ऑप्टिकल रोटेशन: Difference between revisions

From Vigyanwiki
No edit summary
No edit summary
Line 31: Line 31:


=== चिरायता उपसर्ग ===
=== चिरायता उपसर्ग ===
{{Main|Chirality (chemistry)}}
{{Main|चिरायता (रसायन विज्ञान)}}
{{See also|Absolute configuration|Aldose}}
{{See also|पूर्ण विन्यास|एल्डोज}}


(+)- या d- उपसर्ग का उपयोग करके यौगिक को डेक्सट्रोटरी के रूप में लेबल किया जा सकता है। इसी प्रकार लेवोरोटरी यौगिक को (-)- या "l"-उपसर्ग का उपयोग करके लेबल किया जा सकता है। लोअरकेस डी- और एल- उपसर्ग अप्रचलित हैं, और  <small>[[Small caps|छोटे कैप्स]]</small> <small>D</small>- और <small>L</small>- उपसर्गों से भिन्न हैं। <small>D</small>- और <small>L</small>- जैव रसायन में चिरल [[कार्बनिक यौगिक|कार्बनिक यौगिकों]] के एंटीनिओमर को निर्दिष्ट करने के लिए उपसर्गों का उपयोग किया जाता है और यह (+) - [[ग्लिसराल्डिहाइड]] के सापेक्ष यौगिक के [[पूर्ण विन्यास]] पर आधारित होता है, जो परिभाषा के अनुसार D-फॉर्म है। पूर्ण विन्यास को इंगित करने के लिए प्रयुक्त उपसर्ग सीधे (+) या (-) उपसर्ग से संबंधित नहीं है जो एक ही अणु में ऑप्टिकल रोटेशन को इंगित करने के लिए उपयोग किया जाता है। उदाहरण के लिए, प्रोटीन में प्राकृतिक रूप से उपस्तिथ उन्नीस[[ एमिनो एसिड | <small>L</small> एमिनो अम्ल]] में से नौ <small>L</small>- उपसर्ग, वास्तव में डेक्सट्रोरोटरी हैं। (589 एनएम के तरंग दैर्ध्य पर) और <small>D</small>-[[फ्रुक्टोज]] को कभी-कभी लावुलोज कहा जाता है क्योंकि यह लॉवोरोटरी है। <small>D</small>- और <small>L</small>- उपसर्ग अणु का समग्र रूप से वर्णन करते हैं, जैसा कि ऑप्टिकल रोटेशन के लिए (+) और (-) उपसर्ग करते हैं। इसके विपरीत, (R) - और (S) - कन-इंगोल्ड-प्रोलॉग प्राथमिकता नियमों से उपसर्ग, अणु के साथ प्रत्येक विशिष्ट चिराल [[स्टीरियोसेंटर]] के पूर्ण विन्यास की विशेषता रखते हैं| चिराल स्टीरियोसेंटर (सामान्यतः [[असममित कार्बन]] परमाणु) वाले अणु को (R) या (S) लेबल किया जा सकता है, किन्तु कई स्टीरियोसेंटर वाले अणु को एक से अधिक लेबल की आवश्यकता होती है। उदाहरण के लिए, आवश्यक अमीनो अम्ल थ्रेओनाइन <small>L</small>-थ्रेऑनिन में दो चिरल स्टीरियोसेंटर होते हैं और इसे (2S,3S)-थ्रेओनाइन लिखा जाता है। R/S, D/L, और (+)/(-) पदनामों के मध्य कोई ठोंस संबंध नहीं है, यद्यपि कुछ सहसंबंध उपस्तिथ हैं| उदाहरण के लिए, प्राकृतिक रूप से उपस्तिथ अमीनो अम्ल में सभी L हैं और अधिकांश (S) हैं। कुछ अणुओं के लिए (R)-एनैन्टीओमर डेक्स्ट्रोरोटरी (+) एनेंटिओमर है, और अन्य स्तिथियों में यह लॉवोरोटरी (-) एनेंटिओमर है। प्रायोगिक माप या विस्तृत कंप्यूटर मॉडलिंग के साथ स्तिथियों के आधार पर संबंध निर्धारित किया जाना चाहिए।<ref name=Stephens>See, for example,{{cite journal | doi = 10.1002/chir.10270 | title = Determination of absolute configuration using calculation of optical rotation | year = 2003 | last1 = Stephens | first1 = P. J. | last2 = Devlin | first2 = F. J. | last3 = Cheeseman | first3 = J. R. | last4 = Frisch | first4 = M. J. | last5 = Bortolini | first5 = O. | last6 = Besse | first6 = P. | journal = Chirality | volume = 15 | pages = S57–64 | pmid = 12884375}}</ref>
(+)- या d- उपसर्ग का उपयोग करके यौगिक को डेक्सट्रोटरी के रूप में लेबल किया जा सकता है। इसी प्रकार लेवोरोटरी यौगिक को (-)- या "l"-उपसर्ग का उपयोग करके लेबल किया जा सकता है। लोअरकेस डी- और एल- उपसर्ग अप्रचलित हैं, और  <small>[[Small caps|छोटे कैप्स]]</small> <small>D</small>- और <small>L</small>- उपसर्गों से भिन्न हैं। <small>D</small>- और <small>L</small>- जैव रसायन में चिरल [[कार्बनिक यौगिक|कार्बनिक यौगिकों]] के एंटीनिओमर को निर्दिष्ट करने के लिए उपसर्गों का उपयोग किया जाता है और यह (+) - [[ग्लिसराल्डिहाइड]] के सापेक्ष यौगिक के [[पूर्ण विन्यास]] पर आधारित होता है, जो परिभाषा के अनुसार D-फॉर्म है। पूर्ण विन्यास को इंगित करने के लिए प्रयुक्त उपसर्ग सीधे (+) या (-) उपसर्ग से संबंधित नहीं है जो एक ही अणु में ऑप्टिकल रोटेशन को इंगित करने के लिए उपयोग किया जाता है। उदाहरण के लिए, प्रोटीन में प्राकृतिक रूप से उपस्तिथ उन्नीस[[ एमिनो एसिड | <small>L</small> एमिनो अम्ल]] में से नौ <small>L</small>- उपसर्ग, वास्तव में डेक्सट्रोरोटरी हैं। (589 एनएम के तरंग दैर्ध्य पर) और <small>D</small>-[[फ्रुक्टोज]] को कभी-कभी लावुलोज कहा जाता है क्योंकि यह लॉवोरोटरी है। <small>D</small>- और <small>L</small>- उपसर्ग अणु का समग्र रूप से वर्णन करते हैं, जैसा कि ऑप्टिकल रोटेशन के लिए (+) और (-) उपसर्ग करते हैं। इसके विपरीत, (R) - और (S) - कन-इंगोल्ड-प्रोलॉग प्राथमिकता नियमों से उपसर्ग, अणु के साथ प्रत्येक विशिष्ट चिराल [[स्टीरियोसेंटर]] के पूर्ण विन्यास की विशेषता रखते हैं| चिराल स्टीरियोसेंटर (सामान्यतः [[असममित कार्बन]] परमाणु) वाले अणु को (R) या (S) लेबल किया जा सकता है, किन्तु कई स्टीरियोसेंटर वाले अणु को एक से अधिक लेबल की आवश्यकता होती है। उदाहरण के लिए, आवश्यक अमीनो अम्ल थ्रेओनाइन <small>L</small>-थ्रेऑनिन में दो चिरल स्टीरियोसेंटर होते हैं और इसे (2S,3S)-थ्रेओनाइन लिखा जाता है। R/S, D/L, और (+)/(-) पदनामों के मध्य कोई ठोंस संबंध नहीं है, यद्यपि कुछ सहसंबंध उपस्तिथ हैं| उदाहरण के लिए, प्राकृतिक रूप से उपस्तिथ अमीनो अम्ल में सभी L हैं और अधिकांश (S) हैं। कुछ अणुओं के लिए (R)-एनैन्टीओमर डेक्स्ट्रोरोटरी (+) एनेंटिओमर है, और अन्य स्तिथियों में यह लॉवोरोटरी (-) एनेंटिओमर है। प्रायोगिक माप या विस्तृत कंप्यूटर मॉडलिंग के साथ स्तिथियों के आधार पर संबंध निर्धारित किया जाना चाहिए।<ref name=Stephens>See, for example,{{cite journal | doi = 10.1002/chir.10270 | title = Determination of absolute configuration using calculation of optical rotation | year = 2003 | last1 = Stephens | first1 = P. J. | last2 = Devlin | first2 = F. J. | last3 = Cheeseman | first3 = J. R. | last4 = Frisch | first4 = M. J. | last5 = Bortolini | first5 = O. | last6 = Besse | first6 = P. | journal = Chirality | volume = 15 | pages = S57–64 | pmid = 12884375}}</ref>

Revision as of 16:32, 16 April 2023

ऑप्टिकल रोटेशन को मापने के लिए ध्रुवणमापी का ऑपरेटिंग सिद्धांत। 1. प्रकाश स्रोत 2. अप्रकाशित प्रकाश 3. रैखिक ध्रुवीकरण 4. रैखिक रूप से ध्रुवीकृत प्रकाश 5. अध्ययन के तहत अणु युक्त नमूना ट्यूब 6. अणुओं के कारण ऑप्टिकल रोटेशन 7. घूर्णन योग्य रैखिक विश्लेषक 8. डिटेक्टर

ऑप्टिकल रोटेशन, जिसे ध्रुवीकरण रोटेशन या सर्कुलर बायरफ्रिंजेंस के रूप में भी जाना जाता है, रैखिक ध्रुवीकरण प्रकाश के ऑप्टिकल अक्ष के सम्बन्ध में ध्रुवीकरण (तरंगों) के विमान के अभिविन्यास का रोटेशन है क्योंकि यह कुछ सामग्रियों के माध्यम से यात्रा करता है। वृत्ताकार द्विअर्थी और वृत्ताकार द्वैतवाद ऑप्टिकल गतिविधि की अभिव्यक्तियाँ हैं। ऑप्टिकल गतिविधि मात्र चिरल सामग्री में होती है, जिनमें सूक्ष्म दर्पण समरूपता का अभाव होता है। बायरफ्रिंजेंस के अन्य स्रोतों के विपरीत, जो बीम के ध्रुवीकरण की स्थिति को परिवर्तित करते हैं, तरल पदार्थ में ऑप्टिकल गतिविधि देखी जा सकती है। इसमें गैस या चिरल अणुओं (रसायन विज्ञान) के समाधान सम्मिलित हो सकते हैं जैसे कि शर्करा, अणु जैसे पेचदार माध्यमिक संरचना के कुछ प्रोटीन और चिरल तरल क्रिस्टल। इसे चिराल ठोस पदार्थों में भी अवलोकित किया जा सकता है जैसे कि कुछ क्रिस्टल जो आसन्न क्रिस्टल विमानों (जैसे क्वार्ट्ज) या मेटामटेरियल के मध्य घूर्णन करते हैं।

प्रकाश के स्रोत को देखते समय, ध्रुवीकरण के तल का घूर्णन या तो दायीं ओर हो सकता है (डेक्सट्रोरोटेटरी या डेक्सट्रोरोटरी - d-रोटरी, (+), क्लॉकवाइज़ द्वारा दर्शाया गया), या बाईं ओर (लेवोरोटेटरी या लेवोरोटरी - l-रोटरी, (-), काउंटर-क्लॉकवाइज़ द्वारा दर्शाया गया) जिसके आधार पर स्टीरियोआइसोमर प्रमुख है। उदाहरण के लिए, सुक्रोज और कपूर 'd'-रोटरी हैं जबकि कोलेस्ट्रॉल 'l'-रोटरी है। किसी दिए गए पदार्थ के लिए, जिस कोण से निर्दिष्ट तरंग दैर्ध्य के प्रकाश का ध्रुवीकरण घुमाया जाता है, वह सामग्री के माध्यम से पथ की लंबाई के समानुपाती होता है और (समाधान के लिए) इसकी एकाग्रता के समानुपाती होता है।

ऑप्टिकल गतिविधि को ध्रुवीकृत स्रोत और पोलीमीटर का उपयोग करके मापा जाता है। यह उपकरण है जो विशेष रूप से चीनी उद्योग में चीनी की चाशनी की सांद्रता को मापने के लिए उपयोग किया जाता है, और सामान्यतः रसायन शास्त्र में समाधान में चिरल अणुओं की एकाग्रता या एंटीनिओमर को मापने के लिए उपयोग किया जाता है। लिक्विड क्रिस्टल की ऑप्टिकल गतिविधि का मॉड्यूलेशन, दो शीट पोलराइज़र के मध्य अवलोकित किया जाता है, जोलिक्विड क्रिस्टल डिस्प्ले (अधिकांश आधुनिक टेलीविज़न और कंप्यूटर मॉनिटर में उपयोग किया जाता है) के संचालन का सिद्धांत है।

रूप

डेक्सट्रोटेशन और लॉवोरोटेशन (वर्तनी लीवरोटेशन भी)[1][2][3] विमान-ध्रुवीकृत प्रकाश के ऑप्टिकल रोटेशन का वर्णन करने के लिए रसायन विज्ञान और भौतिकी में उपयोग किये जाने वाले शब्द हैं। प्रेक्षक के दृष्टिकोण से, डेक्सट्रोटेशन दक्षिणावर्त या दाएं हाथ के रोटेशन को संदर्भित करता है, और लॉवोरोटेशन वामावर्त या बाएं हाथ के रोटेशन को संदर्भित करता है।[4][5]

रासायनिक यौगिक जो डेक्सट्रोटेशन का कारण बनता है उसे डेक्सट्रोरोटेटरी या डेक्सट्रोट्रोटरी कहा जाता है, जबकि यौगिक जो लॉवोरोटेटेशन का कारण बनता है उसे लॉवोरोटेटरी या लॉवोरोटरी कहा जाता है।[6] इन गुणों वाले यौगिकों में चिरलिटी (रसायन विज्ञान) के अणु होते हैं और कहा जाता है कि इनमें ऑप्टिकल गतिविधि होती है। यदि चिराल अणु डेक्सट्रोटरी है, तो इसका एनेंटिओमर (ज्यामितीय दर्पण छवि) लॉवोरोटरी होगा, और इसके विपरीत। एनेंटिओमर विमान-ध्रुवीकृत प्रकाश को समान संख्या डिग्री से विपरीत दिशाओं में घुमाते हैं|

चिरायता उपसर्ग

(+)- या d- उपसर्ग का उपयोग करके यौगिक को डेक्सट्रोटरी के रूप में लेबल किया जा सकता है। इसी प्रकार लेवोरोटरी यौगिक को (-)- या "l"-उपसर्ग का उपयोग करके लेबल किया जा सकता है। लोअरकेस डी- और एल- उपसर्ग अप्रचलित हैं, और छोटे कैप्स D- और L- उपसर्गों से भिन्न हैं। D- और L- जैव रसायन में चिरल कार्बनिक यौगिकों के एंटीनिओमर को निर्दिष्ट करने के लिए उपसर्गों का उपयोग किया जाता है और यह (+) - ग्लिसराल्डिहाइड के सापेक्ष यौगिक के पूर्ण विन्यास पर आधारित होता है, जो परिभाषा के अनुसार D-फॉर्म है। पूर्ण विन्यास को इंगित करने के लिए प्रयुक्त उपसर्ग सीधे (+) या (-) उपसर्ग से संबंधित नहीं है जो एक ही अणु में ऑप्टिकल रोटेशन को इंगित करने के लिए उपयोग किया जाता है। उदाहरण के लिए, प्रोटीन में प्राकृतिक रूप से उपस्तिथ उन्नीस L एमिनो अम्ल में से नौ L- उपसर्ग, वास्तव में डेक्सट्रोरोटरी हैं। (589 एनएम के तरंग दैर्ध्य पर) और D-फ्रुक्टोज को कभी-कभी लावुलोज कहा जाता है क्योंकि यह लॉवोरोटरी है। D- और L- उपसर्ग अणु का समग्र रूप से वर्णन करते हैं, जैसा कि ऑप्टिकल रोटेशन के लिए (+) और (-) उपसर्ग करते हैं। इसके विपरीत, (R) - और (S) - कन-इंगोल्ड-प्रोलॉग प्राथमिकता नियमों से उपसर्ग, अणु के साथ प्रत्येक विशिष्ट चिराल स्टीरियोसेंटर के पूर्ण विन्यास की विशेषता रखते हैं| चिराल स्टीरियोसेंटर (सामान्यतः असममित कार्बन परमाणु) वाले अणु को (R) या (S) लेबल किया जा सकता है, किन्तु कई स्टीरियोसेंटर वाले अणु को एक से अधिक लेबल की आवश्यकता होती है। उदाहरण के लिए, आवश्यक अमीनो अम्ल थ्रेओनाइन L-थ्रेऑनिन में दो चिरल स्टीरियोसेंटर होते हैं और इसे (2S,3S)-थ्रेओनाइन लिखा जाता है। R/S, D/L, और (+)/(-) पदनामों के मध्य कोई ठोंस संबंध नहीं है, यद्यपि कुछ सहसंबंध उपस्तिथ हैं| उदाहरण के लिए, प्राकृतिक रूप से उपस्तिथ अमीनो अम्ल में सभी L हैं और अधिकांश (S) हैं। कुछ अणुओं के लिए (R)-एनैन्टीओमर डेक्स्ट्रोरोटरी (+) एनेंटिओमर है, और अन्य स्तिथियों में यह लॉवोरोटरी (-) एनेंटिओमर है। प्रायोगिक माप या विस्तृत कंप्यूटर मॉडलिंग के साथ स्तिथियों के आधार पर संबंध निर्धारित किया जाना चाहिए।[7]


इतिहास

टारटरिक अम्ल के दो असममित क्रिस्टल रूप, डेक्सट्रोटोटेटरी और लेवोरोटेटरी।
ऑप्टिकल रोटेशन का प्रदर्शन, सुक्रोज समाधान एकाग्रता मापने का प्रयोग।

रेखीय ध्रुवीकरण प्रकाश के अभिविन्यास के रोटेशन को सर्वप्रथम 1811 में फ्रांसीसी भौतिक विज्ञानी फ्रेंकोइस अरागो द्वारा क्वार्ट्ज में देखा गया था।[8] 1820 में, अंग्रेजी खगोलशास्त्री सर जॉन एफडब्लू हर्शल ने अवलोकित किया कि विभिन्न भिन्न-भिन्न क्वार्ट्ज क्रिस्टल, जिनकी क्रिस्टलीय संरचनाएं एक दूसरे की दर्पण छवियां हैं (चित्र देखें), रैखिक ध्रुवीकरण को समान मात्रा में किन्तु विपरीत दिशाओं में घुमाते हैं।[9] जॉन बैपटिस्ट बायोट ने कुछ तरल पदार्थों[10] और तारपीन जैसे कार्बनिक पदार्थों के वाष्प में ध्रुवीकरण की धुरी के घूर्णन का भी अवलोकन किया था|[11] 1822 में, ऑगस्टिन-जीन फ्रेस्नेल ने पाया कि ऑप्टिकल घुमाव को बायरफ्रिंजेंस की प्रजाति के रूप में समझाया जा सकता है, जबकि बायरफ्रिंजेंस की पूर्व ज्ञात स्तिथि दो लंबवत विमानों में ध्रुवीकृत प्रकाश की भिन्न-भिन्न गति के कारण थे, ऑप्टिकल रोटेशन दाँय और बाएं हाथ की गोलाकार ध्रुवीकृत प्रकाश की भिन्न-भिन्न गति के कारण था।[12] इस समय से सरल ध्रुवणमापी का उपयोग विलयन में सरल शर्करा, जैसे ग्लूकोज, की सांद्रता को मापने के लिए किया जाता रहा है। वास्तव में D-ग्लूकोज (जैविक आइसोमर) डेक्सट्रोज है, इस तथ्य का उल्लेख करते हुए कि यह रैखिक रूप से ध्रुवीकृत प्रकाश को दाईं ओर घुमाने का कारण बनता है। इसी प्रकार लेवुलोज़, जिसे सामान्यतः फ्रुक्टोज़ के रूप में जाना जाता है, ध्रुवीकरण के तल को बाईं ओर घुमाने का कारण बनता है। ग्लूकोज की तुलना में फ्रुक्टोज अधिक प्रबल उत्तोलक है। घटक सरल शर्करा, फ्रुक्टोज और ग्लूकोज के मिश्रण के लिए सुक्रोज सिरप के हाइड्रोलिसिस द्वारा व्यावसायिक रूप से बनाई गई चीनी की चाशनी को उल्टा करें, इसका नाम इस तथ्य से प्राप्त है कि रूपांतरण दाएं से बाएं "उलटा" करने के लिए रोटेशन की दिशा का कारण बनता है।

1849 में, लुई पास्चर ने टार्टरिक अम्ल की प्रकृति से संबंधित समस्या का समाधान किया।[13] जीवित वस्तुओं से प्राप्त इस यौगिक का समाधान (विशिष्ट होने के लिए, लीज़ (किण्वन)) इसके माध्यम से गुजरने वाले प्रकाश के ध्रुवीकरण (तरंगों) के तल को घुमाता है, किन्तु रासायनिक संश्लेषण द्वारा प्राप्त टार्टरिक अम्ल का ऐसा कोई प्रभाव नहीं होता है, भले ही इसकी प्रतिक्रियाएँ और तात्विक संघटन समान है। पाश्चर ने देखा कि क्रिस्टल दो असममित रूपों में आते हैं जो एक-दूसरे के दर्पण चित्र हैं। क्रिस्टल को हाथ से छाँटने से यौगिक के दो रूप मिलते हैं- प्रथम विलयन ध्रुवीकृत प्रकाश को दक्षिणावर्त घुमाते हैं, जबकि दूसरा रूप प्रकाश को वामावर्त घुमाता है। दोनों के समान मिश्रण का प्रकाश पर कोई ध्रुवीकरण प्रभाव नहीं होता है। पाश्चर ने निष्कर्ष निकाला कि प्रश्न में अणु असममित है और दो भिन्न-भिन्न रूपों में उपस्थित हो सकते है जो परस्पर समान होते हैं जैसे बाएं और दाएं हाथ के दस्ताने और यौगिक के कार्बनिक रूप में पूर्णतयः एक प्रकार होता है।

1874 में, जैकबस हेनरिकस वैन 'टी हॉफ[14] तथा जोसेफ एकिल ले बेल[15] ने स्वतंत्र रूप से प्रस्तावित किया कि कार्बन यौगिकों में ऑप्टिकल गतिविधि की इस घटना को यह मानते हुए अध्ययन किया जा सकता है कि कार्बन परमाणुओं और उनके पड़ोसियों के मध्य 4 संतृप्त रासायनिक बांड नियमित टेट्राहेड्रॉन के कोनों की ओर निर्देशित होते हैं। यदि 4 पड़ोसी भिन्न-भिन्न हैं, तो टेट्राहेड्रॉन के चारों ओर पड़ोसियों के दो संभावित क्रम हैं, जो एक दूसरे की दर्पण छवियां होंगी। इससे अणुओं की त्रि-आयामी प्रकृति की उत्तम प्रतिभा उत्पन्न हुई।

1945 में, चार्ल्स विलियम बान[16] अचिरल संरचनाओं की अनुमानित ऑप्टिकल गतिविधि, यदि लहर की प्रसार दिशा और अचिरल संरचना प्रयोगात्मक व्यवस्था बनाती है जो इसकी दर्पण छवि से भिन्न है। चिरलिटी (विद्युत चुंबकत्व) के कारण ऐसी ऑप्टिकल गतिविधि 1960 के दशक में लिक्विड क्रिस्टल में देखी गई थी।[17][18]

1950, सर्गेई वाविलोव[19] ने ऑप्टिकल गतिविधि की भविष्यवाणी जो प्रकाश की तीव्रता पर निर्भर करती है और 1979 में लिथियम आयोडेट क्रिस्टल में गैर-रैखिक ऑप्टिकल गतिविधि के प्रभाव को देखा गया था।[20]

संचरित प्रकाश के लिए ऑप्टिकल गतिविधि सामान्य रूप से देखी जाती है। चूँकि, 1988 में, एमपी सिल्वरमैन ने अवलोकित किया कि चिरल पदार्थों से परावर्तित प्रकाश के लिए ध्रुवीकरण रोटेशन भी हो सकता है।[21] कुछ ही समय पश्च्यात, यह अवलोकित किया गया कि चिराल मीडिया भी भिन्न-भिन्न दक्षताओं के साथ बाएं हाथ और दाएं हाथ के गोलाकार ध्रुवीकृत तरंगों को प्रतिबिंबित कर सकता है।[22] स्पेक्युलर सर्कुलर बायरफ्रिंजेंस और स्पेक्युलर सर्कुलर डाइक्रोइज्म की इन घटनाओं को संयुक्त रूप से स्पेक्युलर ऑप्टिकल एक्टिविटी के रूप में जाना जाता है। स्पेक्युलर ऑप्टिकल गतिविधि प्राकृतिक सामग्री में शक्तिहीन है।

1898 में जगदीश चंद्र बोस ने माइक्रोवेव के ध्रुवीकरण को घुमाने के लिए मुड़ी हुई कृत्रिम संरचनाओं की क्षमता का वर्णन किया।[23] 21 वीं सदी के प्रारम्भ से, कृत्रिम सामग्रियों के विकास ने भविष्यवाणी[24] और प्राप्ति[25][26] को स्पेक्ट्रम के ऑप्टिकल भाग में परिमाण के क्रम में प्राकृतिक मीडिया से अधिक ऑप्टिकल गतिविधि के साथ चिरल मेटामेट्रीज़ का नेतृत्व किया है। दो गुना घूर्णी समरूपता की कमी वाले मेटासर्फ्स की तिरछी रोशनी से जुड़ी बाह्य चिरायता को संचरण[27] और प्रतिबिंब,[28] में बड़ी रैखिक ऑप्टिकल गतिविधि के साथ-साथ लिथियम आयोडेट से 30 मिलियन गुना अधिक गैर-रैखिक ऑप्टिकल गतिविधि का नेतृत्व करने के लिए देखा गया है।[29]


सिद्धांत

ऑप्टिकल गतिविधि किसी तरल पदार्थ में घुले अणुओं या द्रव के कारण होती है, यदि अणु दो (या अधिक) स्टीरियोइसोमर्स में होते हैं, इसे एनेंटिओमर के रूप में जाना जाता है। इस प्रकार के अणु की संरचना ऐसी है कि यह अपनी दर्पण छवि के समान नहीं है (जो कि भिन्न स्टीरियोइसोमर या विपरीत एनेंटिओमर होगा)। गणित में, इस संपत्ति को चिरायता के रूप में भी जाना जाता है। उदाहरण के लिए, धातु की छड़ चिराल नहीं है, क्योंकि दर्पण में इसकी उपस्थिति स्वयं से भिन्न नहीं होती है। चूँकि स्क्रू या लाइट बल्ब बेस (या किसी भी प्रकार का कुंडलित वक्रता ) चिरल है, दर्पण में देखा जाने वाला साधारण दाएँ हाथ का पेंच धागा, बाएँ हाथ के पेंच (बहुत ही असामान्य) के रूप में दिखाई देगा जो संभवतः साधारण (दाएँ हाथ के) नट में पेंच नहीं लगा सकता था। दर्पण में देखे गए मानव का ह्रदय दाहिनी ओर होगा, चिरायता का स्पष्ट प्रमाण, जबकि गुड़िया का दर्पण प्रतिबिंब उचित प्रकार से गुड़िया से ही अप्रभेद्य हो सकता है।

ऑप्टिकल गतिविधि प्रदर्शित करने के लिए, द्रव में मात्र एक की प्रधानता, स्टीरियोइसोमर होना चाहिए। यदि दो एनैन्टीओमर समान अनुपात में उपस्थित हैं तो उनका प्रभाव रद्द हो जाता है और कोई ऑप्टिकल गतिविधि नहीं देखी जाती है, इसेरेस्मिक मिश्रण कहा जाता है। किन्तु जब एनेंटिओमेरिक अतिरिक्त होता है, तो एनेंटिओमर अन्य की तुलना में अधिक होता है तो रद्दीकरण अपूर्ण होता है और ऑप्टिकल गतिविधि देखी जाती है। विभिन्न प्राकृतिक रूप से उपस्थित अणु मात्र एनेंटिओमर (जैसे कई शर्करा) के रूप में उपस्थित होते हैं। कार्बनिक रसायन या अकार्बनिक रसायन विज्ञान के क्षेत्र में उत्पादित चिरल अणु रेसमिक होते हैं जब तक कि ही प्रतिक्रिया में चिराल अभिकर्मक को नियोजित नहीं किया जाता।

मूलभूत स्तर पर, वैकल्पिक रूप से सक्रिय माध्यम में ध्रुवीकरण रोटेशन सर्कुलर बिरफ्रेंसेंस के कारण होता है, और उत्तम समझा जा सकता है। जबकि क्रिस्टल में बिरफ्रेंसेंस में दो भिन्न-भिन्न रैखिक ध्रुवीकरणों के प्रकाश के चरण वेग में छोटा अंतर सम्मिलित होता है, सर्कुलर बिरफ्रेंसेंस का तात्पर्य दाएं और बाएं हाथ के परिपत्र ध्रुवीकरणों के मध्य वेग में छोटे से अंतर से होता है।[12]समाधान में एनेंटिओमर को बड़ी संख्या में छोटे हेलिक्स (या स्क्रू) यादृच्छिक अभिविन्यास में दाये हाथ में कल्पना कर सकते है। इस प्रकार की बायरफ्रिंजेंस तरल पदार्थ में भी संभव है क्योंकि हेलिक्स की हैंडनेस उनके ओरिएंटेशन पर निर्भर नहीं करती है, जब हेलिक्स की दिशा विपरीत हो जाती है, तब भी यह राइट हैंड दिखाई देता है। गोलाकार रूप से ध्रुवीकृत प्रकाश स्वयं चिराल है, जैसे ही तरंग दिशा में आगे बढ़ती है, विद्युत (और चुंबकीय) क्षेत्र दक्षिणावर्त घूमते हैं (या विपरीत गोलाकार ध्रुवीकरण के लिए वामावर्त),जो अंतरिक्ष में दाएं (या बाएं) हाथ के स्क्रू पैटर्न को ज्ञात करते हैं। बल्क अपवर्तक सूचकांक के अतिरिक्त, जो प्रकाश की गति (निर्वात में) की तुलना में किसी भी (पारदर्शी) सामग्री में प्रकाश के चरण वेग को कम करता है, तरंग की चिरायता और अणुओं की चिरायता के मध्य अतिरिक्त अंतःक्रिया होती है। जहां उनकी चिरायता समान होती है, वहां लहर के वेग पर छोटा अतिरिक्त प्रभाव होगा, किन्तु विपरीत गोलाकार ध्रुवीकरण विपरीत छोटे प्रभाव का अनुभव करेगा क्योंकि इसकी चिरायता अणुओं के विपरीत है।

रेखीय बायरफ्रिंजेंस के विपरीत, हालांकि, प्राकृतिक ऑप्टिकल रोटेशन (चुंबकीय क्षेत्र की अनुपस्थिति में) को स्थानीय सामग्री परावैद्युतांक टेन्सर (यानी, एक चार्ज प्रतिक्रिया जो केवल स्थानीय विद्युत क्षेत्र वेक्टर पर निर्भर करती है) के संदर्भ में अध्यन्न नहीं जा सकता है| इसके अतिरिक्त, भौतिक प्रतिक्रिया की गैर-स्थानीयता पर विचार करते समय, परिपत्र द्विअर्थी प्रकट होता है, घटना जिसे स्थानिक विक्षेपण के रूप में जाना जाता है।[30] गैर-स्थानिकता का अर्थ है कि सामग्री के एक स्थान पर विद्युत क्षेत्र सामग्री के दूसरे स्थान पर प्रवाहित होते हैं। प्रकाश परिमित गति से यात्रा करता है, और भले ही यह इलेक्ट्रॉनों की तुलना में अधिक तीव्र है, इससे असमानता है कि चार्ज प्रतिक्रिया स्वाभाविक रूप से विद्युत चुम्बकीय तरंगफ्रंट के साथ यात्रा करना चाहती है या इसके विपरीत। स्थानिक विक्षेपण का तात्पर्य है कि भिन्न-भिन्न दिशाओं में यात्रा करने वाला प्रकाश (विभिन्न वेववेक्टर) भिन्न पारगम्यता टेंसर देखता है। प्राकृतिक ऑप्टिकल रोटेशन के लिए विशेष सामग्री की आवश्यकता होती है, किन्तु यह इस तथ्य पर भी निर्भर करता है कि प्रकाश का वेववेक्टर अशून्य है, और अशून्य वेववेक्टर स्थानीय (शून्य-वेववेक्टर) प्रतिक्रिया पर समरूपता प्रतिबंधों को बायपास करता है। चूँकि, अभी भी विपरीत समरूपता है, यही कारण है कि चुंबकीय फैराडे रोटेशन के विपरीत, प्रकाश की दिशा विपरीत होने पर प्राकृतिक ऑप्टिकल रोटेशन की दिशा 'विपरीत' होनी चाहिए। सभी ऑप्टिकल घटनाओं में चंद गैर-स्थानीयता/वेववेक्टर प्रभाव होता है किन्तु यह सामान्यतः नगण्य होता है| प्राकृतिक ऑप्टिकल रोटेशन को विशिष्ट रूप से इसकी आवश्यकता है।[30]

माध्यम में प्रकाश के चरण वेग को सामान्यतः अपवर्तन n के सूचकांक का उपयोग करके व्यक्त किया जाता है, जिसे प्रकाश की गति (मुक्त स्थान में) के रूप में परिभाषित किया जाता है, जो माध्यम में इसकी गति से विभाजित होता है। दो वृत्ताकार ध्रुवीकरणों के मध्य अपवर्तक सूचकांकों में अंतर, वृत्ताकार द्विभाजन (ध्रुवीकरण घुमाव) की शक्ति को निर्धारित करता है,

.

जबकि प्राकृतिक सामग्रियों में छोटा है, विशाल वृत्ताकार द्विअर्थी के उदाहरण जिसके परिणामस्वरूप वृत्ताकार ध्रुवीकरण के लिए नकारात्मक अपवर्तक सूचकांक चिरल मेटामटेरियल्स के लिए सूचित किया गया है।[31][32]

रैखिक ध्रुवीकरण की धुरी का परिचित घुमाव इस पर निर्भर करता है कि रैखिक रूप से ध्रुवीकृत तरंग को समान अनुपात में बाएँ और दाएँ गोलाकार ध्रुवीकृत तरंग के सुपरपोज़िशन सिद्धांत (जोड़) के रूप में भी वर्णित किया जा सकता है। इन दो तरंगों के मध्य का चरण अंतर रैखिक ध्रुवीकरण के उन्मुखीकरण पर निर्भर करता है जिसे हम कहते हैं और उनके विद्युत क्षेत्रों में सापेक्ष चरण अंतर होता है जो तब रैखिक ध्रुवीकरण उत्पन्न करने के लिए जोड़ते हैं-

जहाँ , नेट तरंग का विद्युत क्षेत्र है, जबकि और दो गोलाकार ध्रुवीकृत आधार (रैखिक बीजगणित) (शून्य चरण अंतर वाले) हैं। प्रचार को + z दिशा में मानते हुए, हम लिख सकते हैं और उनके x और y घटकों के संदर्भ में इस प्रकार है-

जहाँ , और इकाई वैक्टर हैं, और i काल्पनिक इकाई है, इस स्तिथि में x और y घटकों के मध्य 90 डिग्री चरण परिवर्तन का प्रतिनिधित्व करता है जिसे हमने प्रत्येक परिपत्र ध्रुवीकरण में विघटित कर दिया है| फेजर नोटेशन के साथ कार्य करते समय, यह समझा जाता है कि ऐसी मात्राओं को गुणा किया जाना है और किसी भी क्षण वास्तविक विद्युत क्षेत्र उस उत्पाद के वास्तविक भाग द्वारा दिया जाता है।

समीकरण में और के मान रखने पर,

अंतिम समीकरण से ज्ञात होता है कि परिणामी वेक्टर में x और y घटक चरण में हैं और दिशा में उन्मुख हैं| किसी भी रैखिक रूप से ध्रुवीकृत राज्य के कोण पर प्रतिनिधित्व को उचित ठहराते हुए के सापेक्ष चरण अंतर के साथ दाएं और बाएं गोलाकार ध्रुवीकृत घटकों के सुपरपोजिशन | हम वैकल्पिक रूप से सक्रिय सामग्री के माध्यम से संचरण मान लेते हैं जो दाएं और बाएं गोलाकार रूप से ध्रुवीकृत तरंगों के बीच एक अतिरिक्त चरण अंतर उत्पन्न करता है | मूल तरंग को कोण पर रैखिक रूप से ध्रुवीकृत करने का परिणाम है। यह अतिरिक्त चरण कारकों को प्रस्तावित करेगा और के दाएं और बाएं गोलाकार ध्रुवीकृत घटकों के लिए :

उपरोक्त समान गणित का उपयोग करके हम पाते हैं:

इस प्रकार, तरंग रैखिक रूप से कोण पर ध्रुवीकृत होती है जिसे आने वाली लहर के सापेक्ष , से घुमाया जाता है|

हमने दाएं और बाएं गोलाकार ध्रुवीकृत तरंगों के लिए अपवर्तक सूचकांकों में अंतर को ऊपर परिभाषित किया है| ऐसी सामग्री में लंबाई L के माध्यम से प्रचार को ध्यान में रखते हुए, उनके मध्य अतिरिक्त चरण अंतर प्रेरित होगा,

,

जहाँ प्रकाश की तरंग दैर्ध्य (निर्वात में) है।

सामान्यतः अपवर्तक सूचकांक तरंग दैर्ध्य पर निर्भर करता है (डिस्पर्सन (ऑप्टिक्स) देखें) और अंतर अपवर्तक सूचकांक तरंग दैर्ध्य पर भी निर्भर होगा। प्रकाश की तरंग दैर्ध्य के साथ रोटेशन में परिणामी भिन्नता को ऑप्टिकल रोटेटरी फैलाव (ओआरडी) कहा जाता है। ओआरडी स्पेक्ट्रा और सर्कुलर डाइक्रोइज्म स्पेक्ट्रा क्रामर्स-क्रोनिग संबंधों के माध्यम से संबंधित हैं। स्पेक्ट्रम का पूरा ज्ञान दूसरे की गणना की अनुमति देता है।

रोटेशन की डिग्री प्रकाश के रंग पर निर्भर करती है (589 एनएम तरंग दैर्ध्य के निकट पीली सोडियम D रेखा सामान्यतः माप के लिए उपयोग की जाती है) और पथ की लंबाई के सीधे आनुपातिक होती है| पदार्थ के माध्यम से और सामग्री के परिपत्र द्विअपवर्तन की मात्रा जो समाधान के लिए, पदार्थ के विशिष्ट घुमाव और समाधान में इसकी एकाग्रता से गणना की जा सकती है।

चूँकि, ऑप्टिकल गतिविधि को सामान्यतः तरल पदार्थ की संपत्ति विशेष रूप से जलीय घोल में माना जाता है| यह क्रिस्टल जैसे क्वार्ट्ज (SiO2) में भी देखा गया है।2)| चूँकि क्वार्ट्ज़ में पर्याप्त रेखीय द्विअपवर्तन होता है, किन्तु जब प्रसार क्रिस्टल के ऑप्टिक अक्ष के साथ होता है तो वह प्रभाव रद्द हो जाता है। उस स्थिति में, ध्रुवीकरण के तल का घूर्णन क्रिस्टल तलों के मध्य सापेक्ष घूर्णन के कारण देखा जाता है, इस प्रकार क्रिस्टल को औपचारिक रूप से चिरल बनाते हैं| क्रिस्टल विमानों का घूर्णन दाएं या बाएं हाथ से हो सकता है, जिससे विपरीत ऑप्टिकल गतिविधियों का उत्पादन होता है। दूसरी ओर, सिलिका के अक्रिस्टलीय रूपों जैसे फ्यूज्ड क्वार्ट्ज, जैसे कि चिरल अणुओं के रेसमिक मिश्रण, में कोई शुद्ध ऑप्टिकल गतिविधि नहीं होती है क्योंकि अन्य क्रिस्टल संरचना पदार्थ की आंतरिक आणविक संरचना पर हावी नहीं होती है।

अनुप्रयोग

समाधान में शुद्ध पदार्थ के लिए, यदि रंग और पथ की लंबाई निश्चित है और विशिष्ट घुमाव ज्ञात है, तो देखे गए घुमाव का उपयोग एकाग्रता की गणना के लिए किया जा सकता है। यह उपयोग ध्रुवनमापन को थोक में चीनी सिरप का व्यापार करने या उपयोग करने वालों के लिए महत्व का उपकरण बनाता है।

फैराडे प्रभाव की तुलना

फैराडे प्रभाव के माध्यम से प्रकाश के ध्रुवीकरण के विमान का घूर्णन भी हो सकता है जिसमें स्थिर चुंबकीय क्षेत्र सम्मिलित होता है। चूँकि, यह विशिष्ट घटना है जिसे ऑप्टिकल गतिविधि के रूप में वर्गीकृत नहीं किया गया है। ऑप्टिकल गतिविधि पारस्परिक है, अर्थात यह वैकल्पिक रूप से सक्रिय माध्यम के माध्यम से तरंग प्रसार की विपरीत दिशाओं के लिए समान है, उदाहरण के लिए, पर्यवेक्षक के दृष्टिकोण से दक्षिणावर्त ध्रुवीकरण रोटेशन है। वैकल्पिक रूप से सक्रिय आइसोट्रोपिक मीडिया की स्तिथि में, तरंग प्रसार की किसी भी दिशा के लिए रोटेशन समान है। इसके विपरीत, फैराडे प्रभाव गैर-पारस्परिक है, अर्थात फैराडे के माध्यम से तरंग प्रसार के विपरीत दिशाओं में पर्यवेक्षक के दृष्टिकोण से घड़ी की दिशा में और घड़ी की विपरीत दिशा में ध्रुवीकरण रोटेशन होगा। फैराडे रोटेशन प्रस्तावित चुंबकीय क्षेत्र के सापेक्ष प्रसार दिशा पर निर्भर करता है। सभी यौगिक प्रस्तावित चुंबकीय क्षेत्र की उपस्थिति में ध्रुवीकरण रोटेशन प्रदर्शित कर सकते हैं, इस सिथि में कि (घटक) चुंबकीय क्षेत्र प्रकाश प्रसार की दिशा में उन्मुख हो। फैराडे प्रभाव प्रकाश और विद्युत चुम्बकीय प्रभावों के मध्य संबंध का प्रथम अविष्कार है।

यह भी देखें

संदर्भ

  1. The first word component dextro- comes from the Latin word dexter, meaning "right" (as opposed to left). Laevo- or levo- comes from the Latin laevus, meaning "left side".
  2. The equivalent French terms are dextrogyre and levogyre. These are used infrequently in English.
  3. Sebti; Hamilton, eds. (2001). कैंसर थेरेपी में Farnesyltransferase अवरोधक. p. 126. ISBN 9780896036291. Retrieved 2015-10-18.
  4. LibreTexts Chemistry – Polarimetry
  5. "Determination of optical rotation and specific rotation" (PDF). इंटरनेशनल फार्माकोपिया. World Health Organization. 2017. ISBN 9789241550031. Archived (PDF) from the original on 2022-10-09.
  6. Solomons, T.W. Graham; Fryhle, Graig B. (2004). कार्बनिक रसायन विज्ञान (8th ed.). Hoboken: John Wiley & Sons, Inc.
  7. See, for example,Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R.; Frisch, M. J.; Bortolini, O.; Besse, P. (2003). "Determination of absolute configuration using calculation of optical rotation". Chirality. 15: S57–64. doi:10.1002/chir.10270. PMID 12884375.
  8. Arago (1811) "Mémoire sur une modification remarquable qu'éprouvent les rayons lumineux dans leur passage à travers certains corps diaphanes et sur quelques autres nouveaux phénomènes d'optique" (Memoir on a remarkable modification that light rays experience during their passage through certain translucent substances and on some other new optical phenomena), Mémoires de la classe des sciences mathématiques et physiques de l'Institut Impérial de France, 1st part : 93–134.
  9. Herschel, J.F.W. (1820) "On the rotation impressed by plates of rock crystal on the planes of polarization of the rays of light, as connected with certain peculiarities in its crystallization," Transactions of the Cambridge Philosophical Society, 1 : 43–51.
  10. Biot, J. B. (1815) "Phenomene de polarisation successive, observés dans des fluides homogenes" (Phenomenon of successive polarization, observed in homogeneous fluids), Bulletin des Sciences, par la Société Philomatique de Paris, 190–192.
  11. Biot (1818 & 1819) "Extrait d'un mémoire sur les rotations que certaines substances impriment aux axes de polarisation des rayons lumineux" (Extract from a memoir on the [optical] rotations that certain substances impress on the axes of polarization of light rays), Annales de Chimie et de Physique, 2nd series, 9 : 372-389 ; 10 : 63-81 ; for Biot's experiments with turpentine vapor (vapeur d'essence de térébenthine), see pp. 72-81.
  12. 12.0 12.1 A. Fresnel, "Mémoire sur la double réfraction que les rayons lumineux éprouvent en traversant les aiguilles de cristal de roche suivant les directions parallèles à l'axe", read 9 December 1822; printed in H. de Senarmont, E. Verdet, and L. Fresnel (eds.), Oeuvres complètes d'Augustin Fresnel, vol. 1 (1866), pp. 731–51; translated as "Memoir on the double refraction that light rays undergo in traversing the needles of quartz in the directions parallel to the axis", Zenodo4745976, 2021 (open access); especially §13.
  13. Pasteur, L. (1850) "Recherches sur les propriétés spécifiques des deux acides qui composent l'acide racémique" (Researches on the specific properties of the two acids that compose the racemic acid), Annales de chimie et de physique, 3rd series, 28 : 56–99 ; see also appendix, pp. 99–117.
  14. van 't Hoff, J.H. (1874) "Sur les formules de structure dans l'espace" (On structural formulas in space), Archives Néerlandaises des Sciences Exactes et Naturelles, 9 : 445–454.
  15. Le Bel, J.-A. (1874) "Sur les relations qui existent entre les formules atomiques des corps organiques et le pouvoir rotatoire de leurs dissolutions" (On the relations that exist between the atomic formulas of organic substances and the rotatory power of their solutions), Bulletin de la Société Chimique de Paris, 22 : 337–347.
  16. Bunn, C. W. (1945). रासायनिक क्रिस्टलोग्राफी. New York: Oxford University Press. p. 88.
  17. R. Williams (1968). "p-Azoxyanisole के निमेटिक तरल चरण में ऑप्टिकल रोटेटरी प्रभाव". Physical Review Letters. 21 (6): 342. Bibcode:1968PhRvL..21..342W. doi:10.1103/PhysRevLett.21.342.
  18. R. Williams (1969). "p-azoxyanisole के नेमैटिक लिक्विड क्रिस्टल में ऑप्टिकल-रोटरी पावर और लीनियर इलेक्ट्रो-ऑप्टिक प्रभाव". Journal of Chemical Physics. 50 (3): 1324. Bibcode:1969JChPh..50.1324W. doi:10.1063/1.1671194.
  19. Vavilov, S. I. (1950). सूक्ष्म संरचना स्वेता (प्रकाश की सूक्ष्म संरचना). Moscow: USSR Academy of Sciences Publishing.
  20. Akhmanov, S. A.; Zhdanov, B. V.; Zheludev, N. I.; Kovrigin, A. I.; Kuznetsov, V. I. (1979). "क्रिस्टल में नॉनलाइनियर ऑप्टिकल गतिविधि". JETP Letters. 29: 264.
  21. Silverman, M.; Ritchie, N.; Cushman, G.; Fisher, B. (1988). "ऑप्टिकल चरण मॉडुलन का उपयोग करते हुए प्रायोगिक विन्यास प्रकाश में चिरल असममितता को मापने के लिए स्वाभाविक रूप से जाइरोट्रोपिक माध्यम से परावर्तित होता है". Journal of the Optical Society of America A. 5 (11): 1852. Bibcode:1988JOSAA...5.1852S. doi:10.1364/JOSAA.5.001852.
  22. Silverman, M.; Badoz, J.; Briat, B. (1992). "स्वाभाविक रूप से वैकल्पिक रूप से सक्रिय माध्यम से चिराल प्रतिबिंब". Optics Letters. 17 (12): 886. Bibcode:1992OptL...17..886S. doi:10.1364/OL.17.000886. PMID 19794663.
  23. Bose, Jagadis Chunder (1898). "एक मुड़ी हुई संरचना द्वारा विद्युत तरंगों के ध्रुवीकरण के तल के घूर्णन पर". Proceedings of the Royal Society. 63 (389–400): 146–152. doi:10.1098/rspl.1898.0019. JSTOR 115973. S2CID 89292757.
  24. Svirko, Y.; Zheludev, N. I.; Osipov, M. (2001). "आगमनात्मक युग्मन के साथ स्तरित चिरल धात्विक माइक्रोस्ट्रक्चर". Applied Physics Letters. 78 (4): 498. Bibcode:2001ApPhL..78..498S. doi:10.1063/1.1342210.
  25. Kuwata-Gonokami, M.; Saito, N.; Ino, Y.; Kauranen, M.; Jefimovs, K.; Vallius, T.; Turunen, J.; Svirko, Y. (2005). "क्वासी-टू-डायमेंशनल प्लानर नैनोस्ट्रक्चर में विशाल ऑप्टिकल गतिविधि". Physical Review Letters. 95 (22): 227401. Bibcode:2005PhRvL..95v7401K. doi:10.1103/PhysRevLett.95.227401. PMID 16384264.
  26. Plum, E.; Fedotov, V. A.; Schwanecke, A. S.; Zheludev, N. I.; Chen, Y. (2007). "इलेक्ट्रोमैग्नेटिक कपलिंग के कारण विशाल ऑप्टिकल जाइरोट्रॉपी". Applied Physics Letters. 90 (22): 223113. Bibcode:2007ApPhL..90v3113P. doi:10.1063/1.2745203.
  27. Plum, E.; Fedotov, V. A.; Zheludev, N. I. (2008). "बाहरी रूप से चिराल मेटामेट्री में ऑप्टिकल गतिविधि" (PDF). Applied Physics Letters. 93 (19): 191911. arXiv:0807.0523. Bibcode:2008ApPhL..93s1911P. doi:10.1063/1.3021082. S2CID 117891131.
  28. Plum, E.; Fedotov, V. A.; Zheludev, N. I. (2016). "अचिरल मेटासर्फ्स की स्पेक्युलर ऑप्टिकल गतिविधि" (PDF). Applied Physics Letters. 108 (14): 141905. Bibcode:2016ApPhL.108n1905P. doi:10.1063/1.4944775. hdl:10220/40854.
  29. Ren, M.; Plum, E.; Xu, J.; Zheludev, N. I. (2012). "प्लास्मोनिक मेटामेट्री में विशाल नॉनलाइनियर ऑप्टिकल गतिविधि". Nature Communications. 3: 833. Bibcode:2012NatCo...3..833R. doi:10.1038/ncomms1805. PMID 22588295.
  30. 30.0 30.1 L.D. Landau; E.M. Lifshitz; L.P. Pitaevskii (1984). Electrodynamics of Continuous Media. Vol. 8 (2nd ed.). Butterworth-Heinemann. pp. 362–365. ISBN 978-0-7506-2634-7.
  31. Plum, E.; Zhou, J.; Dong, J.; Fedotov, V. A.; Koschny, T.; Soukoulis, C. M.; Zheludev, N. I. (2009). "चिरायता के कारण नकारात्मक सूचकांक वाला मेटामेट्री" (PDF). Physical Review B. 79 (3): 035407. Bibcode:2009PhRvB..79c5407P. doi:10.1103/PhysRevB.79.035407. S2CID 119259753.
  32. Zhang, S.; Park, Y.-S.; Li, J.; Lu, X.; Zhang, W.; Zhang, X. (2009). "चिरल मेटामटेरियल्स में नकारात्मक अपवर्तक सूचकांक". Physical Review Letters. 102 (2): 023901. Bibcode:2009PhRvL.102b3901Z. doi:10.1103/PhysRevLett.102.023901. PMID 19257274.


अग्रिम पठन