line 31:
यह एक निश्चित बिंदु के रूप में कई गुना लक्ष्य के लिए आइंस्टीन क्षेत्र समीकरणों का पालन करते हुए, [[रिक्की प्रवाह]] का प्रतिनिधित्व करता है। इस प्रकार के एक निश्चित बिंदु का अस्तित्व प्रासंगिक है, जैसा कि यह अनुदान देता है, क्षोभ सिद्धांत के इस क्रम में, क्वांटम सुधारों के कारण, [[अनुरूप क्षेत्र सिद्धांत]] अदृश्य नहीं हों पाती है, जिससे इस प्रारूप का क्वांटम क्षेत्र सिद्धांत समझने में सरल हो।
यह एक निश्चित बिंदु के रूप में कई गुना लक्ष्य के लिए आइंस्टीन क्षेत्र समीकरणों का पालन करते हुए, [[रिक्की प्रवाह]] का प्रतिनिधित्व करता है। इस प्रकार के एक निश्चित बिंदु का अस्तित्व प्रासंगिक है, जैसा कि यह अनुदान देता है, क्षोभ सिद्धांत के इस क्रम में, क्वांटम सुधारों के कारण, [[अनुरूप क्षेत्र सिद्धांत]] अदृश्य नहीं हों पाती है, जिससे इस प्रारूप का क्वांटम क्षेत्र सिद्धांत समझने में सरल हो।


फ्लेवर-चिराल विसंगतियों का प्रतिनिधित्व करने वाले नॉनलाइनियर इंटरैक्शन को जोड़ने से वेस-जुमिनो-विटन प्रारूप में परिणाम मिलता है,<ref>{{cite journal |first=E. |last=Witten |s2cid=122018499 |title=दो आयामों में गैर-अबेलियन बोसोनाइजेशन|journal=[[Communications in Mathematical Physics]] |volume= 92| issue= 4 |year=1984 | pages= 455–472 | doi= 10.1007/BF01215276|bibcode = 1984CMaPh..92..455W |url=http://projecteuclid.org/euclid.cmp/1103940923 }}</ref> कौन
फ्लेवर-चिराल विसंगतियों का प्रतिनिधित्व करने वाले अरेखीय परस्पर क्रिया को जोड़ने से वेस-जुमिनो-विटन प्रारूप में परिणाम मिलता है,<ref>{{cite journal |first=E. |last=Witten |s2cid=122018499 |title=दो आयामों में गैर-अबेलियन बोसोनाइजेशन|journal=[[Communications in Mathematical Physics]] |volume= 92| issue= 4 |year=1984 | pages= 455–472 | doi= 10.1007/BF01215276|bibcode = 1984CMaPh..92..455W |url=http://projecteuclid.org/euclid.cmp/1103940923 }}</ref> जो आघूर्ण बल को सम्मिलित करता है, और पुन: सामान्य करने योग्य को स्थापित रखता है, और टेलीपैराललिज़म ("ज्यामितिस्तिथि") के कारण एक अवरक्त निश्चित बिंदु पर भी ले जाता है।<ref>{{Cite journal | last1 = Braaten | first1 = E. | last2 = Curtright | first2 = T. L. | last3 = Zachos | first3 = C. K. | doi = 10.1016/0550-3213(85)90053-7 | title = नॉनलाइनियर सिग्मा मॉडल में मरोड़ और जियोमेट्रोस्टेसिस| journal = Nuclear Physics B | volume = 260 | issue = 3–4 | pages = 630 | year = 1985 |bibcode = 1985NuPhB.260..630B }}</ref>
[[Index.php?title=टेलीपेराल्लेलिस्म|टेलीपेराल्लेलिस्म]] के कारण [[मरोड़ टेंसर]]को सम्मिलित करने के लिए प्रवाह की ज्यामिति को बढ़ाता है, पुनर्सामान्यता को संरक्षित करता है, और एक अवरक्त निश्चित बिंदु तक ले जाता है।<ref>{{Cite journal | last1 = Braaten | first1 = E. | last2 = Curtright | first2 = T. L. | last3 = Zachos | first3 = C. K. | doi = 10.1016/0550-3213(85)90053-7 | title = नॉनलाइनियर सिग्मा मॉडल में मरोड़ और जियोमेट्रोस्टेसिस| journal = Nuclear Physics B | volume = 260 | issue = 3–4 | pages = 630 | year = 1985 |bibcode = 1985NuPhB.260..630B }}</ref>
== ओ (3) गैर रेखीय सिग्मा प्रारूप ==
== ओ (3) गैर रेखीय सिग्मा प्रारूप ==
इसके सामयिक गुणों के कारण विशेष रुचि का एक प्रसिद्ध उदाहरण, O(3) अरैखिक है {{mvar|σ}}-प्रारूप 1 +1 आयामों में, लाग्रंगियन घनत्व के साथ-
इसके सामयिक गुणों के कारण विशेष रुचि का एक प्रसिद्ध उदाहरण, O(3) अरैखिक है {{mvar|σ}}-प्रारूप 1 +1 आयामों में, लाग्रंगियन घनत्व के साथ-
Line 38: Line 37:
जहां एन = (n<sub>1</sub>, n<sub>2</sub>, n<sub>3</sub>) बाधा के साथ n̂⋅n̂=1 और {{mvar|μ}}=1,2।
जहां एन = (n<sub>1</sub>, n<sub>2</sub>, n<sub>3</sub>) बाधा के साथ n̂⋅n̂=1 और {{mvar|μ}}=1,2।


यह प्रारूप संस्थानिक परिमित क्रिया समाधान के लिए अनुमति देता है, क्योंकि अनंत स्थान-समय पर लैग्रैंगियन घनत्व अदृश्य हो जाना चाहिए, जिसका अर्थ है n̂ = अनंत पर स्थिर। इसलिए, परिमित-क्रिया समाधान के वर्ग में, एक बिंदु के रूप में अनंत पर बिंदुओं की पहचान की जा सकती है, अर्थात स्थान -समय को [[रीमैन क्षेत्र]] के साथ पहचाना जा सकता है।
यह प्रारूप संस्थानिक परिमित क्रिया समाधान के लिए अनुमति देता है, क्योंकि अनंत स्थान-समय पर लैग्रैंगियन घनत्व अदृश्य हो जाना चाहिए, जिसका अर्थ है n̂ = अनंत पर स्थिर, इसलिए परिमित-क्रिया समाधान के वर्ग में, एक बिंदु के रूप में अनंत पर बिंदुओं की पहचान की जा सकती है, अर्थात स्थान -समय को [[रीमैन क्षेत्र]] के साथ पहचाना जा सकता है।


चूँकि n̂-क्षेत्र एक गोले पर भी रहता है, मानचित्रण  {{math|''S<sup>2</sup>→ S<sup>2</sup>''}} साक्ष्य के रूप में है, जिसके समाधानों को 2-गोले के दूसरे [[होमोटॉपी समूह|समस्थेयता समूह]] द्वारा वर्गीकृत किया गया है: इन समाधानों को O(3) [[इंस्टेंटन]] कहा जाता है।
चूँकि n̂-क्षेत्र एक गोले पर भी रहता है, मानचित्रण  {{math|''S<sup>2</sup>→ S<sup>2</sup>''}} साक्ष्य के रूप में है, जिसके समाधानों को 2-गोले के दूसरे [[होमोटॉपी समूह|समस्थेयता समूह]] द्वारा वर्गीकृत किया गया है: इन समाधानों को O(3) [[इंस्टेंटन]] कहा जाता है।

Revision as of 11:25, 4 May 2023

क्वांटम क्षेत्र सिद्धांत में, अरैखिक σ प्रारूप एक अदिश क्षेत्र का वर्णन करता है, Σ जो लक्ष्य बहुरूपता T कहे जाने वाले अरेखीय बहुरूपता में मान लेता है। अरैखिक σ-प्रारूप गेल-मैन & लेवी (1960, खंड 6) द्वारा प्रस्तुत किया गया था, जिन्होंने इसे अपने प्रारूप में स्पिनलेस मेसॉन के लिए एक क्षेत्र सिद्धांत प्रमाणित किया था, और उसे σ नाम दिया था।[1] यह लेख मुख्य रूप से अरैखिक सिग्मा प्रारूप के परिमाणीकरण से संबंधित है, कृपया सामान्य परिभाषाओं और पारम्परिक (गैर-क्वांटम) योगों और परिणामों के लिए सिग्मा प्रारूप पर आधार लेख देखें।

विवरण

लक्ष्य बहुरूपता टी एक रिमेंनियन मीट्रिक जी से सुसज्जित है। Σ मिंकोवस्की स्थान एम (या कोई अन्य स्पेस) से टी तक का अलग करने योग्य मानचित्र है।

समकालीन चिराल रूप में लैग्रेंजियन घनत्व द्वारा दिया गया है:

जहां हमने एक + − − − मापीय हस्ताक्षर और आंशिक व्युत्पन्न का उपयोग किया है, ∂Σ T× M के जेट बंडल के एक खंड द्वारा दिया गया है, और V क्षमता है।

निर्देशांक अंकन में, निर्देशांक के साथ Σa, a = 1, ..., n जहां n, T का आयाम है,

दो से अधिक आयामों में, अरैखिक σ प्रारूप में एक आयामपूर्ण युग्मन स्थिरांक होता है, और इस प्रकार यह अनुत्पादक रूप से पुन: सामान्य नहीं होता है। इसके पश्चात भी, वे नियम निर्माण में दोनों के पुनर्संरचना समूह के एक असतहीय पराबैंगनी निश्चित बिंदु को प्रदर्शित करते हैं,[2][3] और मूल रूप से केनेथ जी. विल्सन द्वारा प्रस्तावित दोहरे विस्तार में प्रदर्शित है।[4]

दोनों दृष्टिकोणों में, एन-वेक्टर प्रारूप के लिए पाया गया असतहीय पुन: सामान्यीकरण-समूह निश्चित बिंदु ओ (एन) -सममित प्रारूप को केवल वर्णन करने के लिए देखा जाता है, एवं दो से अधिक आयामों में महत्वपूर्ण बिंदु अव्यवस्थित चरण से आदेश को अलग करता है, इसके अतिरिक्त, उत्कृष्ट नियमया क्वांटम क्षेत्र सिद्धांत पूर्वानुमान की तुलना महत्वपूर्ण घटनाओं पर प्रयोगशाला में प्रयोगों से की जा सकती है, क्योंकि ओ (एन) प्रारूप भौतिक हाइजेनबर्ग फेरोमैग्नेटस और संबंधित प्रणालियों का वर्णन करता है। उपरोक्त परिणाम दो आयामों के ऊपर ओ (एन) -सममित प्रारूप के भौतिक व्यवहार का सही विधि से वर्णन करने में और नियम नियमन जैसे अधिक परिष्कृत गैर-क्षुब्द करने वाले विधियों की आवश्यकता के लिए छोटी-मोटी क्षोभ सिद्धांत की विफलता की ओर इंगित करते हैं।

इसका तात्पर्य है, कि वे केवल प्रभावी क्षेत्र सिद्धांत के रूप में उत्पन्न हो सकते हैं। दूरी के पैमाने पर नई भौतिकी की आवश्यकता होती है, जहां दो बिंदुओं से जुड़ा सहसंबंध कार्य उसी क्रम का होता है, जैसा कि लक्ष्य की वक्रता कई गुना होती है। इसे सिद्धांत की यूवी पूर्णता कहा जाता है। आंतरिक सममिति समूह G * के साथ अरैखिक σ प्रारूप का एक विशेष वर्ग है। यदि G एक लाइ समूह है, और H एक लाइ उपसमूह है, तो भागफल स्थान (टोपोलॉजी) G/H कई गुना है (कुछ तकनीकी प्रतिबंधों के अधीन जैसे H एक बंद उपसमुच्चय है) और G या अन्य में एक सजातीय स्थान भी शब्द, जी का एक अरैखिक अहसास है। कई विषयों में, G/H को रिमेंनियन मीट्रिक से सुसज्जित किया जा सकता है, जो G-अपरिवर्तनीय है। यह सदैव होता है, उदाहरण के लिए, यदि G सघन समूह है। G/H के साथ एक अरैखिक σ प्रारूप एक G-अपरिवर्तनीय रिमेंनियन मीट्रिक के साथ कई गुना लक्ष्य के रूप में और एक शून्य क्षमता को भागफल स्थान (या कोसेट स्थान) अरैखिक कहा जाता है, σ नमूना।

कार्यात्मक एकीकरण की गणना करते समय, कार्यात्मक माप को g के निर्धारक के वर्गमूल द्वारा भारित करने की आवश्यकता होती है,


पुनर्सामान्यीकरण

यह प्रारूप श्रृंखला सिद्धांत में प्रासंगिक सिद्ध हुआ जिसे द्वि-आयामी बहुरूपता को वर्डशीट नाम दिया गया है। इसकी सामान्यीकृत पुनर्सामान्यीकरण की सराहना डेनियल फ्राइडन द्वारा प्रदान की गई थी।[5] उन्होंने प्रदर्शित किया कि सिद्धांत रूप में क्षोभ सिद्धांत के प्रमुख क्रम में एक पुनर्सामान्यीकरण समूह समीकरण को स्वीकार करता है:

Rab नियत बहुरूपता का रिक्की टेंसर होना।

यह एक निश्चित बिंदु के रूप में कई गुना लक्ष्य के लिए आइंस्टीन क्षेत्र समीकरणों का पालन करते हुए, रिक्की प्रवाह का प्रतिनिधित्व करता है। इस प्रकार के एक निश्चित बिंदु का अस्तित्व प्रासंगिक है, जैसा कि यह अनुदान देता है, क्षोभ सिद्धांत के इस क्रम में, क्वांटम सुधारों के कारण, अनुरूप क्षेत्र सिद्धांत अदृश्य नहीं हों पाती है, जिससे इस प्रारूप का क्वांटम क्षेत्र सिद्धांत समझने में सरल हो।

फ्लेवर-चिराल विसंगतियों का प्रतिनिधित्व करने वाले अरेखीय परस्पर क्रिया को जोड़ने से वेस-जुमिनो-विटन प्रारूप में परिणाम मिलता है,[6] जो आघूर्ण बल को सम्मिलित करता है, और पुन: सामान्य करने योग्य को स्थापित रखता है, और टेलीपैराललिज़म ("ज्यामितिस्तिथि") के कारण एक अवरक्त निश्चित बिंदु पर भी ले जाता है।[7]

ओ (3) गैर रेखीय सिग्मा प्रारूप

इसके सामयिक गुणों के कारण विशेष रुचि का एक प्रसिद्ध उदाहरण, O(3) अरैखिक है σ-प्रारूप 1 +1 आयामों में, लाग्रंगियन घनत्व के साथ-

जहां एन = (n1, n2, n3) बाधा के साथ n̂⋅n̂=1 और μ=1,2।

यह प्रारूप संस्थानिक परिमित क्रिया समाधान के लिए अनुमति देता है, क्योंकि अनंत स्थान-समय पर लैग्रैंगियन घनत्व अदृश्य हो जाना चाहिए, जिसका अर्थ है n̂ = अनंत पर स्थिर, इसलिए परिमित-क्रिया समाधान के वर्ग में, एक बिंदु के रूप में अनंत पर बिंदुओं की पहचान की जा सकती है, अर्थात स्थान -समय को रीमैन क्षेत्र के साथ पहचाना जा सकता है।

चूँकि n̂-क्षेत्र एक गोले पर भी रहता है, मानचित्रण S2→ S2 साक्ष्य के रूप में है, जिसके समाधानों को 2-गोले के दूसरे समस्थेयता समूह द्वारा वर्गीकृत किया गया है: इन समाधानों को O(3) इंस्टेंटन कहा जाता है।

इस प्रारूप को 1+2 आयामों में भी माना जा सकता है, जहां सांस्थिति अब केवल स्थानिक अंश से आती है। इन्हें अनंत पर एक बिंदु के साथ R^2 के रूप में प्रस्तुत किया गया है, और इसलिए 1+1 आयामों में O(3) इंस्टेंटॉन के समान सांस्थिति है। उन्हें सिग्मा प्रारूप गांठ कहा जाता है।

यह भी देखें

संदर्भ

  1. Gell-Mann, M.; Lévy, M. (1960), "The axial vector current in beta decay", Il Nuovo Cimento, Italian Physical Society, 16 (4): 705–726, Bibcode:1960NCim...16..705G, doi:10.1007/BF02859738, ISSN 1827-6121, S2CID 122945049
  2. Zinn-Justin, Jean (2002). क्वांटम फील्ड थ्योरी और क्रिटिकल फेनोमेना. Oxford University Press.
  3. Cardy, John L. (1997). स्केलिंग और सांख्यिकीय भौतिकी में पुनर्सामान्यीकरण समूह. Cambridge University Press.
  4. Brezin, Eduard; Zinn-Justin, Jean (1976). "Renormalization of the nonlinear sigma model in 2 + epsilon dimensions". Physical Review Letters. 36 (13): 691–693. Bibcode:1976PhRvL..36..691B. doi:10.1103/PhysRevLett.36.691.
  5. Friedan, D. (1980). "Nonlinear models in 2+ε dimensions". Physical Review Letters. 45 (13): 1057–1060. Bibcode:1980PhRvL..45.1057F. doi:10.1103/PhysRevLett.45.1057.
  6. Witten, E. (1984). "दो आयामों में गैर-अबेलियन बोसोनाइजेशन". Communications in Mathematical Physics. 92 (4): 455–472. Bibcode:1984CMaPh..92..455W. doi:10.1007/BF01215276. S2CID 122018499.
  7. Braaten, E.; Curtright, T. L.; Zachos, C. K. (1985). "नॉनलाइनियर सिग्मा मॉडल में मरोड़ और जियोमेट्रोस्टेसिस". Nuclear Physics B. 260 (3–4): 630. Bibcode:1985NuPhB.260..630B. doi:10.1016/0550-3213(85)90053-7.


बाहरी संबंध