ऑर्थोसेंट्रिक सिस्टम: Difference between revisions
No edit summary |
No edit summary |
||
Line 5: | Line 5: | ||
== सामान्य नौ-बिंदु वृत्त == | == सामान्य नौ-बिंदु वृत्त == | ||
[[File:Nine point circle for orthocentric system.PNG|thumb|250px|कॉमन नौ-पॉइंट सर्कल, जहां {{math|''O, O''{{sub|4}}, ''A''{{sub|4}}}} अन्य तीन ऑर्थोसेन्ट्रिक बिंदुओं से बने त्रिभुज के क्रमशः नौ-बिंदु केंद्र, परिधि और लंबकेंद्रीय हैं {{math|''A''{{sub|1}}, ''A''{{sub|2}}, ''A''{{sub|3}}}}.]]इस सामान्य नौ-बिंदु वृत्त केंद्र के चार | [[File:Nine point circle for orthocentric system.PNG|thumb|250px|कॉमन नौ-पॉइंट सर्कल, जहां {{math|''O, O''{{sub|4}}, ''A''{{sub|4}}}} अन्य तीन ऑर्थोसेन्ट्रिक बिंदुओं से बने त्रिभुज के क्रमशः नौ-बिंदु केंद्र, परिधि और लंबकेंद्रीय हैं {{math|''A''{{sub|1}}, ''A''{{sub|2}}, ''A''{{sub|3}}}}.]]इस सामान्य नौ-बिंदु वृत्त केंद्र के चार लम्बकेन्द्र बिंदुओं में स्थित है। सामान्य नौ-बिंदु वृत्त की त्रिज्या नौ-बिंदु केंद्र से छह संयोजक में से किसी के मध्य बिंदु तक की दूरी है जो लंबकेंद्रीय बिंदुओं के किसी भी जोड़े से जुड़ती है जिसके माध्यम से सामान्य नौ-बिंदु वृत्त गुजरते है। नौ-बिंदु चक्र चार संभावित त्रिकोणों की ऊंचाई के चरणों में तीन ओर्थोगोनल प्रतिच्छेदन से भी गुजरता है। | ||
यह सामान्य नौ-बिंदु केंद्र संयोजक के मध्य बिंदु पर स्थित होता है जो किसी भी लंबकेंद्रीय बिंदु को अन्य तीन | यह सामान्य नौ-बिंदु केंद्र संयोजक के मध्य बिंदु पर स्थित होता है जो किसी भी लंबकेंद्रीय बिंदु को अन्य तीन लम्बकेन्द्र बिंदुओं से बने त्रिभुज के परिकेंद्र से जोड़ता है। | ||
सामान्य नौ-बिंदु वृत्त सभी 16 अंतःवृत्तों और चार त्रिभुजों के बहिर्वृत्तों के लिए स्पर्शरेखा है, जिनके कोने ओर्थोसेंट्रिक प्रणाली बनाते हैं।<ref>Weisstein, Eric W. "Orthocentric System." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/OrthocentricSystem.html]</ref> | सामान्य नौ-बिंदु वृत्त सभी 16 अंतःवृत्तों और चार त्रिभुजों के बहिर्वृत्तों के लिए स्पर्शरेखा है, जिनके कोने ओर्थोसेंट्रिक प्रणाली बनाते हैं।<ref>Weisstein, Eric W. "Orthocentric System." From MathWorld--A Wolfram Web Resource. [http://mathworld.wolfram.com/OrthocentricSystem.html]</ref> | ||
Line 14: | Line 14: | ||
== सामान्य ऑर्थोथिक त्रिभुज, इसका अंत: केंद्र और इसके [[Index.php?title=एक्सेंटर|एक्सेंटर]] == | == सामान्य ऑर्थोथिक त्रिभुज, इसका अंत: केंद्र और इसके [[Index.php?title=एक्सेंटर|एक्सेंटर]] == | ||
यदि छह संयोजक जो | यदि छह संयोजक जो लम्बकेन्द्र बिंदुओं के किसी भी जोड़े से जुड़ते हैं, उन्हें छह रेखाओं तक बढ़ाया जाता है जो एक दूसरे को काटते हैं, तो वे सात प्रतिच्छेदन बिंदु उत्पन्न करते हैं। इनमें से चार बिंदु मूल लम्बकेन्द्र बिंदु हैं और अतिरिक्त तीन बिंदु [[ऊंचाई]] के चरणों में [[ओर्थोगोनल]] चौराहे हैं। एक त्रिकोण में इन तीन ऑर्थोगोनल बिंदुओं में सम्मलित होने से एक ओर्थिक त्रिकोण उत्पन्न होता है जो चार ओर्थोकेन्ट्रिक बिंदुओं से बने सभी चार संभावित त्रिकोणों के लिए एक समय लेते है। | ||
सामान्य | सामान्य लम्बकेन्द्र त्रिभुज का अंत:केंद्र मूल चार लम्बकेन्द्र बिंदुओं में से एक होना चाहिए। इसके अतिरिक्त, शेष तीन बिंदु इस सामान्य ऑर्थोक त्रिकोण कि भाषा बन जाती हैं। लम्बकेन्द्र बिंदु जो ओर्थिक त्रिभुज का केंद्र बन जाता है, वह लम्बकेन्द्र बिंदु सामान्य नौ-बिंदु केंद्र के सबसे निकट होता है। लंबकेंद्रीय त्रिकोण और मूल चार लम्बकेन्द्र बिंदुओं के बीच यह संबंध सीधे इस तथ्य की ओर ले जाता है कि एक संदर्भ त्रिकोण के [[केंद्र में]] और भाषा में एक ऑर्थोसेन्ट्रिक प्रणाली बनाते हैं।{{sfn|Johnson|1929|p=[https://babel.hathitrust.org/cgi/pt?id=wu.89043163211&view=1up&seq=200 182]}} | ||
लम्बकेन्द्र बिंदुओं में से एक को दूसरों से अलग करना सामान्य है, विशेष रूप से वह जो ऑर्थोथिक त्रिभुज का केंद्र है; यह एक संदर्भ त्रिकोण △ABC के रूप में चुने गए बाहरी तीन ऑर्थोसेन्ट्रिक बिंदुओं के लम्बकेन्द्र के रूप में {{mvar|H}} को दर्शाता है। इस सामान्यीकृत विन्यास में, बिंदु {{mvar|H}} हमेशा त्रिभुज △ABC के अन्दर स्थित होगा, और त्रिभुज △ABC के सभी कोण तीव्र होंगे। चार संभावित त्रिभुज त्रिभुज △ABC, △ABH, △ACH, △BCH हैं। छह कनेक्टर एबी, एसी, बीसी, एएच, बीएच, सीएच हैं। और सात चौराहे ए, बी, सी, एच (मूल ऑर्थोसेन्ट्रिक बिंदु), और एचए, एचबी, एचसी (त्रिकोण △ABC की ऊंचाई के और ओर्थिक त्रिकोण के कोने) हैं। | |||
== ऑर्थोसेन्ट्रिक प्रणाली और इसके ऑर्थोथिक अक्ष == | == ऑर्थोसेन्ट्रिक प्रणाली और इसके ऑर्थोथिक अक्ष == | ||
Line 26: | Line 26: | ||
== यूलर पंक्तियाँ और समरूपता ऑर्थोसेन्ट्रिक प्रणाली == | == यूलर पंक्तियाँ और समरूपता ऑर्थोसेन्ट्रिक प्रणाली == | ||
[[File:Orthocentric system and their circumcenters.PNG|thumb|right|250px|ऑर्थोसेंट्रिक | [[File:Orthocentric system and their circumcenters.PNG|thumb|right|250px|ऑर्थोसेंट्रिक प्रणाली। कहाँ {{math|''O''{{sub|1}}, ''O''{{sub|2}}, ''O''{{sub|3}}, ''O''{{sub|4}}}} लम्बकेन्द्र बिन्दुओं से बने चार संभावित त्रिभुजों का परिकेन्द्र हैं {{math|''A''{{sub|1}}, ''A''{{sub|2}}, ''A''{{sub|3}}, ''A''{{sub|4}}}}.]][[Index.php?title=वेक्टर|वेक्टर]] {{math|'''a''', '''b''', '''c''', '''h'''}} को चार लम्बकेन्द्र बिंदुओं में से प्रत्येक की स्थिति निर्धारित करने दें और {{math|1='''n''' = ('''a''' + '''b''' + '''c''' + '''h''') / 4}} को {{mvar|N}}, सामान्य नौ-बिंदु केंद्र की स्थिति वेक्टर होने दें। चार लम्बकेन्द्र बिंदुओं में से प्रत्येक को उनके सामान्य नौ-बिंदु केंद्र से मिलाएं और उन्हें चार रेखाओं में विस्तारित करें। ये चार रेखाएँ अब उन चार संभावित त्रिभुजों की यूलर रेखाओं का प्रतिनिधित्व करती हैं जहाँ विस्तारित रेखा है {{mvar|HN}} त्रिभुज की यूलर रेखा है {{math|△''ABC''}} और विस्तारित रेखा {{mvar|AN}} त्रिभुज की यूलर रेखा है {{math|△''BCH''}} आदि। यदि एक बिंदु {{mvar|P}} यूलर लाइन पर चुना जाता है संदर्भ त्रिभुज की रेखा {{mvar|HN}} {{math|△''ABC''}} एक स्थिति सदिश {{math|'''p'''}} के साथ ऐसा है कि {{math|1='''p''' = '''n''' + α('''h''' – '''n''')}} जहाँ {{math|α}} एक शुद्ध स्थिरांक है जो चार लम्बकेन्द्र बिंदुओं और तीन और बिंदुओं {{mvar|P{{sub|A}}, P{{sub|B}}, P{{sub|C}}}} की स्थिति से स्वतंत्र है। वह {{math|1='''p{{sub|a}}''' = '''n''' + α('''a''' – '''n''')}} इत्यादि, फिर पी, पीए, पीबी, पीसी एक लम्बकेन्द्र प्रणाली बनाते हैं। यह उत्पन्न ओर्थोसेन्ट्रिक प्रणाली हमेशा चार बिंदुओं की मूल प्रणाली के लिए समरूप होती है जिसमें सामान्य नौ-बिंदु केंद्र [[Index.php?title= होमोथेटिक केंद्र|होमोथेटिक केंद्र]] और α समानता का अनुपात होता है। | ||
जब {{mvar|P}} को केन्द्रक {{mvar|G}}, के रूप में चुना जाता है तो {{math|1=α = –⅓}}. जब {{mvar|P}} को परिकेन्द्र {{mvar|O}} के रूप में चुना जाता है, तो {{math|1=α = –1}} और उत्पन्न ऑर्थोसेन्ट्रिक प्रणाली मूल प्रणाली के साथ-साथ नौ-बिंदु केंद्र के बारे में इसका प्रतिबिंब होने के साथ-साथ [[Index.php?title=सर्वांगसमता|सर्वांगसमता]] होता है। इस विन्यास में {{mvar|P{{sub|A}}, P{{sub|B}}, P{{sub|C}}}} मूल संदर्भ त्रिभुज {{math|△''ABC''}} का [[Index.php?title=जॉनसन|जॉनसन]] त्रिभुज बनाते हैं। परिणामस्वरूप चारों त्रिभुजों के परिवृत्त {{math|△''ABC'', △''ABH'', △''ACH'', △''BCH''}} सभी समान हैं और जॉनसन वृत्तों का एक आकृति बनाते हैं। | जब {{mvar|P}} को केन्द्रक {{mvar|G}}, के रूप में चुना जाता है तो {{math|1=α = –⅓}}. जब {{mvar|P}} को परिकेन्द्र {{mvar|O}} के रूप में चुना जाता है, तो {{math|1=α = –1}} और उत्पन्न ऑर्थोसेन्ट्रिक प्रणाली मूल प्रणाली के साथ-साथ नौ-बिंदु केंद्र के बारे में इसका प्रतिबिंब होने के साथ-साथ [[Index.php?title=सर्वांगसमता|सर्वांगसमता]] होता है। इस विन्यास में {{mvar|P{{sub|A}}, P{{sub|B}}, P{{sub|C}}}} मूल संदर्भ त्रिभुज {{math|△''ABC''}} का [[Index.php?title=जॉनसन|जॉनसन]] त्रिभुज बनाते हैं। परिणामस्वरूप चारों त्रिभुजों के परिवृत्त {{math|△''ABC'', △''ABH'', △''ACH'', △''BCH''}} सभी समान हैं और जॉनसन वृत्तों का एक आकृति बनाते हैं। | ||
== | == आगे की विशेषताएँ == | ||
ऑर्थोसेन्ट्रिक | ऑर्थोसेन्ट्रिक प्रणाली की चार यूलर लाइनें ऑर्थोसेन्ट्रिक सिस्टम के चार ऑर्थोथिक अक्षों के लिए ऑर्थोगोनल हैं। | ||
मूल चार ऑर्थोसेन्ट्रिक बिंदुओं में से किसी भी जोड़ी में शामिल होने वाले छह कनेक्टर कनेक्टर्स के जोड़े का उत्पादन करेंगे जो एक दूसरे के लिए ऑर्थोगोनल हैं जैसे कि वे दूरी समीकरणों को पूरा करते हैं | मूल चार ऑर्थोसेन्ट्रिक बिंदुओं में से किसी भी जोड़ी में शामिल होने वाले छह कनेक्टर कनेक्टर्स के जोड़े का उत्पादन करेंगे जो एक दूसरे के लिए ऑर्थोगोनल हैं जैसे कि वे दूरी समीकरणों को पूरा करते हैं |
Revision as of 13:56, 29 April 2023
ज्यामिति में, एक ओर्थोसेन्ट्रिक प्रणाली एक समतल पर चार बिंदुओं का एक समूह है, जिनमें से एक अन्य तीन द्वारा गठित त्रिभुज का लम्बकेन्द्र है। समतुल्य रूप से, बिंदुओं के बीच असंयुक्त युग्मों से गुजरने वाली रेखाएँ लंबवत होती हैं, और चार बिंदुओं में से किन्हीं तीन बिंदुओं से गुजरने वाले चार वृत्तों की त्रिज्या समान होती है।[1]
यदि चार बिंदु एक ऑर्थोसेन्ट्रिक प्रणाली बनाते हैं, तो चार बिंदुओं में से प्रत्येक अन्य तीन का लम्बकेन्द्र होता है। इन चार संभावित त्रिकोणों में नौ बिंदुओं वाला एक ही चक्र होगा। नतीजतन, इन चार संभावित त्रिकोणों में सभी एक ही परिधि के साथ परिवृत्त होने चाहिए।
सामान्य नौ-बिंदु वृत्त
इस सामान्य नौ-बिंदु वृत्त केंद्र के चार लम्बकेन्द्र बिंदुओं में स्थित है। सामान्य नौ-बिंदु वृत्त की त्रिज्या नौ-बिंदु केंद्र से छह संयोजक में से किसी के मध्य बिंदु तक की दूरी है जो लंबकेंद्रीय बिंदुओं के किसी भी जोड़े से जुड़ती है जिसके माध्यम से सामान्य नौ-बिंदु वृत्त गुजरते है। नौ-बिंदु चक्र चार संभावित त्रिकोणों की ऊंचाई के चरणों में तीन ओर्थोगोनल प्रतिच्छेदन से भी गुजरता है।
यह सामान्य नौ-बिंदु केंद्र संयोजक के मध्य बिंदु पर स्थित होता है जो किसी भी लंबकेंद्रीय बिंदु को अन्य तीन लम्बकेन्द्र बिंदुओं से बने त्रिभुज के परिकेंद्र से जोड़ता है।
सामान्य नौ-बिंदु वृत्त सभी 16 अंतःवृत्तों और चार त्रिभुजों के बहिर्वृत्तों के लिए स्पर्शरेखा है, जिनके कोने ओर्थोसेंट्रिक प्रणाली बनाते हैं।[2]
सामान्य ऑर्थोथिक त्रिभुज, इसका अंत: केंद्र और इसके एक्सेंटर
यदि छह संयोजक जो लम्बकेन्द्र बिंदुओं के किसी भी जोड़े से जुड़ते हैं, उन्हें छह रेखाओं तक बढ़ाया जाता है जो एक दूसरे को काटते हैं, तो वे सात प्रतिच्छेदन बिंदु उत्पन्न करते हैं। इनमें से चार बिंदु मूल लम्बकेन्द्र बिंदु हैं और अतिरिक्त तीन बिंदु ऊंचाई के चरणों में ओर्थोगोनल चौराहे हैं। एक त्रिकोण में इन तीन ऑर्थोगोनल बिंदुओं में सम्मलित होने से एक ओर्थिक त्रिकोण उत्पन्न होता है जो चार ओर्थोकेन्ट्रिक बिंदुओं से बने सभी चार संभावित त्रिकोणों के लिए एक समय लेते है।
सामान्य लम्बकेन्द्र त्रिभुज का अंत:केंद्र मूल चार लम्बकेन्द्र बिंदुओं में से एक होना चाहिए। इसके अतिरिक्त, शेष तीन बिंदु इस सामान्य ऑर्थोक त्रिकोण कि भाषा बन जाती हैं। लम्बकेन्द्र बिंदु जो ओर्थिक त्रिभुज का केंद्र बन जाता है, वह लम्बकेन्द्र बिंदु सामान्य नौ-बिंदु केंद्र के सबसे निकट होता है। लंबकेंद्रीय त्रिकोण और मूल चार लम्बकेन्द्र बिंदुओं के बीच यह संबंध सीधे इस तथ्य की ओर ले जाता है कि एक संदर्भ त्रिकोण के केंद्र में और भाषा में एक ऑर्थोसेन्ट्रिक प्रणाली बनाते हैं।[3]
लम्बकेन्द्र बिंदुओं में से एक को दूसरों से अलग करना सामान्य है, विशेष रूप से वह जो ऑर्थोथिक त्रिभुज का केंद्र है; यह एक संदर्भ त्रिकोण △ABC के रूप में चुने गए बाहरी तीन ऑर्थोसेन्ट्रिक बिंदुओं के लम्बकेन्द्र के रूप में H को दर्शाता है। इस सामान्यीकृत विन्यास में, बिंदु H हमेशा त्रिभुज △ABC के अन्दर स्थित होगा, और त्रिभुज △ABC के सभी कोण तीव्र होंगे। चार संभावित त्रिभुज त्रिभुज △ABC, △ABH, △ACH, △BCH हैं। छह कनेक्टर एबी, एसी, बीसी, एएच, बीएच, सीएच हैं। और सात चौराहे ए, बी, सी, एच (मूल ऑर्थोसेन्ट्रिक बिंदु), और एचए, एचबी, एचसी (त्रिकोण △ABC की ऊंचाई के और ओर्थिक त्रिकोण के कोने) हैं।
ऑर्थोसेन्ट्रिक प्रणाली और इसके ऑर्थोथिक अक्ष
सामान्यीकृत ऑर्थोसेन्ट्रिक प्रणाली ए, बी, सी, एच, जहां △ABC संदर्भ त्रिकोण है, से जुड़ा ऑर्थोथिक अक्ष एक रेखा है जो तीन प्रतिच्छेदन बिंदुओं से होकर गुजरती है, जब ओर्थिक त्रिकोण का प्रत्येक पक्ष संदर्भ त्रिकोण के प्रत्येक पक्ष से मिलता है। तीन अन्य संभावित त्रिभुज है, △ABH, △ACH, △BCH। उनमें से प्रत्येक का अपना ऑर्थोथिक अक्ष है।
यूलर पंक्तियाँ और समरूपता ऑर्थोसेन्ट्रिक प्रणाली
वेक्टर a, b, c, h को चार लम्बकेन्द्र बिंदुओं में से प्रत्येक की स्थिति निर्धारित करने दें और n = (a + b + c + h) / 4 को N, सामान्य नौ-बिंदु केंद्र की स्थिति वेक्टर होने दें। चार लम्बकेन्द्र बिंदुओं में से प्रत्येक को उनके सामान्य नौ-बिंदु केंद्र से मिलाएं और उन्हें चार रेखाओं में विस्तारित करें। ये चार रेखाएँ अब उन चार संभावित त्रिभुजों की यूलर रेखाओं का प्रतिनिधित्व करती हैं जहाँ विस्तारित रेखा है HN त्रिभुज की यूलर रेखा है △ABC और विस्तारित रेखा AN त्रिभुज की यूलर रेखा है △BCH आदि। यदि एक बिंदु P यूलर लाइन पर चुना जाता है संदर्भ त्रिभुज की रेखा HN △ABC एक स्थिति सदिश p के साथ ऐसा है कि p = n + α(h – n) जहाँ α एक शुद्ध स्थिरांक है जो चार लम्बकेन्द्र बिंदुओं और तीन और बिंदुओं PA, PB, PC की स्थिति से स्वतंत्र है। वह pa = n + α(a – n) इत्यादि, फिर पी, पीए, पीबी, पीसी एक लम्बकेन्द्र प्रणाली बनाते हैं। यह उत्पन्न ओर्थोसेन्ट्रिक प्रणाली हमेशा चार बिंदुओं की मूल प्रणाली के लिए समरूप होती है जिसमें सामान्य नौ-बिंदु केंद्र होमोथेटिक केंद्र और α समानता का अनुपात होता है।
जब P को केन्द्रक G, के रूप में चुना जाता है तो α = –⅓. जब P को परिकेन्द्र O के रूप में चुना जाता है, तो α = –1 और उत्पन्न ऑर्थोसेन्ट्रिक प्रणाली मूल प्रणाली के साथ-साथ नौ-बिंदु केंद्र के बारे में इसका प्रतिबिंब होने के साथ-साथ सर्वांगसमता होता है। इस विन्यास में PA, PB, PC मूल संदर्भ त्रिभुज △ABC का जॉनसन त्रिभुज बनाते हैं। परिणामस्वरूप चारों त्रिभुजों के परिवृत्त △ABC, △ABH, △ACH, △BCH सभी समान हैं और जॉनसन वृत्तों का एक आकृति बनाते हैं।
आगे की विशेषताएँ
ऑर्थोसेन्ट्रिक प्रणाली की चार यूलर लाइनें ऑर्थोसेन्ट्रिक सिस्टम के चार ऑर्थोथिक अक्षों के लिए ऑर्थोगोनल हैं।
मूल चार ऑर्थोसेन्ट्रिक बिंदुओं में से किसी भी जोड़ी में शामिल होने वाले छह कनेक्टर कनेक्टर्स के जोड़े का उत्पादन करेंगे जो एक दूसरे के लिए ऑर्थोगोनल हैं जैसे कि वे दूरी समीकरणों को पूरा करते हैं
कहाँ R चार संभव त्रिभुजों की उभयनिष्ठ परिधि है। ज्या के नियम के साथ ये समीकरण सर्वसमिका में परिणत होते हैं
फायरबैक के प्रमेय में कहा गया है कि नौ-बिंदु वाला वृत्त अंतःवृत्त और एक संदर्भ त्रिकोण के तीन बाह्यवृत्तों को स्पर्श करता है। चूंकि नौ-बिंदु चक्र एक ऑर्थोसेन्ट्रिक प्रणाली में सभी चार संभावित त्रिकोणों के लिए आम है, यह चार संभावित त्रिकोणों के अंतःवृत्त और बहिर्वृत्त वाले 16 मंडलों के लिए स्पर्शरेखा है।
कोई भी शांकव जो चार ऑर्थोसेन्ट्रिक बिंदुओं से होकर गुजरता है, केवल एक आयताकार अतिपरवलय हो सकता है। यह Feuerbach के शांकव प्रमेय का परिणाम है जो बताता है कि एक संदर्भ त्रिकोण के सभी परिमिति के लिए जो इसके लंबकेन्द्र से भी गुजरता है, ऐसे परिकलिक के केंद्र का बिंदुपथ (गणित) नौ-बिंदु वृत्त बनाता है और यह कि परिचारिका केवल आयताकार हो सकती है अतिपरवलय। आयताकार अतिपरवलयों के इस परिवार के परिप्रेक्ष्यों का स्थानपथ हमेशा चार ओर्थिक अक्षों पर स्थित होगा। इसलिए यदि एक आयताकार अतिशयोक्ति को चार ओर्थोसेंट्रिक बिंदुओं के माध्यम से खींचा जाता है, तो इसका सामान्य नौ-बिंदु चक्र पर एक निश्चित केंद्र होगा, लेकिन इसमें चार संभावित त्रिकोणों के प्रत्येक ओर्थिक अक्ष पर चार परिप्रेक्ष्य होंगे। नौ-बिंदु वृत्त पर एक बिंदु जो इस आयताकार अतिपरवलय का केंद्र है, की चार अलग-अलग परिभाषाएँ होंगी जो इस बात पर निर्भर करती हैं कि चार संभावित त्रिभुजों में से कौन सा संदर्भ त्रिकोण के रूप में उपयोग किया जाता है।
अच्छी तरह से प्रलेखित आयताकार अतिपरवलय जो चार ओर्थोसेन्ट्रिक बिंदुओं से होकर गुजरता है, संदर्भ त्रिकोण के Feuerbach, Vaclav Jeřábek|Jerábek और Kieper परिधिपरबोलस हैं △ABC के साथ एक सामान्यीकृत प्रणाली में H ऑर्थोसेंटर के रूप में।
चार संभावित त्रिकोणों में चार खतना और प्रतिष्ठित का एक सेट होता है जिसे ऑर्थोनिक इनकॉनिक्स के रूप में जाना जाता है जो कुछ गुणों को साझा करते हैं। चार संभावित त्रिभुजों के साथ इन इनकॉनिक्स के संपर्क उनके सामान्य ऑर्थिक त्रिकोण के शीर्ष पर होते हैं। एक सामान्यीकृत ऑर्थोसेन्ट्रिक प्रणाली में ऑर्थोनिक इनकॉनिक जो त्रिभुज के किनारों पर स्पर्शरेखा है △ABC एक दीर्घवृत्त है और अन्य तीन संभावित त्रिकोणों के ऑर्थोनिक इनकॉनिक्स हाइपरबोलस हैं। ये चार ऑर्थोनिक इनकॉनिक्स भी एक ही ब्रायनचोन प्रमेय बिंदु को साझा करते हैं H, सामान्य नौ-बिंदु केंद्र के निकटतम ऑर्थोसेन्ट्रिक बिंदु। इन ऑर्थोनिक इनकॉनिक्स के केंद्र सिम्मेडियन बिंदु हैं K चार संभावित त्रिभुजों में से।
कई प्रलेखित क्यूबिक हैं जो एक संदर्भ त्रिकोण और उसके ऑर्थोसेंटर से होकर गुजरते हैं। ऑर्थोक्यूबिक - K006 के रूप में जाना जाने वाला सर्कमक्यूबिक दिलचस्प है क्योंकि यह तीन ऑर्थोसेंट्रिक प्रणालियों के साथ-साथ ऑर्थोक त्रिकोण के तीन कोने (लेकिन ऑर्थोक त्रिकोण के ऑर्थोसेंटर नहीं) से गुजरता है। तीन ऑर्थोसेन्ट्रिक प्रणालियाँ अंत:केंद्र और एक्सेंटर हैं, संदर्भ त्रिभुज और इसका ऑर्थोसेंटर और अंत में संदर्भ त्रिकोण का ऑर्थोसेंटर तीन अन्य चौराहे बिंदुओं के साथ है जो इस क्यूबिक में संदर्भ त्रिकोण के परिवृत्त के साथ है।
ऑर्थोसेन्ट्रिक सिस्टम में दो त्रिकोणों के कोई भी दो ध्रुवीय सर्कल (ज्यामिति) ऑर्थोगोनल हैं।[4]
टिप्पणियाँ
- ↑ Kocik, Jerzy; Solecki, Andrzej (2009). "त्रिभुज को सुलझाना" (PDF). American Mathematical Monthly. 116 (3): 228–237.
- ↑ Weisstein, Eric W. "Orthocentric System." From MathWorld--A Wolfram Web Resource. [1]
- ↑ Johnson 1929, p. 182.
- ↑ Johnson 1929, p. 177.
संदर्भ
- Johnson, Roger A. (1929). Modern Geometry: An Elementary Treatise on the Geometry of the Triangle and the Circle. Houghton Mifflin. Republished as Advanced Euclidean Geometry. Dover. 1960; 2007. See especially Chapter IX. Three Notable Points.
बाहरी संबंध
- Weisstein, Eric W. "Orthocenter". MathWorld.
- Weisstein, Eric W. "Feuerbach's Theorem". MathWorld.
- Weisstein, Eric W. "Feuerbach's Conic Theorem". MathWorld.
- Weisstein, Eric W. "Feuerbach Hyperbola". MathWorld.
- Weisstein, Eric W. "Jerabek Hyperbola". MathWorld.
- Weisstein, Eric W. "Kiepert Hyperbola". MathWorld.
- Weisstein, Eric W. "Orthic Inconic". MathWorld.
- Weisstein, Eric W. "Orthic Axis". MathWorld.
- Weisstein, Eric W. "Perspector". MathWorld.
- Bernard Gibert Circumcubic K006
- Clark Kimberling, "Encyclopedia of triangle centers". (Lists some 5000 interesting points associated with any triangle.)