ऑर्थोसेंट्रिक सिस्टम: Difference between revisions

From Vigyanwiki
(No difference)

Revision as of 08:25, 10 May 2023

लम्बकेन्द्र प्रणाली। कोई भी बिंदु अन्य तीन द्वारा गठित त्रिभुज का लंबकेंद्रीय है।

ज्यामिति , लम्बकेन्द्र प्रणाली में समतल पर चार बिंदुओं का एक समूह है, जिनमें से एक अन्य तीन द्वारा गठित त्रिभुज का लम्बकेन्द्र है। समतुल्य रूप से, बिंदुओं के बीच असंयुक्त युग्मों से गुजरने वाली रेखाएँ लंबवत होती हैं, और चार बिंदुओं में से किन्हीं तीन बिंदुओं से गुजरने वाले चार वृत्तों की त्रिज्या समान होती है।[1]

यदि चार बिंदु एक लम्बकेन्द्र प्रणाली बनाते हैं, तो चार बिंदुओं में से प्रत्येक अन्य तीन का लम्बकेन्द्र होता है। इन चार संभावित त्रिकोणों में नौ बिंदुओं वाला एक ही चक्र होगा। नतीजतन, इन चार संभावित त्रिकोणों में सभी एक ही परिधि के साथ परिवृत्त होने चाहिए।

सामान्य नौ-बिंदु वृत्त

कॉमन नौ-पॉइंट सर्कल, जहां O, O4, A4 अन्य तीन लंबकेंद्रीय बिंदुओं से बने त्रिभुज के क्रमशः नौ-बिंदु केंद्र, परिधि और लंबकेंद्रीय हैं A1, A2, A3.

सामान्य नौ-बिंदु वृत्त केंद्र के चार लम्बकेन्द्र बिंदुओं में स्थित है। सामान्य नौ-बिंदु वृत्त की त्रिज्या नौ-बिंदु केंद्र से छह संयोजक में से किसी के मध्य बिंदु तक की दूरी है जो लंबकेंद्रीय बिंदुओं के किसी भी जोड़े से जुड़ती है जिसके माध्यम से सामान्य नौ-बिंदु वृत्त गुजरते है। नौ-बिंदु चक्र चार संभावित त्रिकोणों की ऊंचाई के चरणों में तीन लांबिक विश्लेषण प्रतिच्छेदन से भी गुजरता है।

यह सामान्य नौ-बिंदु केंद्र संयोजक के मध्य बिंदु पर स्थित होता है जो किसी भी लंबकेंद्रीय बिंदु को अन्य तीन लम्बकेन्द्र बिंदुओं से बने त्रिभुज के परिकेंद्र से जोड़ता है।

सामान्य नौ-बिंदु वृत्त सभी 16 अंतःवृत्तों और चार त्रिभुजों के बहिर्वृत्तों के लिए स्पर्शरेखा है, जिनके कोने लंबकेंद्रीय प्रणाली बनाते हैं।[2]


सामान्य ऑर्थोथिक त्रिभुज, इसका अंत: केंद्र और इसके एक्सेंटर

यदि छह संयोजक जो लम्बकेन्द्र बिंदुओं के किसी भी जोड़े से जुड़ते हैं, उन्हें छह रेखाओं तक बढ़ाया जाता है जो एक दूसरे को काटते हैं, तो वे सात प्रतिच्छेदन बिंदु उत्पन्न करते हैं। इनमें से चार बिंदु मूल लम्बकेन्द्र बिंदु हैं और अतिरिक्त तीन बिंदु ऊंचाई के चरणों में आयतीय चौराहे हैं। एक त्रिकोण में इन तीन लांबिक विश्लेषण बिंदुओं में सम्मलित होने से एक ओर्थिक त्रिकोण उत्पन्न होता है जो चार लंबकेंद्रीय बिंदुओं से बने सभी चार संभावित त्रिकोणों के लिए एक समय लेते है।

सामान्य लम्बकेन्द्र त्रिभुज का अंत:केंद्र मूल चार लम्बकेन्द्र बिंदुओं में से एक होना चाहिए। इसके अतिरिक्त, शेष तीन बिंदु इस सामान्य ऑर्थोक त्रिकोण कि भाषा बन जाती हैं। लम्बकेन्द्र बिंदु जो ओर्थिक त्रिभुज का केंद्र बन जाता है, वह लम्बकेन्द्र बिंदु सामान्य नौ-बिंदु केंद्र के सबसे निकट होता है। लंबकेंद्रीय त्रिकोण और मूल चार लम्बकेन्द्र बिंदुओं के बीच यह संबंध सीधे इस तथ्य की ओर ले जाते है कि एक संदर्भ त्रिकोण के केंद्र में और भाषा में एक लंबकेंद्रीय प्रणाली बनाते हैं।[3]

लम्बकेन्द्र बिंदुओं में से एक को दूसरों से अलग करना सामान्य है, विशेष रूप से वह जो ऑर्थोथिक त्रिभुज का केंद्र है; यह एक संदर्भ त्रिकोण △ABC के रूप में चुने गए बाहरी तीन लंबकेंद्रीय बिंदुओं के रूप में H को दर्शाता है। इस सामान्यीकृत विन्यास में, बिंदु H हमेशा त्रिभुज △ABC के अन्दर स्थित होगा, और त्रिभुज △ABC के सभी कोण तीव्र होंगे। चार संभावित त्रिभुज △ABC, △ABH, △ACH, △BCH हैं। छह कनेक्टर एबी, एसी, बीसी, एएच, बीएच, सीएच हैं।

लंबकेंद्रीय प्रणाली और इसके ऑर्थोथिक अक्ष

सामान्यीकृत लंबकेंद्रीय प्रणाली ए, बी, सी, एच, जहां △ABC संदर्भ त्रिकोण है, जो ऑर्थोथिक अक्ष रेखा से जुड़ा है जो तीन प्रतिच्छेदन बिंदुओं से होकर गुजरती है, जब ओर्थिक त्रिकोण का प्रत्येक पक्ष संदर्भ त्रिकोण के प्रत्येक पक्ष से मिलता है। जो अन्य तीन संभावित त्रिभुज है, △ABH, △ACH, △BCH। उनमें से प्रत्येक का अपना ऑर्थोथिक अक्ष है।

यूलर पंक्तियाँ और समरूपता लंबकेंद्रीय प्रणाली

लम्बकेन्द्र प्रणाली। कहाँ O1, O2, O3, O4 लम्बकेन्द्र बिन्दुओं से बने चार संभावित त्रिभुजों का परिकेन्द्र हैं A1, A2, A3, A4.

संवाहक a, b, c, h को चार लम्बकेन्द्र बिंदुओं में से प्रत्येक की स्थिति निर्धारित होती है और n = (a + b + c + h) / 4 को N, सामान्य नौ-बिंदु केंद्र की स्थिति संवाहक होते है। जो चार लम्बकेन्द्र बिंदुओं में से प्रत्येक को उनके सामान्य नौ-बिंदु केंद्र से मिलाएं और उन्हें चार रेखाओं में विस्तारित करें। ये चार रेखाएँ अब उन चार संभावित त्रिभुजों की यूलर रेखाओं का प्रतिनिधित्व करती हैं जहाँ विस्तारित रेखा है HN त्रिभुज की यूलर रेखा है ABC और विस्तारित रेखा AN त्रिभुज की यूलर रेखा है BCH आदि। यदि एक बिंदु P यूलर लाइन पर चुना जाता है तो संदर्भ त्रिभुज की रेखा HN ABC एक स्थिति सदिश p है जो p = n + α(hn) जहाँ α एक शुद्ध स्थिरांक है जो चार लम्बकेन्द्र बिंदुओं और तीन और बिंदुओं PA, PB, PC की स्थिति से स्वतंत्र है। वह pa = n + α(an) इत्यादि, फिर पी, पीए, पीबी, पीसी एक लम्बकेन्द्र प्रणाली बनाते हैं। यह उत्पन्न लम्बकेन्द्र प्रणाली हमेशा चार बिंदुओं की मूल प्रणाली के लिए समरूप होती है जिसमें सामान्य नौ-बिंदु केंद्र सजातीय केंद्र और α समानता का अनुपात होता है।

जब की P को केन्द्रक G, के रूप में चुना जाता है, α = –⅓. जब P को परिकेन्द्र O के रूप में चुना जाता है, तो α = –1 और उत्पन्न लम्बकेन्द्र प्रणाली मूल प्रणाली के साथ-साथ नौ-बिंदु केंद्र के बारे में इसका प्रतिबिंब होने के साथ-साथ सर्वांगसमता होता है। इस विन्यास में PA, PB, PC मूल संदर्भ त्रिभुज ABC का जॉनसन त्रिभुज बनाते हैं। परिणामस्वरूप चारों त्रिभुजों के परिवृत्त ABC, △ABH, △ACH, △BCH सभी समान हैं और जॉनसन वृत्तों का एक आकृति बनाते हैं।

आगे की विशेषताएँ

लंबकेंद्रीय प्रणाली की चार यूलर लाइनें लंबकेंद्रीय प्रणाली के चार ऑर्थोथिक अक्षों के लिए आयतीय हैं।

मूल चार लम्बकेन्द्र बिंदुओं में से किसी भी जोड़ी में सम्मलित होने वाले छह योजक के जोड़े का उत्पादन करेंगे जो एक दूसरे के लिए लांबिक विश्लेषण हैं जैसे कि वे दूरी समीकरणों को पूरा करते हैं

जहाँ R चार संभावित त्रिभुजों की उभयनिष्ठ परिधि है। जो कि नियम के साथ ये समीकरण सर्वसमिका में परिणत होते हैं

फायरबैक के प्रमेय में कहा गया है कि नौ-बिंदु वाला वृत्त अंतःवृत्त और एक संदर्भ त्रिकोण के तीन बाह्यवृत्तों को स्पर्श करता है। चूंकि नौ-बिंदु चक्र एक लंबकेंद्रीय प्रणाली में सभी चार संभावित त्रिकोणों के लिए साधारण है, यह चार संभावित त्रिकोणों के अंतःवृत्त और बहिर्वृत्त वाले 16 समितियों के लिए स्पर्शरेखा है।

कोई भी शांकव जो चार लम्बकेन्द्र बिंदुओं से होकर गुजरता है, केवल एक आयताकार अतिपरवलय हो सकता है। यह लुडविग फेउरबैक के शांकव प्रमेय का परिणाम है जो बताता है कि एक संदर्भ त्रिकोण के सभी परिमितियों के लिए जो इसके लंबकेन्द्र से भी गुजरता है, इस प्रकार के परिश्रवण के केंद्र का बिंदुपथ नौ-बिंदु वृत्त बनाता है और यह कि परिचारिकाएँ केवल आयताकार अतिपरवलय हो सकती हैं। आयताकार अतिपरवलयों के इस परिवार के परिप्रेक्ष्यों का स्थानपथ हमेशा चार ओर्थिक अक्षों पर स्थित होता है। इसलिए यदि एक आयताकारअतिशयोक्ति को चार लंबकेंद्रीय बिंदुओं के माध्यम से खींचा जाता है, तो इसका सामान्य नौ-बिंदु चक्र पर एक निश्चित केंद्र होगा, परंतु इसमें चार संभावित त्रिकोणों के प्रत्येक ओर्थिक अक्ष पर चार परिप्रेक्ष्य होते है। जो नौ-बिंदु वृत्त पर एक बिंदु जो इस आयताकार अतिपरवलय का केंद्र है, की चार अलग-अलग परिभाषाएँ होंगी जो इस बात पर निर्भर करती हैं कि चार संभावित त्रिभुजों में से कौन सा संदर्भ त्रिकोण के रूप में उपयोग किया जाता है।

अच्छी तरह से प्रलेखित आयताकार अतिशयोक्ति जो चार लम्बकेन्द्र बिंदुओं से होकर गुजरते हैं, संदर्भ त्रिकोण △ABC के फेउरबैक, जेराबेक और कीपर्ट सर्कमहाइपरबोलस हैं, जो H के साथ लम्बकेन्द्र के रूप में सामान्यीकृत प्रणाली में हैं।

चार संभावित त्रिभुजों में चार प्रतिष्ठित का एक समूह होता है जिसे लम्बकेन्द्र अनुप्रतीकात्मक के रूप में जाना जाता है जो कुछ गुणों को साझा करते हैं। चार संभावित त्रिभुजों के साथ इन अनुप्रतीकात्मक के संपर्क उनके सामान्य ऑर्थिक त्रिकोण के शीर्ष पर होते हैं। एक सामान्यीकृत लम्बकेन्द्र प्रणाली में त्रिभुज △ABC की भुजाओं पर स्पर्श करने वाला लम्बकेन्द्र अनुप्रतीकात्मक एक अण्डाकार होता है और अन्य तीन संभावित त्रिभुजों के लम्बकेन्द्र अनुप्रतीकात्मक अतिशयोक्ति होते हैं। ये चार ऑर्थिक अनुप्रतीकात्मक भी एक ही ब्रायनचोन बिंदु H साझा करते हैं , जो सामान्य नौ-बिंदु केंद्र के निकटतम लम्बकेन्द्र बिंदु है। इन लम्बकेन्द्र अनुप्रतीकात्मक के केंद्र चार संभावित त्रिभुजों के उपमाध्य बिंदु K हैं।

कई प्रलेखित घनाकृति हैं जो एक संदर्भ त्रिकोण और उसके लम्बकेन्द्र से होकर गुजरते हैं। ऑर्थोक्यूबिक - K006 के रूप में जाना जाने वाला सर्कमक्यूबिक रोचक है चूंकि यह तीन लंबकेंद्रीय प्रणालियों के साथ-साथ ऑर्थोक त्रिकोण के तीन जगहों से गुजरता है। तीन लंबकेंद्रीय प्रणालियाँ अंत:केंद्र और उच्चारण शैली हैं, संदर्भ त्रिभुज और इसका लम्बकेन्द्र और अंत में संदर्भ त्रिकोण का लम्बकेन्द्र तीन अन्य प्रतिच्छेदन बिंदुओं के साथ है जो इस घनाकृति में संदर्भ त्रिकोण के परिवृत्त के साथ है।

लंबकेंद्रीय प्रणाली में दो त्रिकोणों के कोई भी दो ध्रुवीय वृत्त लांबिक विश्लेषण हैं।[4]

टिप्पणियाँ

  1. Kocik, Jerzy; Solecki, Andrzej (2009). "त्रिभुज को सुलझाना" (PDF). American Mathematical Monthly. 116 (3): 228–237.
  2. Weisstein, Eric W. "Orthocentric System." From MathWorld--A Wolfram Web Resource. [1]
  3. Johnson 1929, p. 182.
  4. Johnson 1929, p. 177.


संदर्भ


बाहरी संबंध