टोपोलॉजिकल कंकाल: Difference between revisions

From Vigyanwiki
Line 1: Line 1:
[[File:Skel.png|thumb|right|एक आकृति और उसका स्केलेटन , जिसकी गणना टोपोलॉजी-प्रिजर्विंग थिनिंग एल्गोरिथम के साथ की जाती है।]]आकार विश्लेषण में, एक आकृति का स्केलेटन (या टोपोलॉजिकल स्केलेटन ) उस आकृति का एक क्षीण संस्करण है जो इसकी सीमाओं के समान है। स्केलेटन सामान्यतः आकार के ज्यामितीय और सामयिक गुणों पर जोर देता है, जैसे इसकी जुड़ाव, टोपोलॉजी, [[लंबाई]], [[दिशा (ज्यामिति)|दिशा]] और [[चौड़ाई]] पर होती है। आकार की सीमा तक इसके बिंदुओं की दूरी के साथ, स्केलेटन आकृति के [[छवि प्रतिनिधित्व|प्रतिबिंब प्रतिनिधित्व]] के रूप में भी काम कर सकता है (उनमें आकृति को फिर से बनाने के लिए आवश्यक सभी जानकारी होती है)।
[[File:Skel.png|thumb|right|एक आकृति और उसका स्केलेटन , जिसकी गणना टोपोलॉजी-प्रिजर्विंग थिनिंग एल्गोरिथम के साथ की जाती है।]]आकृति विश्लेषण में, एक आकृति का स्केलेटन (या टोपोलॉजिकल स्केलेटन ) उस आकृति का एक क्षीण संस्करण है जो इसकी सीमाओं के समान है। स्केलेटन सामान्यतः आकृति के ज्यामितीय और सामयिक गुणों पर जोर देता है, जैसे इसकी जुड़ाव, टोपोलॉजी, [[लंबाई]], [[दिशा (ज्यामिति)|दिशा]] और [[चौड़ाई]] पर होती है। आकृति की सीमा तक इसके बिंदुओं की दूरी के साथ, स्केलेटन आकृति के [[छवि प्रतिनिधित्व|प्रतिबिंब प्रतिनिधित्व]] के रूप में भी काम कर सकता है (उनमें आकृति को फिर से बनाने के लिए आवश्यक सभी जानकारी होती है)।


तकनीकी साहित्य में स्केलेटन  की कई अलग-अलग गणितीय परिभाषाएँ हैं, और उनकी गणना के लिए कई अलग-अलग एल्गोरिदम हैं। स्केलेटन  के विभिन्न प्रकार भी पाए जा सकते हैं, जिनमें सीधे स्केलेटन , [[रूपात्मक कंकाल|रूपात्मक स्केलेटन]]  आदि सम्मलित हैं।
तकनीकी साहित्य में स्केलेटन  की कई अलग-अलग गणितीय परिभाषाएँ हैं, और उनकी गणना के लिए कई अलग-अलग एल्गोरिदम हैं। स्केलेटन  के विभिन्न प्रकार भी पाए जा सकते हैं, जिनमें सीधे स्केलेटन , [[रूपात्मक कंकाल|रूपात्मक स्केलेटन]]  आदि सम्मलित हैं।
Line 15: Line 15:
{{Main|घास की आग को रूपांतरित करना}}
{{Main|घास की आग को रूपांतरित करना}}


बेडफ़ोर्ड, मैसाचुसेट्स में [[हंसकॉम एयर फोर्स बेस]], में वायु सेना कैम्ब्रिज अनुसंधान प्रयोगशालाओं के [[हैरी ब्लम (वैज्ञानिक)]]<ref>{{harvs|first=Harry|last=Blum|author-link=Harry Blum (scientist)|year=1967|txt}}</ref> ने अपने सेमिनल पेपर में,  एक घास पर अग्नि प्रसार के एक सहज मॉडल का उपयोग करते हुए एक आकार के स्केलेटन  की गणना के लिए एक औसत दर्जे की धुरी को परिभाषित किया। जहां क्षेत्र में दिए गए आकार का रूप होता है।। यदि कोई उस घास के मैदान की सीमा पर सभी बिंदुओं पर एक साथ "आग लगाता है", तो स्केलेटन  विकट: शमन बिंदुओं का समूह होता है, अर्थात वे बिंदु जहां दो या दो से अधिक तरंगाग्र मिलते हैं। यह सहज वर्णन कई अधिक सटीक परिभाषाओं के लिए प्रारंभिक बिंदु है।
बेडफ़ोर्ड, मैसाचुसेट्स में [[हंसकॉम एयर फोर्स बेस]], में वायु सेना कैम्ब्रिज अनुसंधान प्रयोगशालाओं के [[हैरी ब्लम (वैज्ञानिक)]]<ref>{{harvs|first=Harry|last=Blum|author-link=Harry Blum (scientist)|year=1967|txt}}</ref> ने अपने सेमिनल पेपर में,  एक घास पर अग्नि प्रसार के एक सहज मॉडल का उपयोग करते हुए एक आकृति के स्केलेटन  की गणना के लिए एक औसत दर्जे की धुरी को परिभाषित किया। जहां क्षेत्र में दिए गए आकृति का रूप होता है।। यदि कोई उस घास के मैदान की सीमा पर सभी बिंदुओं पर एक साथ "आग लगाता है", तो स्केलेटन  विकट: शमन बिंदुओं का समूह होता है, अर्थात वे बिंदु जहां दो या दो से अधिक तरंगाग्र मिलते हैं। यह सहज वर्णन कई अधिक सटीक परिभाषाओं के लिए प्रारंभिक बिंदु है।


=== अधिकतम डिस्क (या बॉल) के केंद्र ===
=== अधिकतम डिस्क (या बॉल) के केंद्र ===
Line 24: Line 24:
* यदि अन्य डिस्क D में B है, तो <math>D\not\subseteq A</math>.
* यदि अन्य डिस्क D में B है, तो <math>D\not\subseteq A</math>.


आकार ए के स्केलेटन  को परिभाषित करने का एक विधि ए में सभी अधिकतम डिस्क के केंद्रों के सेट के रूप में है।<ref>{{harvs|first=A. K.|last=Jain|year=1989|txt}}, Section 9.9, p.&nbsp;387.</ref>
आकृति ए के स्केलेटन  को परिभाषित करने का एक विधि ए में सभी अधिकतम डिस्क के केंद्रों के सेट के रूप में है।<ref>{{harvs|first=A. K.|last=Jain|year=1989|txt}}, Section 9.9, p.&nbsp;387.</ref>




Line 48: Line 48:


* आकृति विज्ञान का उपयोग करना मूल संचालक (रूपात्मक स्केलेटन  देखें<ref name="gonzales543">{{harvtxt|Gonzales|Woods|2001}}, Section 9.5.7, p.&nbsp;543.</ref>)
* आकृति विज्ञान का उपयोग करना मूल संचालक (रूपात्मक स्केलेटन  देखें<ref name="gonzales543">{{harvtxt|Gonzales|Woods|2001}}, Section 9.5.7, p.&nbsp;543.</ref>)
* आकार आधारित [[छंटाई (आकृति विज्ञान)]] के साथ रूपात्मक संचालकों का पूरक<ref>{{harvtxt|Abeysinghe|Baker|Chiu|Ju|2008}}.</ref>
* आकृति आधारित [[छंटाई (आकृति विज्ञान)]] के साथ रूपात्मक संचालकों का पूरक<ref>{{harvtxt|Abeysinghe|Baker|Chiu|Ju|2008}}.</ref>
* सीमा खंडों से दूरियों के प्रतिच्छेदन उपयोग करना{{sfnp|Kimmel|Shaked|Kiryati|Bruckstein|1995}}
* सीमा खंडों से दूरियों के प्रतिच्छेदन उपयोग करना{{sfnp|Kimmel|Shaked|Kiryati|Bruckstein|1995}}
* वक्र विकासक्रम का उपयोग करना <ref>{{harvtxt|Tannenbaum|1996}}</ref><ref>{{harvtxt|Bai|Longin|Wenyu|2007}}.</ref>
* वक्र विकासक्रम का उपयोग करना <ref>{{harvtxt|Tannenbaum|1996}}</ref><ref>{{harvtxt|Bai|Longin|Wenyu|2007}}.</ref>
* स्तर सेट का उपयोग करना<ref name="sethian"/>
* स्तर सेट का उपयोग करना<ref name="sethian"/>
*अतर फलन पर रिज बिन्दु को ढूँढना<ref name="jain" />
*अतर फलन पर रिज बिन्दु को ढूँढना<ref name="jain" />
*अभिसरण तक, "आकार को करना" त्वक्षण टोपोलॉजी को बदले बिना<ref>{{harvs|first=A. K.|last=Jain|year=1989|txt}}, Section 9.9, p.&nbsp;389.</ref>
*अभिसरण तक, "आकृति को करना" त्वक्षण टोपोलॉजी को बदले बिना<ref>{{harvs|first=A. K.|last=Jain|year=1989|txt}}, Section 9.9, p.&nbsp;389.</ref>
* झांग-सुएन थिनिंग एल्गोरिथम <ref>{{Cite journal |last1=Zhang |first1=T. Y. |last2=Suen |first2=C. Y. |date=1984-03-01 |title=डिजिटल पैटर्न को पतला करने के लिए एक तेज़ समानांतर एल्गोरिदम|url=https://doi.org/10.1145/357994.358023 |journal=Communications of the ACM |volume=27 |issue=3 |pages=236–239 |doi=10.1145/357994.358023 |s2cid=39713481 |issn=0001-0782}}</ref>
* झांग-सुएन थिनिंग एल्गोरिथम <ref>{{Cite journal |last1=Zhang |first1=T. Y. |last2=Suen |first2=C. Y. |date=1984-03-01 |title=डिजिटल पैटर्न को पतला करने के लिए एक तेज़ समानांतर एल्गोरिदम|url=https://doi.org/10.1145/357994.358023 |journal=Communications of the ACM |volume=27 |issue=3 |pages=236–239 |doi=10.1145/357994.358023 |s2cid=39713481 |issn=0001-0782}}</ref>
स्केलेटन ाइजेशन एल्गोरिदम कभी-कभी आउटपुट स्केलेटन  पर अवांछित शाखाएं बना सकते हैं। इन शाखाओं को हटाने के लिए अक्सर प्रूनिंग (आकृति विज्ञान) का उपयोग किया जाता है।
स्केलेटन ाइजेशन एल्गोरिदम कभी-कभी आउटपुट स्केलेटन  पर अवांछित शाखाएं बना सकते हैं। इन शाखाओं को हटाने के लिए अक्सर प्रूनिंग (आकृति विज्ञान) का उपयोग किया जाता है।

Revision as of 01:29, 2 May 2023

एक आकृति और उसका स्केलेटन , जिसकी गणना टोपोलॉजी-प्रिजर्विंग थिनिंग एल्गोरिथम के साथ की जाती है।

आकृति विश्लेषण में, एक आकृति का स्केलेटन (या टोपोलॉजिकल स्केलेटन ) उस आकृति का एक क्षीण संस्करण है जो इसकी सीमाओं के समान है। स्केलेटन सामान्यतः आकृति के ज्यामितीय और सामयिक गुणों पर जोर देता है, जैसे इसकी जुड़ाव, टोपोलॉजी, लंबाई, दिशा और चौड़ाई पर होती है। आकृति की सीमा तक इसके बिंदुओं की दूरी के साथ, स्केलेटन आकृति के प्रतिबिंब प्रतिनिधित्व के रूप में भी काम कर सकता है (उनमें आकृति को फिर से बनाने के लिए आवश्यक सभी जानकारी होती है)।

तकनीकी साहित्य में स्केलेटन की कई अलग-अलग गणितीय परिभाषाएँ हैं, और उनकी गणना के लिए कई अलग-अलग एल्गोरिदम हैं। स्केलेटन के विभिन्न प्रकार भी पाए जा सकते हैं, जिनमें सीधे स्केलेटन , रूपात्मक स्केलेटन आदि सम्मलित हैं।

तकनीकी साहित्य में, कुछ लेखकों द्वारा स्केलेटन और औसत दर्जे की धुरी की अवधारणाओं का परस्पर उपयोग किया जाता है, [1][2] जबकि कुछ अन्य लेखक[3][4][5] उन्हें संबंधित मानते हैं, लेकिन समान नहीं। इसी तरह, स्केलेटन करण और पतलेपन की अवधारणाओं को भी कुछ लोगों द्वारा समान माना जाता है, [2]और दूसरों के द्वारा नहीं होता है।[3]

कंप्यूटर दृष्टि, प्रतिबिंब विश्लेषण, प्रतिरूप अभिज्ञान और ऑप्टिकल चरित्र पहचान, फिंगरप्रिंट पहचान, दृश्य निरीक्षण या प्रतिबिंब संपीड़न जैसे उद्देश्यों के लिए स्केलेटन का व्यापक रूप से उपयोग किया जाता है। जीवन विज्ञान के भीतर प्रोटीन की तह की विशेषता के लिए स्केलेटन ों का व्यापक उपयोग पाया गया[6] और विभिन्न जैविक पैमानों पर पादप आकृति विज्ञान।[7]


गणितीय परिभाषाएँ

तकनीकी साहित्य में स्केलेटन ों की कई अलग-अलग गणितीय परिभाषाएँ हैं; उनमें से अधिकांश कॉन्टिनम (टोपोलॉजी) में समान परिणाम देते हैं, लेकिन सामान्यतः पर असतत स्थानों में अलग-अलग परिणाम देते हैं।

अग्नि प्रसार मॉडल के शमन बिंदु

बेडफ़ोर्ड, मैसाचुसेट्स में हंसकॉम एयर फोर्स बेस, में वायु सेना कैम्ब्रिज अनुसंधान प्रयोगशालाओं के हैरी ब्लम (वैज्ञानिक)[8] ने अपने सेमिनल पेपर में, एक घास पर अग्नि प्रसार के एक सहज मॉडल का उपयोग करते हुए एक आकृति के स्केलेटन की गणना के लिए एक औसत दर्जे की धुरी को परिभाषित किया। जहां क्षेत्र में दिए गए आकृति का रूप होता है।। यदि कोई उस घास के मैदान की सीमा पर सभी बिंदुओं पर एक साथ "आग लगाता है", तो स्केलेटन विकट: शमन बिंदुओं का समूह होता है, अर्थात वे बिंदु जहां दो या दो से अधिक तरंगाग्र मिलते हैं। यह सहज वर्णन कई अधिक सटीक परिभाषाओं के लिए प्रारंभिक बिंदु है।

अधिकतम डिस्क (या बॉल) के केंद्र

एक डिस्क (या बॉल) B को समुच्चय A में अधिकतम कहा जाता है यदि

  • , और
  • यदि अन्य डिस्क D में B है, तो .

आकृति ए के स्केलेटन को परिभाषित करने का एक विधि ए में सभी अधिकतम डिस्क के केंद्रों के सेट के रूप में है।[9]


द्वि-स्पर्शी वृत्तों के केंद्र

आकृति A के स्केलेटन को डिस्क के केंद्रों के सेट के रूप में भी परिभाषित किया जा सकता है जो A की सीमा को दो या दो से अधिक स्थानों पर स्पर्श करता है।[10]यह परिभाषा आश्वस्त करती है कि स्केलेटन बिंदु आकृति सीमा से समान दूरी पर हैं और गणितीय रूप से ब्लम के औसत दर्जे के अक्ष परिवर्तन के समतुल्य हैं।

दूरी फलन के रिजैस

स्केलेटन की कई परिभाषाएँ दूरी फलन की अवधारणा का उपयोग करती हैं, जो एक ऐसा फलन है जो प्रत्येक बिंदु x के लिए आकृति A के अंदर A की सीमा पर निकटतम बिंदु पर लौटता है। दूरी फलन का उपयोग करना बहुत आकृष्ट करता है क्योंकि इसकी गणना अपेक्षाकृत तेज़ होती है।

दूरी फलन का उपयोग कर स्केलेटन की परिभाषाओं में से एक दूरी फलन की चोटी के रूप में है।[3] साहित्य में एक आम गलत बयान है कि स्केलेटन में ऐसे बिंदु होते हैं जो दूरी परिवर्तन में स्थानीय रूप से अधिकतम होते हैं। यह केवल मामला नहीं है, क्योंकि दूरी परिवर्तन और परिणामी स्केलेटन की सदृश करना भी दिखाई देगा। रिज की ऊंचाई अलग-अलग हो सकती है, इसलिए रिज पर एक बिंदु रिज पर उसके निकटतम पड़ोसी से कम हो सकता है। इस प्रकार यह एक स्थानीय अधिकतम नहीं है, भले ही यह रिज से संबंधित हो। हालाँकि, इसकी जमीनी दूरी की तुलना में यह लंबवत रूप से कम दूर है। अन्यथा यह ढलान का हिस्सा होगा।

अन्य परिभाषाएं

  • डिस्टेंस फलन में बिना प्रतिप्रवाह खंड वाले बिंदु, एक बिंदु x धारा प्रतिकूल x से प्रारंभ होने वाला खंड है, जो अधिकतम प्रवणता पथ का अनुसरण करता है।
  • बिंदु जहां दूरी फ़ंक्शन का ढाल 1 से भिन्न होता है (या, समकक्ष, अच्छी तरह से परिभाषित नहीं)
  • लाइनों का सबसे छोटा संभव सेट जो टोपोलॉजी को संरक्षित करता है और सीमाओं के समतुल्य है

स्केलेटन करण एल्गोरिदम

डिजिटल प्रतिबिंब में आकृतियों के साथ-साथ निरंतर सेट सिद्धांत के लिए स्केलेटन की गणना के लिए कई अलग-अलग एल्गोरिदम होते हैं।

  • आकृति विज्ञान का उपयोग करना मूल संचालक (रूपात्मक स्केलेटन देखें[10])
  • आकृति आधारित छंटाई (आकृति विज्ञान) के साथ रूपात्मक संचालकों का पूरक[11]
  • सीमा खंडों से दूरियों के प्रतिच्छेदन उपयोग करना[12]
  • वक्र विकासक्रम का उपयोग करना [13][14]
  • स्तर सेट का उपयोग करना[5]
  • अतर फलन पर रिज बिन्दु को ढूँढना[3]
  • अभिसरण तक, "आकृति को करना" त्वक्षण टोपोलॉजी को बदले बिना[15]
  • झांग-सुएन थिनिंग एल्गोरिथम [16]

स्केलेटन ाइजेशन एल्गोरिदम कभी-कभी आउटपुट स्केलेटन पर अवांछित शाखाएं बना सकते हैं। इन शाखाओं को हटाने के लिए अक्सर प्रूनिंग (आकृति विज्ञान) का उपयोग किया जाता है।

यह भी देखें

  • मध्य अक्ष
  • सीधा स्केलेटन
  • बीटा स्केलेटन |β-स्केलेटन
  • घास का रूपांतरण
  • कंप्यूटर फ़ॉन्ट#स्ट्रोक-आधारित फ़ॉन्ट|स्ट्रोक-आधारित फ़ॉन्ट

टिप्पणियाँ

  1. Jain, Kasturi & Schunck (1995), Section 2.5.10, p. 55; Golland & Grimson (2000); Dougherty (1992); Ogniewicz (1995).
  2. 2.0 2.1 Gonzales & Woods (2001), Section 11.1.5, p. 650
  3. 3.0 3.1 3.2 3.3 A. K. Jain (1989), Section 9.9, p. 382.
  4. Serra (1982).
  5. 5.0 5.1 Sethian (1999), Section 17.5.2, p. 234.
  6. Abeysinghe et al. (2008)
  7. Bucksch (2014)
  8. Harry Blum (1967)
  9. A. K. Jain (1989), Section 9.9, p. 387.
  10. 10.0 10.1 Gonzales & Woods (2001), Section 9.5.7, p. 543.
  11. Abeysinghe et al. (2008).
  12. Kimmel et al. (1995).
  13. Tannenbaum (1996)
  14. Bai, Longin & Wenyu (2007).
  15. A. K. Jain (1989), Section 9.9, p. 389.
  16. Zhang, T. Y.; Suen, C. Y. (1984-03-01). "डिजिटल पैटर्न को पतला करने के लिए एक तेज़ समानांतर एल्गोरिदम". Communications of the ACM. 27 (3): 236–239. doi:10.1145/357994.358023. ISSN 0001-0782. S2CID 39713481.


संदर्भ


ओपन सोर्स सॉफ्टवेयर

बाहरी संबंध