ताप क्षमता के बीच संबंध: Difference between revisions
No edit summary |
No edit summary |
||
Line 1: | Line 1: | ||
[[ऊष्मप्रवैगिकी]] में, स्थिर आयतन <math>C_{V}</math> पर ऊष्मा-धारिता और स्थिर दाब <math>C_{P}</math> पर ऊष्मा-धारिता [[व्यापक गुण]] हैं जिनमें ऊर्जा का परिमाण तापमान से विभाजित होता है। | [[ऊष्मप्रवैगिकी]] में, स्थिर आयतन <math>C_{V}</math> पर ऊष्मा-धारिता और स्थिर दाब <math>C_{P}</math> पर ऊष्मा-धारिता [[व्यापक गुण]] होता हैं जिनमें ऊर्जा का परिमाण तापमान से विभाजित होता है। | ||
== संबंध == | == संबंध == | ||
Line 5: | Line 5: | ||
:<math>C_{P} - C_{V}= V T\frac{\alpha^{2}}{\beta_{T}}\,</math> :<math>\frac{C_{P}}{C_{V}}=\frac{\beta_{T}}{\beta_{S}}\,</math> | :<math>C_{P} - C_{V}= V T\frac{\alpha^{2}}{\beta_{T}}\,</math> :<math>\frac{C_{P}}{C_{V}}=\frac{\beta_{T}}{\beta_{S}}\,</math> | ||
यहाँ <math>\alpha</math> तापीय प्रसार गुणांक है: | यहाँ <math>\alpha</math> तापीय प्रसार गुणांक होता है: | ||
:<math>\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}\,</math> | :<math>\alpha=\frac{1}{V}\left(\frac{\partial V}{\partial T}\right)_{P}\,</math> | ||
<math>\beta_{T}</math> समतापीय संपीड्यता (बल्क मापांक का व्युत्क्रम) है: | <math>\beta_{T}</math> समतापीय संपीड्यता (बल्क मापांक का व्युत्क्रम) होती है: | ||
:<math>\beta_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}\,</math> | :<math>\beta_{T}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{T}\,</math> | ||
और <math>\beta_{S}</math> [[isentropic|समऐन्ट्रॉपिक]] संपीड्यता है: | और <math>\beta_{S}</math> [[isentropic|समऐन्ट्रॉपिक]] संपीड्यता होती है: | ||
:<math>\beta_{S}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{S}\,</math> | :<math>\beta_{S}=-\frac{1}{V}\left(\frac{\partial V}{\partial P}\right)_{S}\,</math> | ||
स्थिर आयतन और स्थिर दाब पर विशिष्ट ऊष्मा धारिता (गहन गुण) में अंतर के लिए एक संबंधित व्यंजक है: | स्थिर आयतन और स्थिर दाब पर विशिष्ट ऊष्मा धारिता (गहन गुण) में अंतर के लिए एक संबंधित व्यंजक होता है: | ||
:<math> c_p - c_v = \frac{T \alpha^2}{\rho \beta_T} </math> | :<math> c_p - c_v = \frac{T \alpha^2}{\rho \beta_T} </math> | ||
जहां ρ प्रयुक्त शर्तों के अंतर्गत पदार्थ का घनत्व है। | जहां ρ प्रयुक्त शर्तों के अंतर्गत पदार्थ का घनत्व होता है। | ||
उष्मा धारिता अनुपात के लिए | उष्मा धारिता अनुपात के लिए स्थिर व्यंजक वही स्थित होता है क्योंकि उष्मागतिकी प्रणाली के आकार पर निर्भर मात्राएँ, फिर प्रति द्रव्यमान या प्रति मोल आधार पर हों, अनुपात में अस्वीकृत हो जाते हैं क्योंकि विशिष्ट ऊष्मा-धारिता सघन गुण होते हैं। इस प्रकार: | ||
:<math>\frac{c_{p}}{c_{v}}=\frac{\beta_{T}}{\beta_{S}}\,</math> | :<math>\frac{c_{p}}{c_{v}}=\frac{\beta_{T}}{\beta_{S}}\,</math> | ||
Line 32: | Line 32: | ||
:<math>\delta Q = C dT\,</math> | :<math>\delta Q = C dT\,</math> | ||
जहाँ C ऊष्मा-धारिता है, यह इस प्रकार है: | जहाँ C ऊष्मा-धारिता होती है, यह इस प्रकार है: | ||
:<math>T dS = C dT\,</math> | :<math>T dS = C dT\,</math> | ||
ऊष्मा धारिता इस बात पर निर्भर करती है कि ऊष्मा की आपूर्ति होने पर प्रणाली के बाहरी चर कैसे | ऊष्मा धारिता इस बात पर निर्भर करती है कि ऊष्मा की आपूर्ति होने पर प्रणाली के बाहरी चर कैसे परिवर्तित करते हैं। यदि प्रणाली का एकमात्र बाहरी चर आयतन है, तो हम लिख सकते हैं: | ||
:<math>dS = \left(\frac{\partial S}{\partial T}\right)_{V}dT+\left(\frac{\partial S}{\partial V}\right)_{T}dV</math> | :<math>dS = \left(\frac{\partial S}{\partial T}\right)_{V}dT+\left(\frac{\partial S}{\partial V}\right)_{T}dV</math> |
Revision as of 09:30, 11 May 2023
ऊष्मप्रवैगिकी में, स्थिर आयतन पर ऊष्मा-धारिता और स्थिर दाब पर ऊष्मा-धारिता व्यापक गुण होता हैं जिनमें ऊर्जा का परिमाण तापमान से विभाजित होता है।
संबंध
ऊष्मप्रवैगिकी के नियम इन दो ऊष्मा-धारिताओ (गैस्केल 2003:23) के बीच निम्नलिखित संबंधों को दर्शाते हैं:
- :
यहाँ तापीय प्रसार गुणांक होता है:
समतापीय संपीड्यता (बल्क मापांक का व्युत्क्रम) होती है:
और समऐन्ट्रॉपिक संपीड्यता होती है:
स्थिर आयतन और स्थिर दाब पर विशिष्ट ऊष्मा धारिता (गहन गुण) में अंतर के लिए एक संबंधित व्यंजक होता है:
जहां ρ प्रयुक्त शर्तों के अंतर्गत पदार्थ का घनत्व होता है।
उष्मा धारिता अनुपात के लिए स्थिर व्यंजक वही स्थित होता है क्योंकि उष्मागतिकी प्रणाली के आकार पर निर्भर मात्राएँ, फिर प्रति द्रव्यमान या प्रति मोल आधार पर हों, अनुपात में अस्वीकृत हो जाते हैं क्योंकि विशिष्ट ऊष्मा-धारिता सघन गुण होते हैं। इस प्रकार:
अंतर संबंध एक व्यक्ति को स्थिर आयतन पर ठोस पदार्थों के लिए ऊष्मा धारिता प्राप्त करने की स्वीकृति देता है जो आसानी से मापी जाने वाली मात्राओं के संदर्भ में आसानी से नहीं मापा जाता है। अनुपात संबंध ऊष्मा-धारिता अनुपात के संदर्भ में समऐन्ट्रॉपिक संपीड्यता को व्यक्त करने की स्वीकृति देता है।
व्युत्पत्ति
यदि ऊष्मा की एक अतिसूक्ष्म मात्रा किसी प्रणाली को प्रतिवर्ती तरीके से आपूर्ति की जाती है, तो ऊष्मप्रवैगिकी के दूसरे नियम के अनुसार, प्रणाली का एन्ट्रापी परिवर्तन निम्न द्वारा दिया जाता है:
तब से
जहाँ C ऊष्मा-धारिता होती है, यह इस प्रकार है:
ऊष्मा धारिता इस बात पर निर्भर करती है कि ऊष्मा की आपूर्ति होने पर प्रणाली के बाहरी चर कैसे परिवर्तित करते हैं। यदि प्रणाली का एकमात्र बाहरी चर आयतन है, तो हम लिख सकते हैं:
इससे निम्न है:
dS को dT और dP के रूप में ऊपर बताए अनुसार व्यक्त करने पर व्यंजक प्राप्त होता है:
dS के लिए उपरोक्त व्यंजक में dP और dT के संदर्भ में dV को व्यक्त करके के लिए उपरोक्त व्यंजक प्राप्त किया जा सकता है।
का परिणाम होता है
और यह इस प्रकार है:
इसलिए,
आंशिक अवकल को चर के संदर्भ में पुनः लिखा जा सकता है जिसमें एक उपयुक्त मैक्सवेल संबंध का उपयोग करके एन्ट्रापी सम्मिलित नहीं है। ये संबंध मौलिक उष्मागतिक संबंध से अनुसरण करते हैं:
यह इस प्रकार है कि हेल्महोल्ट्ज़ मुक्त ऊर्जा का अंतर है:
इस का तात्पर्य है कि
और
T और V के संबंध में F के दूसरे अवकल की समरूपता का तात्पर्य है
किसी को लिखने की स्वीकृति देना:
दक्षिणावर्ती पक्ष (आर.एच.एस.) स्थिर आयतन पर व्युत्पन्न होता है, जिसे मापना कठिन हो सकता है। इसे निम्नानुसार पुनः लिखा जा सकता है। सामान्य रूप में,
आंशिक अवकल के बाद से dV = 0 के लिए केवल dP और dT का अनुपात है, उपरोक्त समीकरण में dV = 0 रखकर और इस अनुपात को हल करके इसे प्राप्त किया जा सकता है:
जो व्यंजक उत्पन्न करता है:
ऊष्मा-धारिता के अनुपात के लिए व्यंजक निम्नानुसार प्राप्त की जा सकती है:
अंश में आंशिक अवकल दबाव के संदर्भ मे तापमान और एन्ट्रापी के आंशिक व्युत्पन्न के अनुपात के रूप में व्यक्त किया जा सकता है। यदि संबंध में
हम रखतें है और अनुपात के लिए हल करते हैं, तब हम प्राप्त करते हैं। ऐसा करने से प्राप्त होता है:
समान रूप से dV को dS और dT के संदर्भ में व्यक्त करके, dV को शून्य के बराबर रखकर और हल करके आंशिक अवकल अनुपात को पुनः लिखा जा सकता है। जब उपरोक्त एंट्रॉपी के आंशिक अवकलज के अनुपात के रूप में व्यक्त ऊष्मा धारिता अनुपात में व्यंजक को प्रतिस्थापित करता है, तो यह निम्नानुसार होता है:
स्थिरांक S पर दो अवकलज को एक साथ लेना:
स्थिरांक T पर दो अवकलज एक साथ लेना:
इसमें से लिख सकते हैं:
आदर्श गैस
यह एक आदर्श गैस के लिए व्यंजक प्राप्त करने के लिए एक कारण है।
एक आदर्श गैस में अवस्था का समीकरण होता है:
जहाँ
- P = दबाव
- V = आयतन
- n = मोल्स की संख्या
- R = सार्वभौमिक गैस स्थिरांक (गैस स्थिरांक)
- T = तापमान
अवस्था के आदर्श गैस समीकरण को देने के लिए व्यवस्थित किया जा सकता है:
- या
- अवस्था के उपरोक्त समीकरण से निम्नलिखित आंशिक अवकल प्राप्त होते हैं:
तापीय प्रसार गुणांक के लिए निम्नलिखित सरल व्यंजक प्राप्त होते हैं:
और समतापी संपीडयता के लिए:
अब पहले से प्राप्त सामान्य सूत्र से आदर्श गैसों के लिए की गणना कर सकते हैं:
आदर्श गैस समीकरण से प्रतिस्थापन अंत में देता है:
जहाँ n = विचाराधीन ऊष्मप्रवैगिकी प्रणाली में गैस के मोल्स की संख्या और R = सार्वभौमिक गैस स्थिरांक है। प्रति मोल के आधार पर, अणुक ऊष्मा-धारिता में अंतर के लिए व्यंजक आदर्श गैसों के लिए सिर्फ R बन जाती है:
यह परिणाम सुसंगत होगा यदि विशिष्ट अंतर के लिए सामान्य अभिव्यक्ति से प्रत्यक्ष प्राप्त किया गया हो।
यह भी देखें
- ऊष्मा-धारिता अनुपात
संदर्भ
- David R. Gaskell (2008), Introduction to the thermodynamics of materials, Fifth Edition, Taylor & Francis. ISBN 1-59169-043-9.