टोकरी वाइंडिंग: Difference between revisions
(Created page with "{{Short description|Winding method}} File:Kreuzwickelspule.png|thumb|IF ट्रांसफॉर्मर में Litz तार से बनी बास्केट...") |
No edit summary |
||
Line 1: | Line 1: | ||
{{Short description|Winding method}} | {{Short description|Winding method}} | ||
[[File:Kreuzwickelspule.png|thumb|IF ट्रांसफॉर्मर में Litz तार से बनी बास्केट वाइंडिंग]]बास्केट | [[File:Kreuzwickelspule.png|thumb|IF ट्रांसफॉर्मर में Litz तार से बनी बास्केट वाइंडिंग]]बास्केट कुंडलन (या बास्केट-वयन कुंडलन या हनीकॉम्ब कुंडलन या प्रसार कुंडलन) कुंडली में विद्युत तार के लिए कुंडलन विधि है। घुमावदार स्वरूप आकार का उपयोग रेडियो आवृत्ति [[इलेक्ट्रॉनिक घटक|विद्युतीय घटकों]] के लिए कई समांतर तारों, जैसे [[ प्रारंभ करनेवाला |प्रेरक]] और [[ट्रांसफार्मर]] के लिए किया जाता है। घुमावदार स्वरूप आसन्न, समानांतर घुमावों में चलने वाले तार की मात्रा को कम करता है। बास्केट कुंडलन कुंडली की निरंतर परतों में तार एक दूसरे को बड़े कोणों पर काटते हैं, जितना संभव हो 90 डिग्री के निकट, जो रेडियो आवृति पर तारों के बीच विद्युतीय तिर्यक युग्मन के कारण ऊर्जा क्षति को कम करता है। | ||
== उद्देश्य == | == उद्देश्य == | ||
बास्केट | बास्केट कुंडलन विधि का उपयोग 50 kHz और उससे की [[आवृत्ति]] पर उपयोग के लिए डिज़ाइन किए गए कुंडली के लिए किया जाता है, जो दो अनुपयुक्त दुष्प्रभावों, ''[[निकटता प्रभाव (विद्युत चुंबकत्व)]]'' और ''[[परजीवी समाई|पराश्रयी धारिता]]'' को कम करने के लिए होता है, जो वर्तमान के तार ले जाने के लंबे समानांतर खंडों में उत्पन्न होता है। | ||
निकटता प्रभाव (विद्युत चुंबकत्व) पास के समानांतर तारों में प्रवाहित होने वाले चुंबकीय क्षेत्र द्वारा | निकटता प्रभाव (विद्युत चुंबकत्व) पास के समानांतर तारों में प्रवाहित होने वाले चुंबकीय क्षेत्र द्वारा तार में होता है, जैसे कि एक ही कुंडल में अन्य कुंडली होता है। यदि दो आसन्न तारों में एक ही दिशा में धारा प्रवाहित होता है, तो प्रभाव दोनों में अनुभूति होती है - निकट के तारों का चुंबकीय क्षेत्र प्रत्येक तार में धारा को तार की सतह पर छोटे से क्षेत्र में संकेंद्रित तारों से सबसे दूर केंद्रित करता है। सुचालक के एक छोटे से भाग के साथ धारा की सांद्रता तार के विद्युत प्रतिरोध को बढ़ाती है और इसलिए ऊर्जा क्षति बढ़ती है। [[मध्यम आवृत्ति]] और [[उच्च आवृत्ति]] रेडियो आवृत्तियों पर प्रारंभ करनेवाला का बढ़ा हुआ प्रतिरोध समस्वरित परिपथ की [[बैंडविड्थ (सिग्नल प्रोसेसिंग)|बंधनचौड़ाई (संकेत प्रक्मन)]] को बढ़ा सकता है और परिपथ की आवृत्ति चयनात्मकता, या [[क्यू कारक|Q कारक]] को कम कर सकता है। | ||
पराश्रयी धारिता [[संधारित्र]] प्लेटों के रूप में कार्य करने वाले तार के समानांतर घुमावों का परिणाम है, जो आसन्न तारों के बीच विद्युत आवेश का भंडारण करता है। पैरासिटिक कैपेसिटेंस कॉइल को [[स्व-गुंजयमान आवृत्ति]] बनने का कारण बन सकता है। एक या कई फ्रीक्वेंसी पर सेल्फ-रेजोनेंट, जो अभीष्ट ट्यूनेड रेजोनेंस और ब्लॉक के साथ हस्तक्षेप करता है और सेल्फ-रेजोनेंट फ्रीक्वेंसी पर करंट को दर्शाता है। | |||
दुर्भाग्य से बास्केट-वीव कॉइल वाइंडिंग कॉइल के भौतिक आकार को बढ़ाता है, जिससे [[रिसाव अधिष्ठापन]] बढ़ जाता है। | दुर्भाग्य से बास्केट-वीव कॉइल वाइंडिंग कॉइल के भौतिक आकार को बढ़ाता है, जिससे [[रिसाव अधिष्ठापन]] बढ़ जाता है। |
Revision as of 16:14, 4 May 2023
बास्केट कुंडलन (या बास्केट-वयन कुंडलन या हनीकॉम्ब कुंडलन या प्रसार कुंडलन) कुंडली में विद्युत तार के लिए कुंडलन विधि है। घुमावदार स्वरूप आकार का उपयोग रेडियो आवृत्ति विद्युतीय घटकों के लिए कई समांतर तारों, जैसे प्रेरक और ट्रांसफार्मर के लिए किया जाता है। घुमावदार स्वरूप आसन्न, समानांतर घुमावों में चलने वाले तार की मात्रा को कम करता है। बास्केट कुंडलन कुंडली की निरंतर परतों में तार एक दूसरे को बड़े कोणों पर काटते हैं, जितना संभव हो 90 डिग्री के निकट, जो रेडियो आवृति पर तारों के बीच विद्युतीय तिर्यक युग्मन के कारण ऊर्जा क्षति को कम करता है।
उद्देश्य
बास्केट कुंडलन विधि का उपयोग 50 kHz और उससे की आवृत्ति पर उपयोग के लिए डिज़ाइन किए गए कुंडली के लिए किया जाता है, जो दो अनुपयुक्त दुष्प्रभावों, निकटता प्रभाव (विद्युत चुंबकत्व) और पराश्रयी धारिता को कम करने के लिए होता है, जो वर्तमान के तार ले जाने के लंबे समानांतर खंडों में उत्पन्न होता है।
निकटता प्रभाव (विद्युत चुंबकत्व) पास के समानांतर तारों में प्रवाहित होने वाले चुंबकीय क्षेत्र द्वारा तार में होता है, जैसे कि एक ही कुंडल में अन्य कुंडली होता है। यदि दो आसन्न तारों में एक ही दिशा में धारा प्रवाहित होता है, तो प्रभाव दोनों में अनुभूति होती है - निकट के तारों का चुंबकीय क्षेत्र प्रत्येक तार में धारा को तार की सतह पर छोटे से क्षेत्र में संकेंद्रित तारों से सबसे दूर केंद्रित करता है। सुचालक के एक छोटे से भाग के साथ धारा की सांद्रता तार के विद्युत प्रतिरोध को बढ़ाती है और इसलिए ऊर्जा क्षति बढ़ती है। मध्यम आवृत्ति और उच्च आवृत्ति रेडियो आवृत्तियों पर प्रारंभ करनेवाला का बढ़ा हुआ प्रतिरोध समस्वरित परिपथ की बंधनचौड़ाई (संकेत प्रक्मन) को बढ़ा सकता है और परिपथ की आवृत्ति चयनात्मकता, या Q कारक को कम कर सकता है।
पराश्रयी धारिता संधारित्र प्लेटों के रूप में कार्य करने वाले तार के समानांतर घुमावों का परिणाम है, जो आसन्न तारों के बीच विद्युत आवेश का भंडारण करता है। पैरासिटिक कैपेसिटेंस कॉइल को स्व-गुंजयमान आवृत्ति बनने का कारण बन सकता है। एक या कई फ्रीक्वेंसी पर सेल्फ-रेजोनेंट, जो अभीष्ट ट्यूनेड रेजोनेंस और ब्लॉक के साथ हस्तक्षेप करता है और सेल्फ-रेजोनेंट फ्रीक्वेंसी पर करंट को दर्शाता है।
दुर्भाग्य से बास्केट-वीव कॉइल वाइंडिंग कॉइल के भौतिक आकार को बढ़ाता है, जिससे रिसाव अधिष्ठापन बढ़ जाता है।
तरीके
बास्केट वाइंडिंग्स को अक्सर लिट्ज वायर से लपेटा जाता है, एक पतली, मल्टी-स्ट्रैंड वायर जिसमें प्रत्येक स्ट्रैंड व्यक्तिगत रूप से इंसुलेटेड होता है, जो नुकसान को कम करता है। वाइंडिंग प्रक्रिया के दौरान यांत्रिक दृष्टिकोण से कॉटन या फैब्रिक इंसुलेशन महत्वपूर्ण है, क्योंकि एक सामान्य एनामेल्ड चुंबक तार बड़े कोणों पर घुमावों को पकड़ने के लिए कॉइल परतों के बीच पर्याप्त सतह घर्षण प्रदान नहीं करता है।[1]
यह भी देखें
- एर्टन-पेरी वाइंडिंग
- बाइफिलर वाइंडिंग
- प्रारंभ करनेवाला
बाहरी संबंध