संरक्षित वर्तमान: Difference between revisions
(Created page with "{{Unreferenced|date=December 2009}} भौतिकी में एक संरक्षित धारा एक धारा है, <math>j^\mu</math>, जो निर...") |
No edit summary |
||
Line 1: | Line 1: | ||
भौतिकी में एक संरक्षित धारा एक धारा है, <math>j^\mu</math>, जो निरंतरता समीकरण <math>\partial_\mu j^\mu=0</math> को संतुष्ट करता है . निरंतरता समीकरण एक संरक्षण नियम का प्रतिनिधित्व करता है, इसलिए यह नाम है। | |||
भौतिकी में एक संरक्षित धारा एक धारा है, <math>j^\mu</math>, जो निरंतरता समीकरण | |||
वास्तव में, इसकी सतह के माध्यम से कोई शुद्ध धारा नहीं होने के लिए पर्याप्त मात्रा <math>V</math> पर निरंतरता समीकरण को एकीकृत करना संरक्षण नियम की ओर जाता है<math display="block"> \frac{\partial}{\partial t}Q = 0\;,</math> | |||
<math display="block"> \frac{\partial}{\partial t}Q = 0\;,</math> | |||
[[गेज सिद्धांत]] में गेज | |||
जहाँ <math display="inline">Q = \int_V j^0 dV</math> [[चार्ज (भौतिकी)]] है। | |||
[[गेज सिद्धांत]] में गेज क्षेत्र संरक्षित धाराओं से जोड़े जाते हैं। उदाहरण के लिए, [[विद्युत चुम्बकीय]] क्षेत्र आवेश संरक्षण से जुड़ता है। | |||
== संरक्षित मात्रा और [[समरूपता]] == | == संरक्षित मात्रा और [[समरूपता]] == | ||
संरक्षित धारा एक [[निरंतर कार्य]] | संरक्षित धारा एक [[निरंतर कार्य]] अनुवादकीय समरूपता रखने वाली मात्रा के [[विहित संयुग्म]] का प्रवाह है। संरक्षित धारा के लिए निरंतरता समीकरण एक [[संरक्षण कानून (भौतिकी)|संरक्षण नियम (भौतिकी)]] का एक कथन है। | ||
विहित संयुग्म मात्रा के उदाहरण हैं: | विहित संयुग्म मात्रा के उदाहरण हैं: | ||
*[[समय]] और [[ऊर्जा]] - समय की सतत अनुवादात्मक समरूपता का तात्पर्य ऊर्जा के संरक्षण से है | *[[समय]] और [[ऊर्जा]] - समय की सतत अनुवादात्मक समरूपता का तात्पर्य ऊर्जा के संरक्षण से है | ||
*[[अंतरिक्ष]] और संवेग - अंतरिक्ष की निरंतर [[अनुवादकीय समरूपता]] का तात्पर्य संवेग के संरक्षण से है | *[[अंतरिक्ष]] और संवेग - अंतरिक्ष की निरंतर [[अनुवादकीय समरूपता]] का तात्पर्य संवेग के संरक्षण से है | ||
*अंतरिक्ष और कोणीय [[गति]] - अंतरिक्ष की निरंतर घूर्णी समरूपता का तात्पर्य कोणीय गति के संरक्षण से है | *अंतरिक्ष और कोणीय [[गति]] - अंतरिक्ष की निरंतर घूर्णी समरूपता का तात्पर्य कोणीय गति के संरक्षण से है | ||
*[[ तरंग क्रिया ]] [[ चरण (लहरें) ]] और [[ बिजली का आवेश ]] - वेव | *[[ तरंग क्रिया | तरंग क्रिया]] [[ चरण (लहरें) | चरण (लहरें)]] और [[ बिजली का आवेश | बिजली का आवेश]] - वेव कार्य के निरंतर चरण कोण समरूपता का तात्पर्य इलेक्ट्रिक चार्ज या चार्ज का संरक्षण है | ||
संरक्षित धाराएं [[सैद्धांतिक भौतिकी]] में एक अत्यंत महत्वपूर्ण भूमिका निभाती हैं, क्योंकि नोएदर का प्रमेय एक संरक्षित धारा के अस्तित्व को अध्ययन के तहत प्रणाली में कुछ मात्रा की समरूपता के अस्तित्व से जोड़ता है। व्यावहारिक रूप से, सभी संरक्षित धाराएँ नोथेर धाराएँ हैं, क्योंकि एक संरक्षित धारा के अस्तित्व का तात्पर्य एक समरूपता के अस्तित्व से है। संरक्षित धाराएं आंशिक अंतर समीकरणों के सिद्धांत में एक महत्वपूर्ण भूमिका निभाती हैं, क्योंकि एक संरक्षित धारा का अस्तित्व [[गति के स्थिरांक]] के अस्तित्व की ओर | संरक्षित धाराएं [[सैद्धांतिक भौतिकी]] में एक अत्यंत महत्वपूर्ण भूमिका निभाती हैं, क्योंकि नोएदर का प्रमेय एक संरक्षित धारा के अस्तित्व को अध्ययन के तहत प्रणाली में कुछ मात्रा की समरूपता के अस्तित्व से जोड़ता है। व्यावहारिक रूप से, सभी संरक्षित धाराएँ नोथेर धाराएँ हैं, क्योंकि एक संरक्षित धारा के अस्तित्व का तात्पर्य एक समरूपता के अस्तित्व से है। संरक्षित धाराएं आंशिक अंतर समीकरणों के सिद्धांत में एक महत्वपूर्ण भूमिका निभाती हैं, क्योंकि एक संरक्षित धारा का अस्तित्व [[गति के स्थिरांक]] के अस्तित्व की ओर संकेत करता है, जो एक [[ पत्तियों से सजाना | पत्तियों से सजाना]] को परिभाषित करने के लिए आवश्यक है और इस प्रकार एक एकीकृत प्रणाली है। संरक्षण नियम को 4-[[विचलन]] के लुप्त होने के रूप में व्यक्त किया गया है, जहां नोएदर चार्ज (भौतिकी) [[चार-वर्तमान]] | 4-वर्तमान का शून्य घटक बनाता है। | ||
== उदाहरण == | == उदाहरण == | ||
=== विद्युत चुंबकत्व === | === विद्युत चुंबकत्व === | ||
उदाहरण के लिए मैक्सवेल के समीकरणों के अंकन में आवेश का संरक्षण | |||
<math display="block">\frac{\partial \rho} {\partial t} + \nabla \cdot \mathbf{J} = 0</math> | <math display="block">\frac{\partial \rho} {\partial t} + \nabla \cdot \mathbf{J} = 0</math> | ||
जहाँ | |||
* ρ मुक्त विद्युत आवेश घनत्व है (C/m | * ρ मुक्त विद्युत आवेश घनत्व है (C/m<sup>3</sup> की इकाइयों में) | ||
* जे वर्तमान घनत्व है <math display="block"> \mathbf J = \rho \mathbf v </math> v के साथ आवेशों के वेग के रूप में। | * जे वर्तमान घनत्व है <math display="block"> \mathbf J = \rho \mathbf v </math> v के साथ आवेशों के वेग के रूप में। | ||
समीकरण द्रव्यमान (या अन्य संरक्षित मात्रा) पर समान रूप से | समीकरण द्रव्यमान (या अन्य संरक्षित मात्रा) पर समान रूप से प्रयुक्त होगा, जहां शब्द ''द्रव्यमान'' को ऊपर दिए गए ''विद्युत आवेश'' शब्द के स्थान पर प्रतिस्थापित किया गया है। | ||
===जटिल अदिश क्षेत्र=== | ===जटिल अदिश क्षेत्र=== | ||
लैग्रेंजियन घनत्व | |||
<math display="block"> \mathcal{L}=\partial_\mu\phi^*\,\partial^\mu\phi +V(\phi^*\,\phi)</math> | <math display="block"> \mathcal{L}=\partial_\mu\phi^*\,\partial^\mu\phi +V(\phi^*\,\phi)</math> | ||
एक जटिल अदिश क्षेत्र की <math display> \phi:\mathbb{R}^{n+1}\mapsto\mathbb{C} </math> समरूपता परिवर्तन के तहत अपरिवर्तनीय है | एक जटिल अदिश क्षेत्र की <math display> \phi:\mathbb{R}^{n+1}\mapsto\mathbb{C} </math> समरूपता परिवर्तन के तहत अपरिवर्तनीय है | ||
Line 36: | Line 37: | ||
<math display="block"> j^\mu:=\frac{d\mathcal{L}}{d(\partial_\mu)\phi}\,\frac{d(\delta\phi)}{d\alpha}\bigg|_{\alpha=0}+\frac{d\mathcal{L}}{d(\partial_\mu)\phi^*}\,\frac{d(\delta\phi^*)}{d\alpha}\bigg|_{\alpha=0}= i\,\phi\,(\partial^\mu\phi^*)-i\,\phi^*\,(\partial^\mu\phi)</math> | <math display="block"> j^\mu:=\frac{d\mathcal{L}}{d(\partial_\mu)\phi}\,\frac{d(\delta\phi)}{d\alpha}\bigg|_{\alpha=0}+\frac{d\mathcal{L}}{d(\partial_\mu)\phi^*}\,\frac{d(\delta\phi^*)}{d\alpha}\bigg|_{\alpha=0}= i\,\phi\,(\partial^\mu\phi^*)-i\,\phi^*\,(\partial^\mu\phi)</math> | ||
जो निरंतरता समीकरण को संतुष्ट करता है। | जो निरंतरता समीकरण को संतुष्ट करता है। | ||
'''जो निरंतरता समीकरण को संतुष्ट करता है।''' | |||
== यह भी देखें == | == यह भी देखें == | ||
* संरक्षण | * संरक्षण नियम (भौतिकी) | ||
* नोथेर की प्रमेय | * नोथेर की प्रमेय | ||
Revision as of 12:12, 14 April 2023
भौतिकी में एक संरक्षित धारा एक धारा है, , जो निरंतरता समीकरण को संतुष्ट करता है . निरंतरता समीकरण एक संरक्षण नियम का प्रतिनिधित्व करता है, इसलिए यह नाम है।
वास्तव में, इसकी सतह के माध्यम से कोई शुद्ध धारा नहीं होने के लिए पर्याप्त मात्रा पर निरंतरता समीकरण को एकीकृत करना संरक्षण नियम की ओर जाता है
जहाँ चार्ज (भौतिकी) है।
गेज सिद्धांत में गेज क्षेत्र संरक्षित धाराओं से जोड़े जाते हैं। उदाहरण के लिए, विद्युत चुम्बकीय क्षेत्र आवेश संरक्षण से जुड़ता है।
संरक्षित मात्रा और समरूपता
संरक्षित धारा एक निरंतर कार्य अनुवादकीय समरूपता रखने वाली मात्रा के विहित संयुग्म का प्रवाह है। संरक्षित धारा के लिए निरंतरता समीकरण एक संरक्षण नियम (भौतिकी) का एक कथन है।
विहित संयुग्म मात्रा के उदाहरण हैं:
- समय और ऊर्जा - समय की सतत अनुवादात्मक समरूपता का तात्पर्य ऊर्जा के संरक्षण से है
- अंतरिक्ष और संवेग - अंतरिक्ष की निरंतर अनुवादकीय समरूपता का तात्पर्य संवेग के संरक्षण से है
- अंतरिक्ष और कोणीय गति - अंतरिक्ष की निरंतर घूर्णी समरूपता का तात्पर्य कोणीय गति के संरक्षण से है
- तरंग क्रिया चरण (लहरें) और बिजली का आवेश - वेव कार्य के निरंतर चरण कोण समरूपता का तात्पर्य इलेक्ट्रिक चार्ज या चार्ज का संरक्षण है
संरक्षित धाराएं सैद्धांतिक भौतिकी में एक अत्यंत महत्वपूर्ण भूमिका निभाती हैं, क्योंकि नोएदर का प्रमेय एक संरक्षित धारा के अस्तित्व को अध्ययन के तहत प्रणाली में कुछ मात्रा की समरूपता के अस्तित्व से जोड़ता है। व्यावहारिक रूप से, सभी संरक्षित धाराएँ नोथेर धाराएँ हैं, क्योंकि एक संरक्षित धारा के अस्तित्व का तात्पर्य एक समरूपता के अस्तित्व से है। संरक्षित धाराएं आंशिक अंतर समीकरणों के सिद्धांत में एक महत्वपूर्ण भूमिका निभाती हैं, क्योंकि एक संरक्षित धारा का अस्तित्व गति के स्थिरांक के अस्तित्व की ओर संकेत करता है, जो एक पत्तियों से सजाना को परिभाषित करने के लिए आवश्यक है और इस प्रकार एक एकीकृत प्रणाली है। संरक्षण नियम को 4-विचलन के लुप्त होने के रूप में व्यक्त किया गया है, जहां नोएदर चार्ज (भौतिकी) चार-वर्तमान | 4-वर्तमान का शून्य घटक बनाता है।
उदाहरण
विद्युत चुंबकत्व
उदाहरण के लिए मैक्सवेल के समीकरणों के अंकन में आवेश का संरक्षण
- ρ मुक्त विद्युत आवेश घनत्व है (C/m3 की इकाइयों में)
- जे वर्तमान घनत्व है v के साथ आवेशों के वेग के रूप में।
समीकरण द्रव्यमान (या अन्य संरक्षित मात्रा) पर समान रूप से प्रयुक्त होगा, जहां शब्द द्रव्यमान को ऊपर दिए गए विद्युत आवेश शब्द के स्थान पर प्रतिस्थापित किया गया है।
जटिल अदिश क्षेत्र
लैग्रेंजियन घनत्व
जो निरंतरता समीकरण को संतुष्ट करता है।
यह भी देखें
- संरक्षण नियम (भौतिकी)
- नोथेर की प्रमेय
संदर्भ
- Goldstein, Herbert (1980). Classical Mechanics (2nd ed.). Reading, MA: Addison-Wesley. pp. 588–596. ISBN 0-201-02918-9.
- David J Griffiths (1999). Introduction to electrodynamics (Third ed.). Prentice Hall. pp. 356–357. ISBN 978-0-13-805326-0.
- Peskin, Michael E.; Schroeder, Daniel V. (1995). "Chapter I.2.2. Elements of Classical Field Theory". An Introduction to Quantum Field Theory. CRC Press. ISBN 978-0-201-50397-5.