अपरूपण अंतरमापी (शियरिंग इंटरफेरोमीटर): Difference between revisions
(Created page with "thumb|बाल काटना इंटरफेरोमीटर का सिद्धांत।कतरनी इंटरफे...") |
No edit summary |
||
Line 1: | Line 1: | ||
[[Image:Shearing-interferometer.png|thumb| | [[Image:Shearing-interferometer.png|thumb|अपरूपण व्यतिकरणमापी का सिद्धांत।]]'''''अपरूपण व्यतिकरणमापी''''' अन्तः क्षेप (प्रकाशिकी) का निरीक्षण करने और इस घटना का उपयोग प्रकाश पुंजों के समतलीकरण का परीक्षण करने के लिए एक अत्यंत सरल साधन है, विशेष रूप से लेजर स्रोतों से जिनकी सुसंगतता लंबाई होती है जो सामान्य रूप से अपरूपण प्लेट की सघनता से अपेक्षाकृत अधिक लंबी होती है (आरेख देखें) इसलिए अन्तः क्षेप के लिए मौलिक शर्त पूरी हो गई है। | ||
== | == फलन == | ||
परीक्षण उपकरण में उच्च-गुणवत्ता वाले | परीक्षण उपकरण में उच्च-गुणवत्ता वाले प्रकाशीय काँच होते हैं, जैसे N-BK7, अधिकतम समतल प्रकाशीय सतहों के साथ जो सामान्य रूप से एक दूसरे से सामान्य कोण पर होते हैं। जब एक समतल तरंग 45° के कोण पर आपतित होती है, जो अधिकतम संवेदनशीलता प्रदान करती है, तो यह दो बार परावर्तित होती है। तो यह दो बार परावर्तित होती है। प्लेट की परिमित सघनता और स्फान के कारण दो प्रतिबिंब बाद में अलग हो जाते हैं। इस वियोजन को अपरूपण कहा जाता है और इसने यंत्र को अपना नाम दिया है। अपरूपण को विवर्तन जाली द्वारा भी उत्पादित किया जा सकता है, नीचे बाहरी लिंक देखें। | ||
समानांतर-पक्षीय अपरूपण प्लेटों का कभी-कभी उपयोग किया जाता है, लेकिन जालीदार प्लेटों के व्यतिकरण फ्रिन्जों की व्याख्या अपेक्षाकृत आसान और प्रत्यक्ष होती है। वेज अपरूपण प्लेटें सामने और पीछे की सतह के प्रतिबिंबों के बीच एक श्रेणीबद्ध पथांतर उत्पन्न करती हैं; परिणामस्वरूप, प्रकाश की एक समानांतर किरण अतिव्यापन के अंदर एक रैखिक फ्रिंज पैटर्न का निर्माण करती है। | |||
समानांतर-पक्षीय | |||
समतल तरंगाग्र घटना के साथ, दो परावर्तित किरणों का अतिव्यापन <math>d_f = \frac{\lambda}{2 n \theta}</math> अंतराल के साथ अन्तः क्षेप फ्रिंज दिखाता है, जहाँ <math>d_f</math> अपरूपण के लिए लंबवत अंतराल, <math>\lambda</math> किरण की [[तरंग दैर्ध्य]] है, n [[अपवर्तक सूचकांक]], और <math>\theta</math> वेज कोण है। यह समीकरण इस सरलीकरण को बनाता है कि वेज अपरूपण प्लेट से प्रेक्षण तल तक की दूरी प्रेक्षण तल पर वक्रता के तरंगाग्र त्रिज्या के सापेक्ष छोटी होती है। फ्रिंज (किनारे) समान दूरी पर हैं और वेज अनुस्थापन के परिशुद्ध लंबवत होंगे और अपरूपण व्यतिकरणमापी में किरणपुंज अक्ष के साथ संरेखित सामान्य रूप से सम्मिलित तार प्रसंकेतक के समानांतर होंगे। फ्रिन्जों का अभिविन्यास तब बदलता है जब किरणपुंज पूरी तरह से सम्मिलित नहीं होता है। वेज अपरूपण प्लेट पर एक गैर संपार्श्विक किरणपुंज की घटना की स्थिति में, वक्रता के संकेत के आधार पर दो परावर्तित तरंगाग्र के बीच का पथांतर सही समतलीकरण की स्थिति से बढ़ा या कम होते है। इसके बाद पैटर्न को घुमाया जाता है और किरणपुंज की वक्रता <math>R</math> की तरंगाग्र त्रिज्या <math>R = -\frac{s \cdot d_f}{\lambda \tan \gamma}</math> गणना की जा सकती है, और <math>s</math> के साथ अपरूपण दूरी <math>d_f</math> किनारे की दूरी <math>\lambda</math> तरंग दैर्ध्य और <math>\gamma</math> पूर्ण समतलीकरण से फ्रिंज संरेखण का कोणीय विचलन है। यदि इसके अतिरिक्त फ्रिन्जों के लिए सामान्य दूरी का उपयोग किया जाता है, तो यह समीकरण <math>R = -\frac{s \cdot k_f}{\lambda \sin \gamma}</math> बन जाता है, जहाँ <math>k_f</math> फ्रिंजों के बीच की दूरी सामान्य है। <ref>{{Cite journal|url = https://www.osapublishing.org/ao/abstract.cfm?uri=ao-16-10-2753|title = शियरिंग इंटरफेरोमीटर का उपयोग करते हुए लेज़र बीम डाइवर्जेंस|last = Riley|first = M|date = 1977|journal = Applied Optics|doi = 10.1364/AO.16.002753|pmid = 20174226|volume=16| issue=10 |pages=2753–6|bibcode =1977ApOpt..16.2753R}}</ref> | |||
[[Image:Shear-plate sideview with English text.png|center|frame|स्क्रीन पर देखा जाने वाला | [[Image:Shear-plate sideview with English text.png|center|frame|स्क्रीन पर देखा जाने वाला अपरूपण प्लेट और परिणामी अन्तः क्षेप पैटर्न का एक पार्श्वदृश्य है। प्रतिच्छाया के प्रतिबिंबों को कम करने के लिए, अपरूपण प्लेट को सामान्य रूप से बिना किसी प्रकार के दर्पण विलेपन के अनाच्छादित छोड़ दिया जाता है।]] | ||
== यह भी देखें == | == यह भी देखें == | ||
* [[इंटरफेरोमीटर के प्रकारों की सूची]] | * [[इंटरफेरोमीटर के प्रकारों की सूची|व्यतिकरणमापी के प्रकारों की सूची]] | ||
* [[एयर-वेज शियरिंग इंटरफेरोमीटर]] | * [[एयर-वेज शियरिंग इंटरफेरोमीटर|वायु-वेज अपरूपण व्यतिकरणमापी]] | ||
* प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण के लिए वर्णक्रमीय चरण | * प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण के लिए वर्णक्रमीय चरण व्यतिकरणमापी, एक प्रकार का वर्णक्रमीय अपरूपण व्यतिकरणमापी, जो वर्तमान लेख में एक अवधारणा के समान है, इसके अतिरिक्त कि अपरूपण को बाद में आवृत्ति प्रक्षेत्र में किया जाता है। | ||
==संदर्भ== | ==संदर्भ== |
Revision as of 18:16, 9 May 2023
अपरूपण व्यतिकरणमापी अन्तः क्षेप (प्रकाशिकी) का निरीक्षण करने और इस घटना का उपयोग प्रकाश पुंजों के समतलीकरण का परीक्षण करने के लिए एक अत्यंत सरल साधन है, विशेष रूप से लेजर स्रोतों से जिनकी सुसंगतता लंबाई होती है जो सामान्य रूप से अपरूपण प्लेट की सघनता से अपेक्षाकृत अधिक लंबी होती है (आरेख देखें) इसलिए अन्तः क्षेप के लिए मौलिक शर्त पूरी हो गई है।
फलन
परीक्षण उपकरण में उच्च-गुणवत्ता वाले प्रकाशीय काँच होते हैं, जैसे N-BK7, अधिकतम समतल प्रकाशीय सतहों के साथ जो सामान्य रूप से एक दूसरे से सामान्य कोण पर होते हैं। जब एक समतल तरंग 45° के कोण पर आपतित होती है, जो अधिकतम संवेदनशीलता प्रदान करती है, तो यह दो बार परावर्तित होती है। तो यह दो बार परावर्तित होती है। प्लेट की परिमित सघनता और स्फान के कारण दो प्रतिबिंब बाद में अलग हो जाते हैं। इस वियोजन को अपरूपण कहा जाता है और इसने यंत्र को अपना नाम दिया है। अपरूपण को विवर्तन जाली द्वारा भी उत्पादित किया जा सकता है, नीचे बाहरी लिंक देखें।
समानांतर-पक्षीय अपरूपण प्लेटों का कभी-कभी उपयोग किया जाता है, लेकिन जालीदार प्लेटों के व्यतिकरण फ्रिन्जों की व्याख्या अपेक्षाकृत आसान और प्रत्यक्ष होती है। वेज अपरूपण प्लेटें सामने और पीछे की सतह के प्रतिबिंबों के बीच एक श्रेणीबद्ध पथांतर उत्पन्न करती हैं; परिणामस्वरूप, प्रकाश की एक समानांतर किरण अतिव्यापन के अंदर एक रैखिक फ्रिंज पैटर्न का निर्माण करती है।
समतल तरंगाग्र घटना के साथ, दो परावर्तित किरणों का अतिव्यापन अंतराल के साथ अन्तः क्षेप फ्रिंज दिखाता है, जहाँ अपरूपण के लिए लंबवत अंतराल, किरण की तरंग दैर्ध्य है, n अपवर्तक सूचकांक, और वेज कोण है। यह समीकरण इस सरलीकरण को बनाता है कि वेज अपरूपण प्लेट से प्रेक्षण तल तक की दूरी प्रेक्षण तल पर वक्रता के तरंगाग्र त्रिज्या के सापेक्ष छोटी होती है। फ्रिंज (किनारे) समान दूरी पर हैं और वेज अनुस्थापन के परिशुद्ध लंबवत होंगे और अपरूपण व्यतिकरणमापी में किरणपुंज अक्ष के साथ संरेखित सामान्य रूप से सम्मिलित तार प्रसंकेतक के समानांतर होंगे। फ्रिन्जों का अभिविन्यास तब बदलता है जब किरणपुंज पूरी तरह से सम्मिलित नहीं होता है। वेज अपरूपण प्लेट पर एक गैर संपार्श्विक किरणपुंज की घटना की स्थिति में, वक्रता के संकेत के आधार पर दो परावर्तित तरंगाग्र के बीच का पथांतर सही समतलीकरण की स्थिति से बढ़ा या कम होते है। इसके बाद पैटर्न को घुमाया जाता है और किरणपुंज की वक्रता की तरंगाग्र त्रिज्या गणना की जा सकती है, और के साथ अपरूपण दूरी किनारे की दूरी तरंग दैर्ध्य और पूर्ण समतलीकरण से फ्रिंज संरेखण का कोणीय विचलन है। यदि इसके अतिरिक्त फ्रिन्जों के लिए सामान्य दूरी का उपयोग किया जाता है, तो यह समीकरण बन जाता है, जहाँ फ्रिंजों के बीच की दूरी सामान्य है। [1]
यह भी देखें
- व्यतिकरणमापी के प्रकारों की सूची
- वायु-वेज अपरूपण व्यतिकरणमापी
- प्रत्यक्ष विद्युत-क्षेत्र पुनर्निर्माण के लिए वर्णक्रमीय चरण व्यतिकरणमापी, एक प्रकार का वर्णक्रमीय अपरूपण व्यतिकरणमापी, जो वर्तमान लेख में एक अवधारणा के समान है, इसके अतिरिक्त कि अपरूपण को बाद में आवृत्ति प्रक्षेत्र में किया जाता है।
संदर्भ
- ↑ Riley, M (1977). "शियरिंग इंटरफेरोमीटर का उपयोग करते हुए लेज़र बीम डाइवर्जेंस". Applied Optics. 16 (10): 2753–6. Bibcode:1977ApOpt..16.2753R. doi:10.1364/AO.16.002753. PMID 20174226.
बाहरी संबंध
- University of Erlangen — Optical Design and Microptics Archived 2016-02-22 at the Wayback Machine